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A group of antibiotic resistance genes (ARGs) (blaTEM, blaCTX-M-1, mecA, armA, qnrA, and qnrS) were analyzed by real-time
quantitative PCR (qPCR) in bacteriophage DNA isolated from feces from 80 healthy humans. Seventy-seven percent of the sam-
ples were positive in phage DNA for one or more ARGs. blaTEM, qnrA, and, blaCTX-M-1 were the most abundant, and armA, qnrS,
and mecA were less prevalent. Free bacteriophages carrying ARGs may contribute to the mobilization of ARGs in intra- and
extraintestinal environments.

Antibiotic resistance may be obtained by spontaneous muta-
tions or acquired by the incorporation of antibiotic resistance

genes (ARGs) (1). ARGs spread between cells by using genetic
platforms known as mobile genetic elements (MGEs). The most
commonly studied MGEs are plasmids, transposons, integrons,
and, more recently, bacteriophages (2).

Bacteriophages or phage-related elements carry ARGs in
Gram-positive (3–6) and Gram-negative (7–10) bacteria. Re-
cently, some studies have suggested that the role of phages carry-
ing ARGs in the environment is much more important than pre-
viously thought (2, 11–13). Abundant ARGs have been reported
in the bacteriophage DNA fraction of fecally contaminated water
(14–16), and metagenomic analyses indicate that there are abun-
dant ARGs in viral DNA (17). As a result of their higher incidence
in clinical settings, much effort has been devoted to the study of
plasmids, integrons, and transposons. However, there is little in-
formation on phages carrying ARGs in clinical settings.

This study analyzes a group of ARGs in phage DNA isolated
from stool samples. The ARGs studied include two groups of
beta-lactamase genes from Gram-negative bacteria (blaTEM and
blaCTX-M-1 group); mecA, responsible for resistance to methicillin in
Staphylococcus spp.; armA, a gene which confers high-level resis-
tance to aminoglycosides in Gram-negative bacteria; and qnrA
and qnrS, plasmid-mediated genes that provide some degree of
reduced quinolone susceptibility.

The study was performed using 80 human fecal samples from
46 females and 34 males from 6 months to 102 years of age who
visited the Sant Pau Hospital (Barcelona, Spain) during a 6-month
period. Stool samples were processed according to conventional
protocols for the isolation of enteropathogenic bacteria, rotavirus,
and adenovirus and were microscopically examined for protozoa.
Only samples that were negative for these pathogens were in-
cluded in the study. None of the patients selected was involved in
a food-borne outbreak or showed any severe gastrointestinal pa-
thology. To our knowledge, none of the patients were receiving
antibiotic treatment during the time of the study, although previ-
ous antibiotic treatments could not be excluded.

Fecal samples were homogenized to a 1:5 (wt/vol) dilution in
phosphate-buffered saline (PBS) by magnetic stirring for 15 min.
Fifty milliliters of the homogenate was centrifuged at 3,000 �g,
and the phage lysate was purified and concentrated as described

previously (15, 16). Phage suspensions were treated with DNase
(100 U/ml) to eliminate free DNA outside the phage particles. To
confirm total removal of nonencapsidated DNA, eubacterial 16S
rRNA genes and the different ARGs (see Table S1 in the supple-
mental material) were evaluated in the sample after DNase treat-
ment and before its disencapsidation.

Phage DNA was extracted from the suspension as previously
described (16, 18). Total DNA (including Gram-positive and
Gram-negative bacterial and viral DNA) was extracted from 200
�l of the homogenate by use of a QIAamp DNA stool minikit
(Qiagen Inc., Valencia, CA) in accordance with the manufactur-
er’s instructions.

Standard and quantitative PCR (qPCR) procedures for blaTEM,
blaCTX-M-1 group, and mecA were performed as previously de-
scribed (16). The armA qPCR assay was designed using the se-
quence of armA in plasmid pMUR050 (NC_007682.3) from an
Escherichia coli pig isolate (19). pMUR050 was also used to gener-
ate standard curves (16). The armA qPCR assay has an average
efficiency of 98.4% and a detection limit of 2.74 gene copies (GC).
The qnrA qPCR assay detects seven variants (qnrA 1 to 7), and the
qnrS qPCR assay detects six variants (qnrS 1 to 6) (20). The 565-bp
fragment of qnrA was obtained from E. coli strain 266, and the
425-bp fragment of qnrS was obtained from the environmental
strain Enterobacter cloacae 565 isolated from sewage. Both frag-
ments were cloned in pGEM-T-Easy vector (Promega, Barcelona,
Spain) to generate the standard curves (16). The qnrA qPCR assay
showed 98.2% efficiency and a detection limit of 3.1 GC/�l, and
the qnrS assay showed 99.4% efficiency and a detection limit of 8.3
GC/�l. All qPCR assays (see Table S1 in the supplemental mate-
rial) were performed under standard conditions (15, 16). To
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screen for PCR inhibition, dilutions of the standard of each gene
were spiked with the DNA isolated from the samples, and the
results were compared to the true number of GC of the target
genes in the standards. No inhibition of the PCR by the samples
was detected. Sequencing was performed as previously described
(16).

