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Abstract
The search for new tuberculosis treatments continues as we need to find molecules that can act
more quickly, be accommodated in multi-drug regimens, and overcome ever increasing levels of
drug resistance. Multiple large scale phenotypic high-throughput screens against Mycobacterium
tuberculosis (Mtb) have generated dose response data, enabling the generation of machine learning
models. These models also incorporated cytotoxicity data and were recently validated with a large
external dataset.

A cheminformatics data-fusion approach followed by Bayesian machine learning, Support Vector
Machine or Recursive Partitioning model development (based on publicly available Mtb screening
data) was used to compare individual datasets and subsequent combined models. A set of 1924
commercially available molecules with promising antitubercular activity (and lack of relative
cytotoxicity to Vero cells) were used to evaluate the predictive nature of the models. We
demonstrate that combining three datasets incorporating antitubercular and cytotoxicity data in
Vero cells from our previous screens results in external validation receiver operator curve (ROC)
of 0.83 (Bayesian or RP Forest). Models that do not have the highest five-fold cross validation
ROC scores can outperform other models in a test set dependent manner.

We demonstrate with predictions for a recently published set of Mtb leads from GlaxoSmithKline
that no single machine learning model may be enough to identify compounds of interest. Dataset
fusion represents a further useful strategy for machine learning construction as illustrated with
Mtb. Coverage of chemistry and Mtb target spaces may also be limiting factors for the whole-cell
screening data generated to date.
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INTRODUCTION
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects
approximately one third of the world’s population, and 1.7–1.8 million people die from this
disease annually 1. Agents active against Mtb are urgently needed to overcome resistance to
the available regimen of drugs, shorten a lengthy treatment (that is at a minimum six months
in duration), and address drug-drug interactions that may arise during the treatment of TB/
HIV co-infections 2, 3. Efforts to leverage sequencing and partial annotation of the Mtb
genome 4 and pursue specific small molecule modulators of the function of essential gene
products have proven more challenging than expected 5, 6 in part due to a suggested
disconnect between inhibition of protein function and a no-growth whole-cell phenotype 7.
Thus, a target-agnostic approach has gained favor in recent years, focusing on whole-cell
phenotypic highthroughput screens (HTS) of commercial vendor libraries 3, 8–10. This
random approach has afforded the clinical-stage SQ109 11 and a diarylquinoline hit that was
optimized to afford the drug bedaquiline 12. However, Mtb screening hit rates tend to be in
the low single digits, if not below 1% as seen elsewhere in drug discovery 13.

One can, however, learn from both the active and inactive samples arising from these
screens. Leveraging this prior knowledge to produce computational models is an approach
we have taken to improve screening efficiency both in terms of cost and relative hit rates.
Machine learning and classification methods have been used in TB drug discovery 14, and
have enabled rapid virtual screening of compound libraries for novel inhibitors 15, 16.
Specifically, Novartis examined the application of Bayesian models, relying on conditional
probabilities 17. Our work has built on this early contribution to examine significantly larger
screening libraries (individually in excess of 200,000 compounds) utilizing commercially
available model construction software with molecular function class fingerprints of
maximum diameter 6 (FCFP_6) 18 to model recent tuberculosis screening datasets 19–21.
Single- (predicting whole-cell antitubercular activity) and dual-event (predicting both
efficacy and lack of model mammalian cell line cytotoxicity where: IC90 < 10 µg/ml or 10
µM and a selectivity index (SI) greater than ten where the SI is calculated from SI = CC50/
IC90) have been created 9. The models were demonstrated to be statistically robust 17 and
validated retrospectively through enrichment studies (in excess of 10-fold as compared to
random HTS) 20. Most significantly, the Bayesian models were harnessed to predict novel
actives through experimental validation with hit rates up to ~20%. 22, 23. Most recently we
examined 1924 molecules with three dual-event dose response and cytotoxicity models
(these are called MLSMR (derived from Molecular Libraries Screening Center Network),
TAACF-CB2, and TAACF kinase) 24. The molecules were ranked using the Bayesian score
(which scales with the probability of activity) from all three different dual-event models.
Then a receiver operator curve (ROC) plot was generated and we found the MLSMR dose
response and cytotoxicity model appeared to perform the best at identifying the active
compounds (11.8 fold enrichment in the top 1%). The TAACF kinase dose response and
cytotoxicity model showed a similar enrichment (11.1 fold) while the TAACF-CB2 dose
response and cytotoxicity model consistently performed poorly. These results highlighted
the influence of model training set on performance, suggesting the utility of using multiple
models as it is not known a priori which model may perform the best. We now evaluate the
effect of combination of datasets and use of different machine learning algorithms (Support
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Vector Machines, Recursive Partitioning (RP) Forests, RP Single Trees and Bayesian) and
their impact on model predictions (internal and external validation) using data from the same
laboratory (to minimize inter-laboratory variability 25) and the literature. The knowledge
gained from these studies will aid in the further development of machine-learning methods
with tuberculosis drug discovery.

