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Microarray technology has produced a huge body of time-course gene expression data and will continue to produce more. Such
gene expression data has been proved useful in genomic disease diagnosis and drug design. The challenge is how to uncover
useful information from such data by proper analysis methods such as significance analysis and clustering analysis. Many statistic-
based significance analysis methods and distance/correlation-based clustering analysis methods have been applied to time-course
expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterizes
such data and that should be considered in analysis of such data. In this paper, we employ a nonlinear model to analyse time-course
gene expression data. We firstly develop an efficient method for estimating the parameters in the nonlinear model. Then we utilize
this model to perform the significance analysis of individually differentially expressed genes and clustering analysis of a set of gene
expression profiles. The verification with two synthetic datasets shows that our developed significance analysis method and cluster
analysis method outperform some existing methods. The application to one real-life biological dataset illustrates that the analysis
results of our developed methods are in agreement with the existing results.

1. Background

To understand the mechanisms of dynamic biological pro-
cesses, DNAmicroarray experiments have been employed to
produce gene expression profiles at a series of time points,
for example, the cell division cycle processes of yeast Sac-
charomyces cerevisiae [1, 2], bacterium Caulobacter crescentus
[3], and human being [4]. Such time-course gene expression
data provides a dynamic snapshot of most (if not all) of the
genes related to the biological development process and thus
can be useful in genomic disease diagnosis and genomic drug
design. The challenge is how to uncover useful information
from such data by proper analysis methods [5].

Although the behaviours of genome-wide genes can be
monitored simultaneously with the current DNAmicroarray
technology, not are all of monitored genes closely related to
the biological process being studied or of interest. In addition,
gene expression data are often contaminated by various
noises or noisy genes. It is impossible to uncover some useful

information without any preprocessing. Either excluding
genes of interest or including noisy genes could degrade the
significance of any analysis results. Therefore, it is critical
to select the genes which are closely relevant to a biological
process from gene expression profiles measured during the
biological process.The selection of genes can be performed by
the so-called significance analysis of gene expression profiles.
Much attention has been paid to the significant analysis of
static gene expression data over the past years. For gene
expression data obtained from a pair of conditions (e.g.,
normal versus abnormal, or control versus treatment) with
multiple replicates, one of the widely used approaches in
early years is called the 𝑅-fold change method [6, 7]. The “𝑅-
fold change” method determines a gene to be significantly
expressed if the ratio of expression values under two different
conditions is greater than𝑅 or less than 1/𝑅, where𝑅 is a user-
preset positive number. This approach has been improved
by a resampling (bootstrapping) method called SAM [8, 9].
Another approach to the significance analysis is the use of
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𝑡-test, for example, on logarithm of the expression levels.
In a 𝑡-test, the means and variances of gene expressions
from a pair of conditions are used to compute a normalized
distance so-called 𝑡-value.When the 𝑡-value exceeds a certain
threshold depending on the confidence level selected, gene
expression data from a pair of conditions are considered to be
significantly different. Although 𝑅-fold and 𝑡-test approaches
can be extended to apply for the analysis of gene expression
data with multiple conditions, for example, SAM [8, 9] and
RIT [10], these approaches need the assumption that multi-
conditional values are statistically independent. Therefore, it
is not applicable to time-course gene expression profiles as
they are not statistically independent but dynamically depen-
dent. In recent year, we have developed several methods for
significance analysis of time-course gene expression data. In
[11, 12], we employ linear regression models to detect the
significantly differentially expressed genes. In [13, 14], we
employ nonlinearmodels to detect the periodically expressed
genes.

Besides the significance analysis, the cluster analysis is
another class of analysis methods to uncover the useful infor-
mation from gene expression data [5]. A number of clustering
methods have been proposed for cluster analysis of gene
expression data. These include distance/correlation-based
clusteringmethods (e.g., hierarchical clustering [15], 𝑘-means
clustering [16], and self-organizing maps [17]) and static-
model-based clustering methods [18, 19]. In these methods,
gene expression profiles are viewed as multidimensional vec-
tors. Distance/correlation-based clustering methods cluster
genes based on the distance/correlation among their expres-
sion profiles. Static-model-based clustering methods assign
genes to one of the clusters if their expression profiles are
generated by a multivariate normal distribution.These meth-
ods do not take the dynamic of time-course gene expression
data into account and thus are not efficient for periodically
expressed gene data. Some dynamic-model-based clustering
methods have been proposed to analyze time-course gene
expression data [20, 21].Thesemethods employ linear autore-
gressivemodels to describe the dynamics of time-course gene
expression data. Recently we propose the nonlinear-model-
based method for clustering periodically expressed genes
[22, 23].

