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Inorganic nitrogen depletion restricts productivity in much of the
low-latitude oceans, generating a selective advantage for diazo-
trophic organisms capable of fixing atmospheric dinitrogen (N2).
However, the abundance and activity of diazotrophs can in turn
be controlled by the availability of other potentially limiting
nutrients, including phosphorus (P) and iron (Fe). Here we present
high-resolution data (∼0.3°) for dissolved iron, aluminum, and
inorganic phosphorus that confirm the existence of a sharp north–
south biogeochemical boundary in the surface nutrient concentrations
of the (sub)tropical Atlantic Ocean. Combining satellite-based pre-
cipitation data with results from a previous study, we here dem-
onstrate that wet deposition in the region of the intertropical
convergence zone acts as the major dissolved iron source to sur-
face waters. Moreover, corresponding observations of N2 fixation
and the distribution of diazotrophic Trichodesmium spp. indicate
that movement in the region of elevated dissolved iron as a result
of the seasonal migration of the intertropical convergence zone
drives a shift in the latitudinal distribution of diazotrophy and
corresponding dissolved inorganic phosphorus depletion. These
conclusions are consistent with the results of an idealized numer-
ical model of the system. The boundary between the distinct bio-
geochemical systems of the (sub)tropical Atlantic thus appears to
be defined by the diazotrophic response to spatial–temporal
variability in external Fe inputs. Consequently, in addition to dem-
onstrating a unique seasonal cycle forced by atmospheric nutrient
inputs, we suggest that the underlying biogeochemical mechanisms
would likely characterize the response of oligotrophic systems to
altered environmental forcing over longer timescales.

nitrogen fixation | atmospheric iron deposition

Within the majority of the oligotrophic (sub)tropical regions
of the surface ocean, bioavailable forms of fixed nitrogen (N)

are severely depleted, restricting microbial biomass and productivity
(1–3). Organisms capable of fixing atmospheric dinitrogen (N2)
thus potentially have a considerable selective advantage in these
vast N-limited environments (2), with the combined activity of
these diazotrophs subsequently being responsible for maintaining
the oceanic fixed-N inventory and, hence, overall productivity (1,
2, 4). Although clearly not susceptible to N limitation, in com-
mon with all living organisms, oceanic diazotrophs have an ab-
solute requirement for a wide range of other nutrient elements,
including phosphorus (P) and iron (Fe) (5). Indeed, diazotrophs
have an enhanced requirement for the micronutrient Fe (6–8)
due to the absolute requirement for this element within nitro-
genase, the catalyst responsible for N2 fixation (1, 9, 10). It has
consequently been suggested that Fe availability may play a ma-
jor role in controlling oceanic N2 fixation (1, 11).
In contrast to the ubiquitous depletion of dissolved inorganic

nitrogen (DIN), surface concentrations of dissolved Fe (DFe) and
inorganic P (DIP) vary greatly among different regions of the

oligotrophic low-latitude oceans (12–14). Marked regional differ-
ences in N2 fixation are also observed (15) and, in combination,
such observations have been argued to support the hypothesis that
diazotrophy can be enhanced in regions of high-Fe inputs,
resulting in subsequent drawdown of DIP (12, 13, 16). Although
an ever-growing body of evidence supports the importance of Fe
for diazotrophy (9, 12, 14, 17), artificial in situ tests comparable to
those that unequivocally demonstrated the Fe limited status of
high-nitrate low-chlorophyll (HNLC) regions (18) have yet to be
performed. Indeed, the slow response timescales of some diazo-
trophs may ultimately render such experiments unfeasible (19, 20).
The interactions among Fe, DIP, and diazotroph activity appear

particularly evident in the low-latitude oligotrophic surface waters
of the Atlantic Ocean (12, 17). Iron is highly insoluble and rapidly
scavenged from oxic seawater (21). In consequence, the availability
of this micronutrient in surface waters is often tightly coupled to
external sources, including inputs of terrigenous materials via ae-
olian deposition (22–24). The (sub)tropical North Atlantic receives
the highest deposition fluxes of aeolian dust in the global ocean
(22) and is characterized by relatively high DFe (25, 26), with
corresponding severe DIP depletion argued to result from signifi-
cant diazotrophic activity either within or upstream of this system
(12, 13). In contrast, the (sub)tropical South Atlantic gyre is char-
acterized by relatively high DIP and very low DFe concentrations
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(12, 27, 28). The boundary region between these (sub)tropical gyre
systems is typically characterized by high rates of N2 fixation, which
are dominated by the diazotrophic cyanobacterium Trichodesmium
spp. (12, 29–31), and appear to be spatially correlated with some
of the areas of highest DFe concentrations (12). Surface nutrient
concentrations and diazotrophic activity thus appear to define a
biogeochemical division of the Atlantic between a high DIP,
low DFe (HPLFe) system in the south, and a low DIP, high
DFe (LPHFe) system in the north (12).
Although the biogeochemical division of the (sub)tropical