MATERIALS AND METHODS
CDD Database and SRI Datasets

The development of the CDD TB database (Collaborative Drug Discovery Inc. Burlingame,
CA) has been previously described 21. The Tuberculosis Antimicrobial Acquisition and
Coordinating Facility (TAACF) and Molecular Libraries Small Molecule Repository
(MLSMR) screening datasets 8–10 were collected and uploaded in CDD TB from sdf files
and mapped to custom protocols 26. All of these Mtb datasets used in model building are
available for free public read-only access and mining upon registration in the CDD
database 20, 26–28, making them a valuable molecule resource for researchers along with
available contextual data on these samples from other non Mtb assays. These datasets used
previously for modeling are also publically available in PubChem 29. The TB: ARRA
dataset used as a test set is available in the CDD TB database (Collaborative Drug
Discovery, Burlingame, CA) 24, 26.

Building and Validating Dual-Event Machine Learning Models with Novel Bioactivity and
Cytotoxicity Data

We have previously described the generation and validation of the Laplacian-corrected
Bayesian classifier models developed with cytotoxicity data to create dual-event
models 22, 23 using Discovery Studio 3.5 (San Diego, CA) 17, 30–33. These models were
developed based on: a. MLSMR dose response and cytotoxicity; b. TAACF-CB2 dose
response and cytotoxicity; and c. TAACF kinase dose response and cytotoxicity, where
cytotoxicity was determined in Vero cells for each set. All three models were generated
using standard protocols with the following molecular descriptors: molecular function class
fingerprints of maximum diameter 6 (FCFP_6) 18, AlogP, molecular weight, number of
rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond
acceptors, number of hydrogen bond donors, and molecular fractional polar surface area
were calculated from input sdf files. Models were validated using leave-one-out cross-
validation in which each sample was left out one at a time, a model was built using the
remaining samples, and that model utilized to predict the left-out sample. Each model was
internally validated, ROC plots were generated, and the crossvalidated ROC area under the
curve (XV ROC AUC) calculated. All Bayesian models generated were additionally
evaluated by leaving out 50% of the data and rebuilding the model 100 times using a custom
protocol for validation, to generate the ROC AUC, concordance, specificity and selectivity
as described previously 22, 23. The three models were used to score a set of 1924 commercial
analogs previously in the ARRA dataset 24. In addition we used the ARRA dataset to create
a separate dual-event model. The prediction data were evaluated using a receiver operator
characteristic (ROC) plot. In the current study, as well as using the datasets individually, we
also combined the three previously generated datasets (MLSMR, TAACF-CB2, TAACF-
kinase) and compared Bayesian, SVM and RP Forest and single tree models built with the
same molecular descriptors in Discovery Studio. For SVM models we calculated
interpretable descriptors in Discovery Studio then used Pipeline Pilot to generate the
FCFP_6 descriptors followed by integration with R 34. RP Forest and RP Single Tree
models used the standard protocol in Discovery Studio. In the case of RP Forest models 10
trees were created with bagging. Bagging is short for “Bootstrap AGgregation”. For each
tree, a bootstrap sample of the original data is taken, and this sample is used to grow the tree.
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A bootstrap sample is a data set of the same size as the original one, but in which the same
data record can be included multiple times. RP Single Trees had a minimum of 10 samples
per node and a maximum tree depth of 20. In all cases, 5-fold cross validation (leave out
20% of the database) was used to calculate the ROC for the models generated. In the case of
the combined datasets, predictions were evaluated using binary classification as well as the
continuous probability score calculated where possible (e.g. Bayesian Score) followed by
ROC plot calculation.