As measured from typical nonlinear biological systems,
time-course gene expression profiles should display the non-
linear properties. In this paper, we propose nonlinear-model-
based methods for significance analysis and cluster analysis
of time-course gene expression data.The proposed nonlinear
model can be viewed as a generalization of many existing
models [13, 14, 20–23]. A two-step method is proposed to
estimate the model parameter. An 𝐹-test is employed to
determine if a gene expression profile is significantly different
fromnoisy data. A relocation-iteration algorithm is employed
to assign each gene to an appropriate cluster. A bootstrapping
method and an average adjusted Rand index (AARI) are
employed to measure the quality of clustering. We employ
two synthetic datasets to evaluate the performance of the
proposed methods and apply them to one real-life biological
dataset.

2. Methods

2.1. Nonlinear Model for Time-Course Gene Profiles. Let
𝑥(𝑡) (𝑡 = 1, 2, . . . , 𝑚) be a time-course gene expression profile
generated from a dynamic biological process, where𝑚 is the
number of time points at which gene expression is measured.
Many nonlinear gene expression profiles contain a periodic
component and a long-term decrease or increase component.
In this study, we employ the following nonlinear model to
describe time-course gene expression data:

𝑥 (𝑡) = 𝑒
𝛼𝑡

[𝑎 cos (𝜔𝑡) + 𝑏 sin (𝜔𝑡)] + 𝑐𝑡 + 𝑑 + 𝜀 (𝑡) , (1)

where parameter 𝛼 represents the degradation rate of peri-
odicity; parameters 𝑎 and 𝑏 are the coefficients of sine and
cosine functions, respectively; parameter 𝜔 is the frequency
of periodic expression data; parameters 𝑐 and 𝑑 are the
coefficients of linear function; and 𝜀(𝑡) represents random
errors. This study assumes that the errors have a normal
distribution independent of time with the mean of 0 and
the variance of 𝜎2. This model generalizes several existing
models; for example, setting 𝛼 = 𝑐 = 𝑑 = 0, model (1) is
reduced to sinusoidal function model [24–30]:

𝑥 (𝑡) = 𝐴 sin (𝜔𝑡 + Φ) + 𝜀 (𝑡) , (2)

which is widely used to generate the synthetic periodic
gene expression profiles [24] and to detect the periodically
expressed genes [27–29]. In model (2),𝐴 = √𝑎2 + 𝑏2 is called
the magnitude and Φ = arc tan(𝑎/𝑏) is called the phase.
Setting 𝛼 = 0, model (1) is reduced to a model used in [13],
while, setting 𝑐 = 𝑑 = 0, model (1) is reduced to a model
used in [14, 22]. As model (1) is the generalization of several
existing models, it is expected that the analysis results based
on this model are better than those reduced models.

To construct model (1) six parameters need to be esti-
mated from a time-course gene expression profile 𝑥(𝑡) (𝑡 =
1, 2, . . . , 𝑚). Obviously estimating those parameters in model
(1) is a nonlinear estimation problem as 𝛼 and𝜔 are nonlinear
in themodel. In general, all nonlinear optimization programs
can be used to estimate parameters in model (1), for example,
Gauss-Newton iterationmethod and its variants such as Box-
Kanemasu interpolation method, Levenberg damped least
squares methods, andMarquardt’s method [31–33]. However,
these iterationmethods are sensitive to initial values. Another
main shortcoming is that these methods may converge to the
local minimum of the least squares cost function and thus
cannot find the true values of the parameters.

Our observation is that noise free model (1)

𝑥 (𝑡) = 𝑒
𝛼𝑡

[𝑎 cos (𝜔𝑡) + 𝑏 sin (𝜔𝑡)] + 𝑐𝑡 + 𝑑 (3)

can be viewed as the general solution of the following second
order ordinary differential equation:

𝑥̈ (𝑡) + 𝐴𝑥̇ (𝑡) + 𝐵𝑥 (𝑡) = 𝐶𝑡 + 𝐷, (4)

which is independent of 𝑎 and 𝑏 and

𝛼 = −
𝐴

2
, 𝜔 =

√4𝐵 − 𝐴2

2
,

𝑐 =
𝐶

𝐵
, 𝑑 =

𝐷𝐵 − 𝐴𝐶

𝐵2
.