Atlantic has previously been interpreted on the basis of the hy-
pothesized Fe control of diazotrophy (12, 13), there remains the
possibility that the observed spatial patterns could have other
forcing factors (32). Moreover, the wider regional and global
importance of Fe controls on diazotrophy in both the modern
and paleo ocean remains a matter of active debate (12, 17, 33–35)
with important implications for our understanding of, for example,
glacial/interglacial nitrogen and carbon cycling (1, 36–38). More
direct tests of the Fe–diazotrophy limitation hypothesis are thus
desirable. In particular, predictable large-scale dynamic responses
of marine diazotrophy and subsequent P cycling to seasonal var-
iability in external Fe inputs has not previously been described.

Results and Discussion
The Sahara and Sahel deserts deliver large quantities of min-
eral dust to the (sub)tropical North Atlantic (22, 39). Tropical
Rainfall Measuring Mission (TRMM) and Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite data for the pe-
riod of our research cruise (February–March 2011), indicated
that the northern part of the study region received significant dry
(Fig. 1A) and wet (Fig. 1B) atmospheric deposition fluxes. How-
ever, the tropical South Atlantic was strongly shielded from desert
dust by the InterTropical Convergence Zone (ITCZ), which had
its core at ∼1°N during our cruise period, close to the southern-
most latitude reached during its annual migration (40, 41) (Fig. 1B).
In contrast, during a previous study in the region (October–
November 2005; Atlantic Meridional Transect [AMT-17]; ref.
42) the ITCZ was located at ∼6°N, nearer to the northernmost
extent (Fig. 1C).
The low pressure system of the ITCZ, formed by rapidly rising

humid air (41), is characterized by heavy precipitation of up to
∼0.8 mm h−1 (43) (Fig. 1 B and C). Aerosols are rapidly scavenged
by this band of precipitation (24, 44), and the ITCZ system
also restricts southward transport of desert-dust-rich air
masses, as was evidenced by airmass back trajectories (HYbrid
Single-Particle Lagrangian Integrated Trajectory [HYSPLIT])
calculated for the periods of both cruises (Fig. S1). Precipitation
has a major influence on sea surface salinity (SSS) in the trop-
ical Atlantic, with the latitudinal migration of the ITCZ (40, 41)
resulting in a strong seasonal cycle in local salt storage in the
region between ∼0° and 10°N (45, 46). Correspondingly, we ob-
served that the core of the ITCZ was associated with SSS minima
during both meridional transects in 2005 and 2011 (Fig. 2).
Wet deposition within the ITCZ has previously been proposed

to dominate trace metal inputs in the region (24, 47). Corre-
spondingly, we observed that dissolved aluminum (DAl), a non-
nutrient tracer of atmospheric inputs (24, 48) and the micronutrient
DFe were highly correlated both with each other and with SSS
along our two high-resolution 2011 transects (Fig. 2). The rela-
tionship of DFe and DAl with SSS for the earlier 2005 transect
was remarkably similar (Fig. S2), despite a ∼4° latitudinal offset
in the region of minimum SSS and maximum DFe and DAl
concentrations.
Tighter correlation between DFe and precipitation (Fig. 1B)

and SSS (Fig. 2), rather than aerosol optical thickness (Fig. 1A),
suggest that wet deposition dominated Fe input in this region.
More efficient solubilization of Fe from mineral dust particles
during wet deposition (49, 50) due to a low rainwater pH

(pH 4–6), the presence of Fe-binding ligands (51), and con-
tinuous photochemical reactions producing soluble Fe(II) in rain
droplets (49) may all contribute to such dominance. Our data
(Fig. 2), together with previous observations (12, 24, 47), thus
strongly argue for wet deposition associated with the ITCZ
forming the major source of DFe to the surface waters of the
tropical Atlantic, as the ITCZ simultaneously shields the South
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Fig. 1. (A) Aerosol optical thickness (AOT) recorded by the MODIS satellite
at 550 nm during February and March 2011. B and C illustrate satellite
rainfall rates (TRMM) determined during D361 between February and March
2011 and during AMT-17 between October and November 2005. The black
lines indicate the general cruise track and the gray circles the dissolved Fe
concentration for surface samples collected in February–March 2011 (A and
B) and October–November 2005 (C). The dashed line indicates the equator.
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Atlantic from atmospheric dust inputs, resulting in low DFe
concentrations (12, 28).
Sharp gradients in surface water DIP corresponded with the