Testing Machine Learning Models with Additional Previously Published Data and
Assessing Chemistry Space

177 Mtb leads were recently disclosed by GlaxoSmithKline (GSK) 35 and represent a
promising set of small molecules for further exploration as potential antitubercular drug
candidates. The GSK set was scored with all of the combined models generated in this
study. As the 177 compounds can be classed as actives, our goal was to ascertain which
models were able to predict the most as actives. In addition, we compared the 177
compounds to the four datasets used in this study (including actives and inactives) as to their
relative placement in chemistry space. We generated a Principal Component Analysis (PCA)
using Discovery Studio with the interpretable descriptors chosen previously (AlogP,
molecular weight, number of rotatable bonds, number of rings, number of aromatic rings,
number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular
fractional polar surface area). The mean closest distance to training set was also calculated
for the 177 compounds for each of the five models to provide an idea of similarity of the test
set to the training set. These data were calculated from the outputs of each of the Bayesian
models. For each test set molecule a score for closest distance to training set was calculated
using Discovery Studio. We averaged this number across the 177 molecules. The smaller the
value, the closer a compound is to the training set. In the past we had used mean-maximal
similarity value which provides a value of the opposite magnitude.

Understanding the Mtb Target Space Using Known Inhibitors
745 compounds with known Mtb targets collated from the literature 36 and available in TB
Mobile 37 were utilized to generate a PCA plot with the interpretable descriptors selected
previously (AlogP, molecular weight, number of rotatable bonds, number of rings, number
of aromatic rings, number of hydrogen bond acceptors, number of hydrogen bond donors,
and molecular fractional polar surface area) for machine learning. This PCA model
represents essentially the published target-chemistry space for Mtb. We also compared 1429
Mtb hits (active and non-toxic only, from the SRI screens where: IC90 < 10 µg/ml or 10 µM
and a selectivity index (SI) greater than ten where the SI is calculated from SI = CC50/IC90)
to show how they covered the target-chemistry space. In addition the 177 GSK Mtb leads
published by GSK recently 35 were also compared to this target-chemistry space using PCA.
The overlaps in data sets were qualitatively compared.

RESULTS
Effect of Training Set and Approach on Prediction of ARRA data

Following on from a previous study in which a large external set of 1924 molecules (ARRA)
was used to evaluate three Bayesian models by assessing the enrichment in finding active
compounds, we calculated ROC AUC values using the Bayesian score for ranking
compounds (Table 1) 24. The MLSMR dose response and cytotoxicity model had the best
value (0.82) followed by the TAACF kinase dose response and cytotoxicity model (0.74)
and these data are in line with the enrichments we observed previously 24 (Table 1). In
addition, these values were similar if not identical to the ROC AUC values for leave out
50% × 100 cross validation performed previously 22, 23. This comparison of models
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stimulated us to explore different machine learning models and combining data sets as well
as suggested that leave out cross validation provided similar results to using a single external
test set. The TAACF-CB2 models performed poorly as described previously 24.

Comparing SVM, Trees and Bayesian Dual Event Machine Learning Models
Ligand based screening studies traditionally use one or more machine learning approach to
build models and predict new compounds, with individual groups having their own preferred
methods. Previously we have reported the use of one such approach applied to Mtb, namely,
Bayesian models. To insure that our studies of training set effects are more broadly
applicable, we now report the examination of SVM, RP Single Tree and RP forest models to
compare with Bayesian models. These types of models (Bayesian, SVM, and RP) are the
most commonly used of machine learning methods and offer documented differences in
terms of their approach and ability to fit the training set data versus offer predictive
capability outside of the training set’s chemical space 38. RP models are easily interpretable,
while also providing a high degree of predictive accuracy. Single Tree models can be
influenced by small changes in the training data resulting in a large change in the tree, and,
hence, poorer resulting predictions. An RP forest model resamples the training data
randomly multiple times and then grows a tree from each resampled dataset. When making
predictions the sample is sent down each tree until it reaches a leaf node then the leaf node
probabilities are averaged together to yield a prediction for the forest. SVMs have been
widely described in the literature and at their core is the use of a kernel function which
converts a scalar product into a higher dimensional space to attempt a linear separation
(summarized previously 39). SVMs are generally used for binary data and ranking.