(5)
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Now we can see that constant parameters 𝐴, 𝐵, 𝐶, and 𝐷
are linear in (4). As long as we get the first and second
derivatives, we can easily estimate the parameters 𝐴, 𝐵, 𝐶,
and 𝐷 by the linear least squares method. Then we can get
the estimation of 𝛼, 𝜔, 𝑐, and 𝑑 from equations in (5). Finally
we can use (3) to estimate the rest of parameters 𝑎 and
𝑏. Therefore, we propose the following two-step parameter
estimation methods to estimate all six parameters in model
(1).
Step 1. Numerically calculate the first and second derivatives
of 𝑥(𝑡). As time-course gene expression data are discrete, the
first and second derivatives of 𝑥(𝑡) can be estimated by the
central (second order) finite difference formulas as follows:

𝑥̇ (𝑡) =
𝑥 (𝑡 + 1) − 𝑥 (𝑡 − 1)

2Δ
for 𝑡 = 2, . . . , 𝑚 − 1, (6)

𝑥̈ (𝑡) =
𝑥 (𝑡 + 1) + 𝑥 (𝑡 − 1) − 2𝑥 (𝑡)

Δ2
for 𝑡 = 2, . . . , 𝑚 − 1,

(7)

respectively, where Δ is the time difference between two
consecutive gene expression data points. If the number of
data points in a gene expression profile is enough, one can
choose a high order finite difference formula to get more
accurate estimation of these derivatives.

Then, based on model (4), we use the linear least squares
method to estimate parameter 𝜔2. In detail, let

𝑌 =

[
[
[
[

[

𝑥̈ (1)

𝑥̈ (2)

...
𝑥̈ (𝑙)

]
]
]
]

]

, 𝑋 =

[
[
[
[

[

−𝑥̇ (1) −𝑥 (1) 𝑡
2

1

−𝑥̇ (2) −𝑥 (2) 𝑡
3

1

...
...

...
...

−𝑥̇ (𝑙) −𝑥 (𝑙) 𝑡
𝑚−1

1

]
]
]
]

]

. (8)

From (6) and (7), we have 𝑙 = 𝑚−2.Then by the least squares
method, the paramters 𝐴, 𝐵, 𝐶, and 𝐷 in model (4) can be
estimated as

[
[
[

[

𝐴

𝐵

𝐶

𝐷

]
]
]

]

= (𝑋
𝑇

𝑋)
−1

𝑋
𝑇

𝑌. (9)

Note that if the value of 4𝐵−𝐴2 calculated by (5) for a gene is
negative, the expression of this gene will be judged not to be
described by model (1).
Step 2. Substitute the estimated values of 𝛼, 𝜔, 𝑐, and 𝑑 into
(3). Then we apply the least squares method to model (1) to
estimate parameters 𝑎 and 𝑏. In detail, let

𝑍 = [𝑧 (1) , . . . , 𝑧 (𝑚)] ,

𝐸 = [
cos (Δ𝜔̂) , . . . , cos (𝑚Δ𝜔̂)
sin (Δ𝜔̂) , . . . , sin (𝑚Δ𝜔̂)] ;

(10)

by the least squares method, 𝑎 and 𝑏 can be estimated as

[
𝑎

𝑏̂
] = (𝐸𝐸

𝑇

)
−1

(𝐸𝑍
𝑇

) , (11)

where

𝑧 (𝑡) = 𝑒
−𝛼̂𝑡

[𝑥 (𝑡) − 𝑐𝑡 − 𝑑] for 𝑡 = 1, 2, . . . , 𝑚. (12)

2.2. Nonlinear-Model-Based Significance Analysis. Signifi-
cance analysis of gene expression data is to determine if a
gene expression profile is significantly different from noisy
data. This issue is not easy to answer through statisti-
cal inference [29, 30] yet, especially for time-course gene
expression profiles as their data points are not statistically
independent. However, a practical way in the literature [27–
30] is to perform a statistical hypothesis test whether the gene
expression profile is pure normalwhite noise or it fits a certain
model as specified by (1). Along with this way, this study tests
the null hypothesis of

(𝐻
0
)

𝑥 (𝑡) = 𝑑 + 𝜀 (𝑡) (13)

versus the alternative hypothesis of

(𝐻
1
) (see (1)).