southern boundaries of the regions of minimum SSS and en-
hanced DFe in 2011 (Fig. 2). The inverse relationship between
DFe and DIP thus agreed with our 2005 observations (12); how-
ever, the strong gradient region was offset to the south by 5°–10°,
corresponding to the seasonal southward displacement of the
ITCZ (Fig. 3). Moreover, observed N2-fixation rates, alongside
the abundance of Trichodesmium, peaked in the broad transition
region between the HPLFe waters to the south and the LPHFe
waters to the north in 2011 and 2005, thus demonstrating an
apparent seasonal latitudinal shift consistent with previous data
from the region (52). Consequently, data from three crossings of
the ITCZ (Figs. 2 and 3) were fully consistent with our proposed
conceptual model, whereby spatiotemporal variability in Fe inputs
can drive variability in diazotrophy and subsequently control the
availability of excess DIP in a system (12, 13).
To further illustrate the plausibility of the proposed mecha-

nism, we expanded a widely used simple numerical model (53–
55) to incorporate an idealized two-layer (surface–thermocline)
horizontal transport framework, which can be taken to represent
interactions between differential nutrient supplies (N, P, and Fe)
and (non)diazotrophs along any generic upper-ocean circulation
pathway (SI Materials and Methods). In the current case, our
model configuration can be considered an idealized represen-
tation of the upper limb of the Atlantic overturning circulation
(12, 56), where surface and thermocline waters apparently accu-
mulate geochemical and isotopic imprints of N2 fixation during
this large-scale northward transport (12, 57). Although simple,
the underlying functional equations (55) are effectively identical
to those used within more complex biogeochemical/ecosystem
general circulation models (58, 59). In consequence, the qualita-
tive behavior is expected to be consistent with more complex
circulation and ecosystem scenarios, and the responses to variable
forcing will be more fully tractable.
Qualitative steady-state outputs from our model setup were

highly insensitive to parameter choices within well-defined bounds
(Table S1). Thus, running the model with an initial subsurface
excess of DIP, as occurs almost ubiquitously throughout the global
(sub)tropical oceans (4, 55), and a spatially varying Fe input,
specifically a peak (or equivalently a jump) in input, resulted in
different areas of the model domain corresponding to two well-
defined regimes. Specifically, a “switch” occurs between a modeled
initial HPLFe and subsequent LPHFe condition (Fig. S3), with the

boundary region of this switch, a biogeochemical divide, being
related to the external Fe input and associated with a corre-
sponding peak in diazotrophy (Fig. S4). Formally, this occurs
because diazotrophy increases sharply at the location in the
model domain where the ratio of total Fe:DIN inputs is suffi-
cient to maintain surface DFe concentrations above the corre-
sponding equilibrium resource concentration for diazotrophs,
typically denoted R*Fe (55).
As previously noted (55), steady-state model outputs were

highly analogous to the observed situation in the Atlantic, with
the added two-layer horizontal transport framework providing
additional realism to the current configuration. Because the peak
in diazotrophy is collocated with a critical increase in external Fe
input, this would be expected to track Fe inputs at steady state.
Further, within dynamic model runs incorporating a temporal
variability in the region of enhanced Fe input (Fig. S4), i.e.,
analogous to the latitudinal movement of the ITCZ, the region
of enhanced diazotrophy and hence the location of the bio-
geochemical divide between HPLFe and LPHFe waters, tracks the
shifting Fe input in a manner that is qualitatively indistinguishable
from the data of our seasonally separated transects (Fig. 3).
Although highly significant biogeochemical responses to sea-

sonal variability in heat input, mixing, and light availability are
well known in the open ocean (60, 61), we provide a fully sup-
ported description of a large-scale biogeochemical response to
seasonal forcing by spatial–temporal variability in external, specifi-
cally atmospheric, nutrient inputs. Our results also have important
implications beyond the demonstrated seasonal and regional scales.
Despite the current lack of comprehensive surface ocean DFe
data, the contrasting HPLFe and LPHFe conditions that charac-
terize the South and North Atlantic subtropical gyres (12, 13, 28)
appear to be representative of the large-scale biogeochemistry
of the entire oligotrophic (low bioavailable fixed N) (sub)tropical
oceans (14, 15, 55). Understanding the processes responsible
for this large-scale biogeochemical portioning is thus of global
significance.
Conceptually predictable dynamic responses (Fig. 3) can pro-