The new machine learning models were generated with all three original datasets (MLSMR,
TAACF-CB2, and TAACF kinase; dose-response and cytotoxicity) as well as the more
recent ARRA dataset. The Bayesian model statistics were generated by leaving out 50% of
the data and rebuilding the model 100 times using a custom protocol for validation to
generate the ROC AUC, concordance, specificity and sensitivity as described
previously 22, 23, are shown in Supplemental Table 1. Using the FCFP-6 descriptors, we can
identify those substructure descriptors consistent with both activity and lack of cytotoxicity,
namely alkyl-2-aryloxyacetate and 2,4-disubstituted 1,3,4-oxadiazole (Figure S1), and
features of inactives such as 2,5-disubstituted furan, oxepane, tetrasubstituted pyrazole/
pyrazolidine, 5-substituted 1,3,4-oxadiazole 2-amide and 2-substituted thiazole/thiazolidine
(Figure S2).

For comparison of all the machine learning models we used a slightly less aggressive cross
validation (5 fold, e.g. leave out 20%) as this is readily implemented in the machine learning
methods. The models provide almost identical ROC AUC results with the leave out 50% ×
100 when performed with the datasets (Tables 1 and 2). The RP Forest method used an out-
of-bag ROC (in which 20% of the compounds are left out from model building). All four
machine learning methods show comparable ROC AUC values across the four datasets
using this method of internal validation. The Bayesian method has the best statistics based
on the 5-fold cross validation with ROC values slightly higher across all models.

The three original data sets (MLSMR, TAACF-CB2, and TAACF kinase; dose-response and
cytotoxicity) were combined to build SVM, RP Forest, RP Single Tree and Bayesian models
that were then used to predict the ARRA dataset. The Bayesian model statistics for the
combined model were generated by leaving out 50% of the data and rebuilding the model
100 times, using a custom protocol for validation. The ROC AUC, concordance, specificity
and sensitivity, described previously 22, 23, are shown in Supplemental Table 1. Using the
FCFP-6 descriptors, we can identify those substructure descriptors consistent with both
activity and lack of cytotoxicity including 3,5-disubstituted thienopyrimidinone, 1-
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adamantane and acylthiourea (Figure S3) and features of inactives such as isothiazole/
isothiazolidine, benzoisoxazole and pyrazoloquinoline (Figure S4).

The external testing ROC AUC for combined models using the ARRA dataset with
Bayesian, RP Forest and RP Single Tree methods ranged from 0.65–0.83 for probability
(Trees) or Bayesian scores data (Table 3). The SVM method used did not output a
continuous probability in the implementation used and so was excluded from this
comparison. While using the predicted classification data for the ARRA dataset for all 4
machine learning methods was more instructive (Table 4). For example the Bayesian
method had the worst concordance and specificity but the best sensitivity (92.7%) while the
SVM had the best concordance and specificity. The RP Single Tree had the lowest
sensitivity (58.5%) (Table 4).

The Effect of Training Set Selection on Prediction of GSK Data and Assessment of Mtb
Chemistry Space

The 177 Mtb leads published by GSK recently 35 were scored with the combined models
generated in this study (Supplemental Table 2). As all of the 177 compounds can be classed
as actives, our goal was to ascertain which models were able to predict the most as actives.
We found the TAACF-CB2 dose response and cytotoxicity models performed best, correctly
identifying between 48–67.8% of the compounds (Table 5). The SVM model performed
optimally with this test set. It is important to note that out of the 177 GSK compounds only a
small number were in the models (MLSMR N = 5, TAACF-CB2 N = 2, TAACF-Kinase N =
3, ARRA N = 4, and combined N = 10).

A comparison was made of the 177 compounds to all four datasets used in this study with a
Principal Component Analysis. The GSK leads appear distributed within the chemistry
space of the >7000 compounds (Figure 1). Next we calculated the mean closest distance to
the model training set for each of the 177 compounds to provide an idea of similarity of the
test set to the training set. All datasets have roughly similar values but the test set was
closest to the combined dataset based on this measure of similarity, while the TAACF-CB2
dose response and cytotoxicity dataset was third closest to the GSK hits. This may suggest
such similarity predictors are not a valid measure of model success alone.