Let

𝑆
2

0
=

𝑚

∑

𝑖=1

(𝑥 (𝑡
𝑖
) − 𝑑)

2

, 𝑑 =
1

𝑚

𝑚

∑

𝑖=1

𝑥 (𝑡
𝑖
) , (14)

where 𝑆2
0
is the residual of model (13) with estimated param-

eters, and

𝑆
2

1
=

𝑚

∑

𝑖=1

{𝑥 (𝑡
𝑖
) − 𝑒
𝛼̂𝑡

[𝑎 cos (𝜔̂𝑡
𝑖
) + 𝑏̂ sin (𝜔̂𝑡

𝑖
)] − 𝑐𝑡

𝑖
− 𝑑}
2

,

(15)

where 𝑆2
1
is the residual of model (1) with estimated parame-

ters. As the noise model (13) can be viewed as a special case
of model (1), the statistic

𝐹 =

(𝑆
2

0
− 𝑆
2

1
) /5

𝑆
2

1
/ (𝑚 − 6)

=
𝑚 − 6

5
(
𝑆
2

0

𝑆
2

1

− 1) (16)

follows the𝐹-distributionwith the degrees of freedom (5, 𝑚−

6), according to statistics theory [21, 23].
When the value of 𝐹-statistic is large enough (greater

than a specified threshold), model (13) is rejected; that is,
the gene expression profile is not pure normal white noise,
and otherwise the gene expression profile appears as white
noises. According to degrees of freedom (which are related
to the length of time-course data 𝑚 and the number of
parameters in the models) and a significance level (typically,
0.01, 0.05, 0.1, 0.2, or the like) specified by a user, the threshold
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value can be determined from 𝐹-distribution table or by
using a 𝑓-distribution table or a standardMATLAB function
𝑖𝑐𝑑𝑓(“𝑓”, 1 − 𝛾, 5,𝑚 − 6), where 𝛾 is the significance level. A
significance level is the probability that the null hypothesis
is true. Therefore, the rejection of the null hypothesis at a
smaller significance level indicates the more favourable to
alternative hypothesis. That is, the smaller the significance
level is, the more confidence one accepts that genes are not
noises if its corresponding value of 𝐹-statistic is greater than
the threshold.

2.3. Nonlinear-Model-Based Cluster Analysis

2.3.1. The Mixture Model. In this study, it is assumed that a
time-course gene expression dataset is a collection of time
series which belongs to several clusters and time series in
each cluster can be described by model (1) with different
parameters. Let 𝜃

𝑘
= [𝛼
𝑘
, 𝜔
𝑘
, 𝑎
𝑘
, 𝑏
𝑘
, 𝑐
𝑘
, 𝑑
𝑘
] be parameters of

model (1) for the kth cluster. Then the task of nonlinear-
model-based clustering is as follows: for a given number of
cluster 𝐾, divide a time-course gene expression dataset into
a partition 𝐶 = {𝐶

1
, . . . , 𝐶

𝑘
, . . . , 𝐶

𝐾
} using model (1) with

parameters 𝜃
𝑘
= [𝛼
𝑘
, 𝜔
𝑘
, 𝑎
𝑘
, 𝑏
𝑘
, 𝑐
𝑘
, 𝑑
𝑘
](𝑘 = 1, . . . , 𝐾) which

minimize

𝑓 (𝐶 | Θ)

=

𝐾

∑

𝑘=1

∑

𝑥∈𝐶𝑘

𝑚

∑

𝑖=1

{𝑥 (𝑖) − 𝑒
𝛼𝑘Δ𝑖 [𝑎

𝑘
cos (𝑖Δ𝜔

𝑘
) + 𝑏
𝑘
sin (𝑖Δ𝜔

𝑘
)]

− 𝑐
𝑘
Δ𝑖 − 𝑑

𝑘
}
2

,

(17)

where the parameters Θ consist of {𝜃
𝑘
, 𝑘 = 1, . . . , 𝐾}.