vide stronger evidence of causation than can be provided by simple
correlative studies (12). Consequently, our observations build
on those of smaller-event-scale responses of diazotrophs to dust
inputs (62, 63). It is crucial to note that the variability in Fe
inputs due to the migration of the ITCZ appears to occur over
sufficient spatial and temporal scales that the system is driven
fully from the HPLFe to the LPHFe state, over a 300–400 km
latitudinal band just north of the equator (Fig. 3). The current
study thus potentially represents the closest possible analogy to
the type of deliberate large-scale Fe releases that would dem-
onstrate diazotroph–Fe limitation, in a similar manner to that
achieved in the HNLC systems, but which may be practically
and politically unfeasible over the long timescales required for
fully developed diazotrophic responses (20).
The dynamic response to increased external Fe inputs we de-

scribe here thus strongly supports the importance of Fe availability
for diazotrophy (1, 11), with consequent excess DIP removal to
the point where this subsequently becomes the limiting resource
(12, 13, 55). The broad basin-scale biogeochemical partitioning
of the oligotrophic oceans into HPLFe and LPHFe regions is thus
proposed to be a reciprocal consequence and driver of diazo-
trophic activity, with enhanced rates of diazotrophy both pre-
dicted and observed to occur at the boundaries of these regions
(55) (Fig. 3). Continued interpretation of the local, regional, and
potentially even the global balance between fixed N loss from the
oceans through the processes of denitrification/anaerobic ammo-
nium oxidation and inputs through N2 fixation (1, 4, 34, 36) will
thus need to simultaneously consider spatial patterns of both excess
P and Fe availability, as well as variability in these patterns, over
multiple timescales. For example, climatic migration of the ITCZ
(64) may interact with both regional (38) and remotely forced
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Fig. 2. Shown are the courses of DFe, DAl, and SSS in reverse scale, and DIP
determined during D361 between 7°S and 20°N for the north–south (Upper)
and south–north transect (Lower). Error bars represent the SD of triplicate
measurements.
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(36, 37) variability in excess P supply, to influence the activity
of diazotrophs in the Atlantic (65). Removal of excess P within
the Fe-rich North Atlantic is potentially also important in the
maintenance of a global-scale coupling between the N and P
cycles (12, 38). Indeed, Fe controls on large-scale diazotroph
biogeography may be essential in allowing the negative feedbacks
proposed to stabilize the N inventory over long timescales (53, 66)
to operate, through partially decoupling regions of fixed N inputs
and losses, hence preventing runaway N loss (67, 68).
Seasonal shifts in the ITCZ and associated wet deposition

dominated Fe inputs appeared to dynamically control diazotrophy
and reciprocal feedbacks to the nutrient biogeochemical divide of
the tropical Atlantic, in a manner which was entirely predictable
on the basis of simple theory as encapsulated in an idealized nu-
merical model. Such detailed observations of dynamic responses
to alterations in natural external forcing, coupled with conceptual
mechanistic understanding of the processes involved, not only
provides a powerful means for understanding the modern oceans,
but will also allow better predictions of biogeochemical responses
to multifaceted global change both in the past and future.

Materials and Methods
Water Sampling. Trace-metal-clean surface seawater samples were collected
during the UK GA06 GEOTRACES cruise (D361) on the UK research ship
RRS Discovery. The cruise took place between February and March 2011 in

the (sub)tropical Atlantic Ocean and covered an area between 27°N–7°S
and 17°–28°W.

Treatment and On-Board Measurements. All collected DIP samples were an-
alyzed immediately on board with a nanomolar phosphate method using
a segmented flow colorimetric analyzer with 2-m liquid waveguide flowcell
(69). Dissolved Fe was determined using flow injection analysis (FIA) with
luminol chemiluminescence (70). Dissolved Al concentrations were analyzed
using FIA with the lumogallion-Al fluorescence technique (71). N2 fixation
was measured using the 15N2 technique (72) following similar procedures
to those described elsewhere (17, 73).

Numeric Model. The model simulates the interactions between two broad
planktonic groups of phytoplankton and diazotrophs in competition for three
nutrients (N, P, and Fe) (Fig. S5). The differential equations describing the evo-
lution of the state variables were effectively identical to those used by Ward
et al. (55). See the supporting information (SI Materials and Methods) for more
detailed information about the model, sample handling, the DFe and DAl
techniques, N2 fixation and associated uncertainties (Fig. S6), and Trichodesmium
spp. abundances.
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