Understanding the Mtb target Space Using Known Ligands
We previously created a collection of molecules with their Mtb target/s from published
data 28 collated in the course of a previous study 36. This dataset was made available in the
Collaborative Drug Discovery (CDD) database 28 and most recently the TB Mobile app 37.
We have recently updated the content such that we have 745 small molecules. Following
PCA these compounds can give us an approximation of target chemistry space covered in
the literature for known antituberculars (Figure 2). When we overlap the 1429 SRI (active
and non-cytotoxic compounds) obtained from the 4 different datasets (based on the
previously described methods) they overlap approximately half of the compounds with
target data (Figure 2B). The 177 GSK hits overlap partially the same area as the SRI hits,
but they cover less space in the plot. The GSK hits were also clustered with the 745
compounds with known Mtb targets as a method to infer their potential targets
(Supplemental Table 3). Clustering used the MDL fingerprints and created 100 clusters.
Examples of compounds clustering near molecules with known targets in Mtb are shown in
Figure S5. These include compounds clustering near known QcrB inhibitors (Figure S5A),
PanC inhibitors (Figure S5B), Alr or IlvG (Figure S5C), MmpL3 (Figure S5D), Alr (Figure
S5E) and InhA (Figure S5F).

Ekins et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2014 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



DISCUSSION
There is a resurgence in whole cell HTS for Mtb and this has resulted in low hit
rates 35, 40–42. Utilizing past screening data with machine learning methods could improve
the efficiency of such screens. Our prior machine learning studies have demonstrated that
single and dual-event Bayesian machine learning models based on public data can enrich hit
discovery using retrospective and prospective testing 22, 23. While we have focused on
Bayesian machine learning due to their processing speed and ease of use, many other
algorithms exist that can be used for machine learning. SVM 43–52 and Random
Forests 53–55 like Bayesian classification methods 56–60 have also been used extensively for
drug discovery and ADME/Tox models 31, 57, 61, 62. For example, extensive evaluations of
different machine learning methods and descriptors have been performed by Broccatelli et
al. 63 using SVM, Random Forest, Partial Least Squares, Linear Discriminant Analysis,
Random Forests (RF) and Genetic Algorithm-kNN models with MOE, MACCS, CDK,
Dragon descriptors and 545 literature compounds with the ion channel hERG activity. The
best models were RF MOE2D, RF-MACCS and PLSD-VS+ with consensus accuracy 90%,
specificity 93% and sensitivity 89%. A set of 7617 compounds with genotoxicity (Ames)
data were used to compare five machine learning methods (SVM, kNN, Naïve Bayes,
Artificial Neural networks and C4.5 decision trees) each using five fingerprint descriptor
methods (PubChem, E-state, MACCS, CDK fingerprints and substructure fingerprints) 64.
Using a test set of 831 diverse molecules, the accuracy ranged from 90–98% with three
combinations of descriptors and algorithms proving equally accurate (PubChem-kNN,
MAACS-kNN and PubChem SVM). Although we have analyzed the Mtb literature
extensively 65, 66 we are not aware of similar exhaustive analyses of machine learning
methods used to prospectively predict whole cell Mtb activity. Predominantly the focus has
been retrospective or leave out testing 67,68

Frequently, we have seen multiple Bayesian models perform differently with varying
datasets 19–24 and with the current test set we see a wide range in the ROC values for the
ARRA dataset of 1924 molecules, with ROC AUC values of 0.54 – 0.82 (Table 1, not
previously reported). Interestingly, combining the datasets only slightly improves the
Bayesian model ROC value to 0.83 (Table 1 versus Table 3). However, this model also has
the lowest concordance when compared to the other methods at binary classification of the
1924 compounds (Table 4). Using an external dataset of 177 recently published Mtb leads
from GSK 35 we found a wide variability between models and datasets in identifying leads
from this set (Table 4). It should also be noted that all these molecules can be classed as
actives while only a small number of compounds overlapped between the training and test
sets. The best models at evaluating this GSK test set, identifying approximately 48–68% of
the actives, were the TAACF-CB2 dose response and cytotoxicity RP Forest, SVM, and
Bayesian models. These highlight the value of using such models to select compounds for
testing without extensive HTS. We had previously used the Bayesian model successfully to
screen a larger set of 13,533 GSK compounds found to have antimalarial activity 69. We had
scored these molecules 70, which enabled us to identify several with potent antitubercular
activity upon empirical testing 23. Yet, this present work also suggests using the ROC value
for 5-fold validation alone is not likely to be a single reliable measure (or predictor) of the
utility of a model as this TAACF-CB2 dose response and cytotoxicity model also had the
lowest ROC scores (below 0.6, Table 2). Conversely, we have also shown that the similarity
of molecules in the test and training sets is also not a reliable measure of likely correct
predictions as the TAACF-CB2 training set was not the closest to the test set of the GSK
leads (Table 4). This result may also suggest the need for a deeper analysis of FCFP_6
descriptors between training and test sets, or more simply a further investigation as to which
molecular substructures are important for Mtb activity (that are present in the training and
test set molecules). Overlap of certain molecular features between datasets may be a better
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predictor of the ROC value and model performance (Figure S1–4) and this hypothesis
remains to be tested. Ultimately in comparing predictions across datasets one also should
consider experimental variability in Mtb screening 25, so it is at least reassuring that models
from one laboratory can be used to predict data from another to a reasonable degree. Of
course we have relied in this study on the ROC metric (Tables 1–3) and contingency table
statistics (Table 4) as measures for comparing models. This may not be enough. Future
studies could explore whether other measures commonly used for assessment of virtual
screening provide more insight into why there are model and dataset dependencies (e.g.
concentrated ROC (CROC), Boltzmann-enhanced discrimination of ROC (BEDROC),
Guner Henry Score etc.) 71–74 and whether consensus scoring could overcome these.