2.3.2. Estimation of Cluster Parameters. According to the
parameter estimation method proposed in previous section
for single time-course expression profiles, for the kth cluster,
parameters 𝜃

𝑘
= [𝛼
𝑘
, 𝜔
𝑘
, 𝑎
𝑘
, 𝑏
𝑘
, 𝑐
𝑘
, 𝑑
𝑘
] can be estimated as

𝛼̂
𝑘
= −

𝐴
𝑘

2
, 𝜔̂

𝑘
=

√4𝐵
𝑘
− 𝐴
2

𝑘

2
,

𝑐
𝑘
=
𝐶

𝐵

, 𝑑
𝑘
=
𝐷
𝑘
𝐵
𝑘
− 𝐴
𝑘
𝐶
𝑘

𝐵
2

𝑘

,

(18)

where

[
[
[

[

𝐴
𝑘

𝐵
𝑘

𝐶
𝑘

𝐷
𝑘

]
]
]

]

= ( ∑

𝑥∈𝐶𝑘

𝑋
𝑇

𝑋)

−1

∑

𝑥∈𝐶𝑘

𝑋
𝑇

𝑌,

[
𝑎
𝑘

𝑏̂
𝑘

] = ( ∑

𝑥∈𝐶𝑘

𝐸𝐸
𝑇

)

−1

∑

𝑥∈𝐶𝑘

𝐸𝑍
𝑇

,

(19)

where |𝐶
𝑘
| represents the number of time series in cluster𝐶

𝑘
,

∑
𝐾

𝑘=1
|𝐶
𝑘
| = 𝑁.

2.3.3. Algorithm for Clustering. This study employs the fol-
lowing relocation-iteration algorithm to estimate the param-
eters such that the cost function (17) is minimized:

(1) select an initial partition for the given number of
clusters, 𝐾;

(2) iterate (𝑠 = 1, 2, . . .):

(a) estimate the parameter Θ𝑠 based on the current
partition by using (18)-(19);

(b) generate a new partition by assigning each
sequence 𝑥 to cluster 𝑘 where

𝑘 = arg min
1≤𝑗≤𝐾

𝑚

∑

𝑖=1

{𝑥 (𝑖) − 𝑒
𝛼
𝑠

𝑗
Δ𝑖

[𝑎
𝑠

𝑗
cos (𝑖Δ𝜔𝑠

𝑗
) + 𝑏
𝑠

𝑗
sin (𝑖Δ𝜔𝑠

𝑗
)]

− 𝑐
𝑠

𝑗
Δ𝑖 − 𝑑

𝑠

𝑗
}
2

;

(20)

(3) stop if the improvement of the cost function (17) is
below a given threshold, or the cluster memberships
of time series do not change significantly.

In 2(a), Θ𝑠 = {𝜃
𝑠

𝑘
, 1 ≤ 𝑘 ≤ 𝐾} represents the estimated

parameters in cost function (17) at iteration 𝑠 while in
2(b), parameters 𝛼𝑠

𝑗
, 𝜔
𝑠

𝑗
, 𝑎
𝑠

𝑗
, 𝑏
𝑠

𝑗
, 𝑐
𝑠

𝑗
, and 𝑑

𝑠

𝑗
represent the

parameters of model 𝑗 at iteration 𝑠.

3. Evaluation

In this section, we use two synthetic datasets to evaluate our
proposed significance analysis method and cluster analysis
method, respectively. To evaluate the significance analysis
method, we generate one synthetic dataset that consists
of 2000 noisy gene expression profiles based on model
(13) and 2000 time-course gene expression profiles based
on model (1). All 4000 expression profiles are depicted in
Figure 1, fromwhich one can hardly differentiate time-course
gene expression profiles from noisy ones. To measure the
performance of significance analysis, we employ two widely
used indices: sensitivity and specificity, which can be defined
as follows [34]:
Sensitivity

=
number of true positives

number of true positives + number of false negatives
,

Specificity

=
number of true negatives

number of true negatives + number of false positives
,

(21)
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Figure 1: Plot of 4000 expression profiles for evaluating significance
analysis method.

where

true positive is a time-course gene expression profile
identified as it is;

false positive is a time-course gene expression profile
identified as it is noisy;

true negative is a noisy gene expression profile identi-
fied as it is;

false negative is a noisy gene expression profile iden-
tified as it is time-course.

The sensitivity and the specificity depend on thresholds
which determine if an expression profile is time-course or
noisy. In general, the sensitivity is increasing, while the speci-
ficity is decreasing and vice versa. However, a good method
is expected to have both high sensitivity and specificity.
Figure 2 depicts the curves of sensitivity versus specificity
over various thresholds. From this figure, we can see that
both sensitivity and specificity can be as high as of 99%
for a specific threshold, which indicates that our proposed
significance analysis methods are excellent.