This study continues our efforts to build and validate machine learning models for 
Mtb. 19–24 It extends recent externally validated dual-event models to consider the fusion of
datasets as a method to increase coverage of chemistry space and simplify the number of
models required. Although, it should be noted that the MLSMR, TAACF-CB2 and TAACF
kinase datasets have a fair degree of overlap, and the ARRA dataset overlaps with some of
these 24, which may explain why the ROC AUC values for this dataset vary from 0.54 –
0.83 when looking at individual models (Table 1) and there is not a great deal of
improvement when datasets are combined. There is also some variation in ROC AUC values
across machine learning models when the datasets are combined (Table 3) and across
contingency table statistics (Table 4).

Our PCA in this study using molecules with annotated targets (covering over 70 to date with
identified inhibitors 37) suggests the hits from SRI and GSK overlap and are only exploring
a fraction of the Mtb chemistry target space. So this might indicate that any machine
learning models derived from such HTS data are only going to be useful for predictions in a
relatively small segment of Mtb chemistry target space. Conversely, this type of analysis
may also be useful for predicting potential targets for the training set actives. The
opportunity also exists to extend our initial approach based on molecule similarity 37 to one
predicated on multiple physicochemical descriptors. The potential targets for some of the
177 GSK compounds are suggested based on clustering with compounds with known
annotated Mtb targets which could be useful for further future experimental verification.
Similarly one could pursue this approach with the active subset of compounds in the ARRA
or other datasets. Our approach in this study using machine learning models to predict
compounds with activity could also be combined with inhibitors of known targets and
clustering to suggest their potential targets in a single workflow. Such a process may lead to
more rapid target identification efforts. Verification of such predictions is however time
consuming and costly and whole cell phenotypic screening will also identify compounds
that act through more than one mechanism.

In conclusion, the choice of Bayesian models would appear to be acceptable for predicting
whole-cell antitubercular efficacy under the current conditions when compared to SVM and
RP approaches. Each of the methods has their strengths and weaknesses and it would appear
that no one method stands out as best for Mtb active prediction. Others have previously
shown SVM and Random Forest approaches to outperform Bayesian models in different
areas 64. Additional researchers have used ensembles of models rather than rely on a single
model 75. To date none of these ensemble machine learning approaches had been tested with
Mtb datasets. A major advantage of dataset fusion is that a single model can be created that
covers the sum chemical space of individual models and may be more likely to be used
rather than multiple individual smaller models. This is distinct from the fusion of predictions
and consensus scoring with individual machine learning or similarity methods 76. Future
efforts may explore using other machine learning methods, e.g. k–Nearest Neighbors 77, K-
Partial Least Squares 78, Self Organizing Maps and Kohonen maps 79 for Mtb model
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building with this combined dataset. In addition, efforts to make Mtb models more readily
available may also be evaluated using free or open source resources like Bioclipse 80–82,
Chembench 83 and others 84, 85. This would then make the models globally accessible 86 and
perhaps increase the speed and efficiency of screening efforts in vitro.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Principal Component Analysis of all Mtb datasets (7728 active and inactive compounds)
used in this study and overlap of 177 GSK published leads. 3 principal components explain
73% of the variance. B inset to show some of the GSK leads (yellow) widely dispersed and
within the chemistry space of the Mtb datasets used for modeling.
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Figure 2.
Clustering and PCA of TB Mobile data. A. Examination of 745 TB Mobile molecules with
interpretable descriptors results in a PCA with 3 PCs, which explain 88% variability. Outlier
compounds represent macrocycles (bottom right) and long lipid-like molecules (bottom left).
B. 1429 SRI hits from four datasets (active and non-toxic only, from the SRI screens where:
IC90 < 10 µg/ml or 10 µM and a selectivity index (SI) greater than ten where the SI is
calculated from SI = CC50/IC90) and 745 TB Mobile compounds results in a PCA with 3
PCs explaining 83% variability; SRI compounds are clustered (yellow). C. Examination of
177 GSK leads (yellow) and the TB Mobile compounds results in a PCA with 3 PCs, which
explain 88 % of variance.
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Table 1

Bayesian models predicting the ARRA dose response and cytotoxicity data. Where: IC90 < 10 µg/ml
(TAACF-CB2) or 10 µM and a selectivity index (SI) greater than ten were the SI is calculated from SI =
CC50/IC90. Receiver Operator Curve Statistics were calculated for previously published data 22, 23.

Mtb Models (training
set N)

Bayesian
(Leave out 50% ×
100 ROC)

Predicting ‘ARRA
dose response and
cytotoxicity’ dataset
(N = 1924) ROC

Enrichment observed in top 20
ranked ‘ARRA dose response
and cytotoxicity’ dataset
molecules (Vero, THP-1 and
HepG2 cell data) 24

MLSMR dose response and cytotoxicity (2273) 0.82 22 0.82 10.7 – 11.8 fold

TAACF-CB2 dose response and cytotoxicity (1783) 0.64 23 0.54 Poor – random

TAACF Kinase dose response and cytotoxicity (1248) 0.74 22 0.74 6.7–11.1 fold
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Table 3

Combined MLSMR, TAACF-CB2 and TAACF Kinase dose response and cytotoxicity dataset models created
with RP Forest models (Out of bag testing ROC = 0.71), RP Single Tree (Out of bag testing ROC = 0.74) and
Bayesian (5 fold cross validation ROC = 0.75) used to predict the ARRA dose response and cytotoxicity data,
reporting Receiver Operator Curve statistics using probability (Trees) or Bayesian scores. Note SVM model
did not out put a probability value.

Mtb Models ROC AUC

RP Forest 0.83

RP Single Tree 0.65

Bayesian 0.83
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Table 4

Combined MLSMR, TAACF-CB2 and TAACF Kinase dose response and cytotoxicity dataset models created
with SVM (5 fold cross validation ROC = 0.73), RP Forest models (Out of bag testing ROC = 0.71), RP
Single Tree (Out of bag testing ROC = 0.74) and Bayesian (5 fold cross validation ROC = 0.75) used to
predict the ARRA dose response and cytotoxicity data, reporting contingency table statistics for classification
data.

Mtb Models Concordance
(%)

Specificity
(%)

Sensitivity
(%)

SVM 76.7 77.1 67.1

RP Forest 63.1 61.9 89.0

RP Single Tree 69.1 69.5 58.5

Bayesian 47.2 45.2 92.7
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Table 5

The number of molecules predicted as active out of 177 GSK 35 lead compounds (%). Mean-closest distance =
smaller is more similar to training set. Out of the 177 GSK compounds only a small number were in the
models corresponding to MLSMR (N = 5), TAACF=CB2 (N = 2), SRI-Kinase (N = 3), ARRA (N = 4) and
combined (N = 10). These were included in the table above for ease of comparison.

Mtb Models (training set N) Random
Forest

SVM Bayesian Mean–closest
distance of
training set to
test set

MLSMR dose response and cytotoxicity (2273) 17 (9.6) 12 (6.8) 66 (37.3) 0.50

TAACF-CB2 dose response and cytotoxicity (1783) 97 (54.8) 120 (67.8) 85 (48.0) 0.58

TAACF Kinase dose response and cytotoxicity (1248) 36 (20.3) 1 (0.5) 33 (18.6) 0.62

ARRA dose response and cytotoxicity (1924) 7 (3.9) 0 (0) 17 (9.6) 0.59

Combined MLSMR, TAACF-CB2 and TAACF Kinase dose response and
cytotoxicity

34 (19.2) 23 (13) 65 (36.7) 0.46

J Chem Inf Model. Author manuscript; available in PMC 2014 November 25.