To evaluate our proposed cluster analysis method,
another synthetic dataset consisting of six clusters is gener-
ated from model (1), where different clusters have different
randomly selected parameters with some large variances. In
each cluster, all profiles are generated with model parameters
for this cluster with some random perturbations. All gener-
ated profiles are plotted in Figure 3, from which one can see
that all time-course gene expression profiles are mixed up. To
measure the quality of clustering results, we use the adjusted
Rand index (ARI) [35], which originally is to measure the
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Figure 2: Plot of sensitivity versus specificity.

degree of agreement between two partitions of the same set
of objects. Given two partitions of 𝑁 objects, the 𝑟-cluster
partition 𝑈 = {𝑢

1
, . . . , 𝑢

𝑟
} and the 𝑠-cluster partition 𝑉 =

{V
1
, . . . , V

𝑠
}, the ARI is defined as follows [35]:

ARI

=
∑
𝑟

𝑖=1
∑
𝑠

𝑖=1
(
𝑛𝑖𝑗

2
) − 1/𝑇∑

𝑟

𝑖=1
(
𝑛𝑖.

2
)∑
𝑠

𝑖=1
(
𝑛.𝑗

2
)

1/2 [∑
𝑟

𝑖=1
(
𝑛𝑖.

2
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(22)

where𝑇 is the number of pairs of𝑁 objects, 𝑛
𝑖𝑗
is the number

of objects that are both in clusters 𝑢
𝑖
and V
𝑗
, 𝑖 = 1, . . . , 𝑟, 𝑗 =

1, . . . , 𝑠, and 𝑛
𝑖.
is the number of objects in cluster 𝑢

𝑖
, while 𝑛

.𝑗

is the number of objects in cluster V
𝑗
. From these definitions,

we have

𝑇 =
𝑁 (𝑁 − 1)

2
, 𝑛

𝑖.
=

𝑠

∑

𝑗=1

𝑛
𝑖𝑗
, 𝑛

.𝑗
=

𝑟

∑

𝑖=1

𝑛
𝑖𝑗
. (23)

The expected value of ARI is 1 when two partitions agree
perfectly and 0 when they are selected at random.

As the results of clustering are sensitive to the initial
partition, we run our proposed clustering algorithm and
competing clustering algorithms 30 times on the synthetic
dataset and calculate the average ARI (AARI) for each
algorithm. Figure 4 depicts the AARI of three algorithms
named “algorithm with random initial,” “algorithm with 𝑘-
means initial,” and “𝑘-means” over several different numbers
of clusters, where “algorithm with random initial” means
our proposed clustering algorithm with randomly chosen
initial partition, “algorithm with 𝑘-means initial” means
our proposed clustering algorithm with 𝑘-means result as
initial partition, and “𝑘-means” is an algorithm coded in the
MATLAB software for 𝑘-means clustering method. Those
values of AARI are also listed in Table 1.

From Figure 4 and Table 1, one can see that our algorithm
with random chosen initial partitions outperforms the other
two algorithms. Particularly, at the correct number of clusters,
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Table 1: The values of AARI for different clustering methods on synthetic data.

No. of clusters 2 3 4 5 6 7 8 9 10
Random initial 0.2915 0.5741 0.6636 0.7549 0.9787 0.9516 0.8862 0.826 0.7944
𝑘-means initial 0.2915 0.4875 0.6741 0.7168 0.7732 0.7668 0.7666 0.7739 0.753
𝑘-means 0.2915 0.5099 0.6352 0.7047 0.8001 0.7635 0.8189 0.7849 0.7827
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Figure 3: Plot of expression profiles for evaluating cluster analysis
method.
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Figure 4: Plot of AARI with different numbers of clusters.

the ARRI from our algorithm with random chosen initial
partitions reaches its maximum.The quality of our algorithm
with 𝑘-means result as initial partitions is comparable with
that of 𝑘-means, which indicates that after 𝑘-means falls in a
local optimum, our algorithm cannot escape from that local
optimum and thus inherits the drawbacks of 𝑘-means. This

also suggests that our developed algorithm should combine
with random chosen initial partitions.

4. Applications to a Real-Life Gene
Expression Data

In this section, we apply our proposed significance analysis
and cluster analysis method to a real-life gene expression
dataset which is collected from the alpha-synchronized
experiment [2]. To study the mitotic cell division cycle
of yeast, Spellman et al. [2] have monitored more than
6000 genes of yeast (Saccharomyces cerevisiae) at 18
equally spacing time points in the alpha-synchronized
experiment. The original dataset is publicly available at
http://genome-www.stanford.edu. Genes with missing data
are excluded in this study. The resultant dataset contains the
expression profiles of 4489 genes.

We first apply our proposed significance analysis method
to this dataset and set the significance level 𝛾 = 0.1. As a
result, 846 genes are determined to be involved in the alpha-
synchronized cell division cycle process, while the other
3643 genes are determined to be noises with respect to this
process. Figure 5(f) depicts these 3643 expression profiles.
From Figure 5(f), most of the expression profiles look like
noises and are not related to the alpha-synchronized cell
division cycle process according to the results in [2]. Then
we apply our proposed clustering algorithm to the subset
consisting of 846 genes involved in the alpha-synchronized
cell division cycle process. According to the biological
meaning of this process [2], the reasonable number of
clusters is 5. The model parameters identified for each of
the five clusters are listed in Table 2. From Table 2, for all
clusters the values of parameter 𝛼

𝑘
are negative numbers,

which are reasonable. As the cell division cycle is a stable
biological system, after a perturbation such as the alpha
synchronization, the system tends to its stable attractor.
Therefore the degradation rate represented by 𝛼

𝑘
should be

negative.
Furthermore, the values of model parameters 𝑎

𝑘
and 𝑏
𝑘

determine the importance of periodic components. From
Table 2, the module of parameters 𝑎

𝑘
and 𝑏

𝑘
is the largest,

while the absolute value of parameter 𝛼
𝑘
is small for Cluster

3. This indicates that 17 genes in Cluster 3 are periodi-
cally expressed in this process, which can be verified from
Figure 5(c). Actually all 17 genes in this cluster have also been
identified as periodically expressed genes in [2]. The module
of parameters 𝑎

𝑘
and 𝑏
𝑘
is the second largest for Cluster 5,

while the absolute value of parameter 𝛼
𝑘
is very large for

Cluster 5. As a result, gene expression profiles in Cluster 5
are quickly degrading while hardly displaying periodicity as

http://genome-www.stanford.edu
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Figure 5: Plot of gene expression profiles. (a)–(e) show gene expression profiles for one of five clusters. (f) shows gene expression profiles
which are determined as noises.

Table 2: The model parameters for each cluster.

Parameters Cluster 1 (315) Cluster 2 (233) Cluster 3 (17) Cluster 4 (53) Cluster 5 (228)
𝛼
𝑘

−1.1543 −1.7033 −0.6612 −0.5111 −1.8483
𝜔
𝑘

9.8108 9.8673 7.1631 7.0517 8.736
𝑎
𝑘

0.0234 0.2675 1.0948 0.0024 0.4427
𝑏
𝑘

0.1389 0.033 −1.2261 0.1248 −0.6807
𝑐
𝑘

−0.1287 0.1422 0.3353 0.5748 −0.3738
𝑑
𝑘

0.1383 −0.1372 −0.2723 −0.6011 0.3946
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shown in Figure 5(e). According to the estimated values of
model parameters, expression profiles in other clusters can
similarly be explained.

5. Conclusions

In this paper, we have presented a significance analysis
method and a cluster analysis method for time-course gene
expression profiles. In these methods, time-course gene
expression profiles are modeled by a nonlinear model, which
is a generalization of several existing models. To estimate
the parameters, which is key to the developed significance
analysis method and a cluster analysis method, we propose a
two-step linear least squares method. One synthetic dataset
has been employed to verify our developed significance
analysis method in terms of sensitivity and specificity, while
another synthetic dataset has been employed to verify our
developed cluster analysis method in terms of AARI. The
results have shown that both of our developed methods
outperform some existing methods. The application to one
real-life biological dataset illustrates that the analysis results
of our developed methods are in agreement with the existing
results. The reconstruction of gene regulatory network from
time-course gene expression data is a very important issue
in systems biology [36]. Obviously, noisy genes should be
excluded from gene expression data for reconstructing gene
regulatory networks. In the future, we may combine our
method with other methods as in [36] to reconstruct gene
regulatory networks.
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