When the ARGs in the total DNA were analyzed, all samples
were positive for one or more ARGs (Fig. 1A). When purified
phage DNA was used, 22.5% of the samples were negative for all
ARGs and 77.5% harbored one or more ARGs. All the ARGs an-
alyzed were present in our samples, and the distribution of the
ARGs in phage DNA was found to follow the same order of prev-
alence as in total DNA (Fig. 1A). No correlation was found be-
tween the patient’s age or gender and the presence of ARGs in total
or phage DNA.

When the different ARGs found were quantified per gram of
fecal sample (Fig. 1B), the highest values were seen in total DNA
with differences in log10 units between total and phage DNA rang-
ing from 1.2 for armA to 2.8 for mecA. In phage DNA, blaTEM

showed the highest prevalence and abundance, with values as high
as 6.8 log10 GC/g. The second most prevalent gene was qnrA.
bla

CTX-M group1
was the third most prevalent gene, although the den-

sities were lower than those of the two previous ARGs. armA
showed a low prevalence of only five positive samples but remark-
ably high densities (up to 6 log10 units). There were a small num-

ber of samples positive for qnrS and mecA in phage DNA, which
did not allow us to draw conclusions regarding their abundance.

The prevalence of the genes in this study corroborates the de-
scriptions found in the literature. blaTEM is probably the most
prevalent ARG worldwide (21, 22) and in phage DNA in wastewa-
ter (15, 16). blaCTX-M-1 group includes blaCTX-M-15, which over the
past decade has become one of the most prevalent extended-spec-
trum beta-lactamase genes (23). The horizontally transferable
qnrA and qnrS genes (24, 25) are widely distributed in our region
and clinically relevant (20), particularly qnrA, which was the first
quinolone resistance gene described and the most commonly
found (26, 27). armA is also highly prevalent in Enterobacteriaceae,
and it is spreading worldwide (19, 28, 29). mecA was not prevalent
in this study, perhaps because Staphylococcus spp. are not com-
monly found in the intestinal tract. The previous detection of
mecA in phages from sewage (16) may be attributable to a nonfecal
origin.

The qPCR assays produce a short amplicon, and to better con-
firm the identity of the ARGs detected in phage DNA by sequenc-
ing, we amplified longer fragments by conventional PCR. Se-
quencing was performed with forward and reverse primers and in
duplicate. The consensus of all sequences generated fragments of
different sizes for blaTEM, blaCTX-M group1, qnrA, and qnrS that
matched 100% previously described sequences of the correspond-
ing ARGs from different bacterial genera available in the GenBank

FIG 1 (A) Proportion of each ARG studied among 80 samples in total and phage DNA. In total DNA, values are expressed for 80 positive samples. In total DNA,
all samples were positive for at least one ARG, while in phage DNA, 18 samples were negative for all ARGs (Neg). (B) Box plot chart with the averaged values
obtained from all ARGs in positive samples for total and phage DNA. Within the box plot chart, the cross-pieces of each box plot represent (from top to bottom)
maximum, upper quartile, median (horizontal black bar), lower quartile, and minimum values. A black diamond indicates the mean value. The gray boxes in the
box plot chart include samples showing values within the 75th percentile, and white boxes include samples showing values within the 25th percentile. n, number
of positive samples for each ARG.
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database (http://www.ncbi.nlm.nih.gov/GenBank/index.html)
(Table 1). armA was not amplified by conventional PCR in the few
samples that tested positive for this gene. The specific variant of
the ARG sequenced was not determined because of the length and
location of some of these fragments and because the limited
amount of DNA obtained from the samples did not allow the
amplification of the complete ARGs.

The high prevalence of ARGs in phage DNA isolated from
fecally polluted environments (14–16) indicates that phages could
play a role in the mobilization of ARGs. The question we address
here is whether the origin of these phages could be free phage

particles excreted in feces, free phages present in those environ-
ments, or phages induced from bacteria (allochthonous or au-
tochthonous) occurring in those environments. The results of the
present study clearly indicate that free phages encoding ARGs are
directly excreted from healthy individuals via feces. The phage
particles could be infectious or not to a given host, but as previ-
ously shown, the genes harbored by the phages are functional and
able to confer resistance to a given antibiotic (16). This would
make it likely that a phage harboring ARGs infects a new host and
transfers the ARG that could be incorporated into the host ge-
nome by recombination.

The significant prevalence of phages in human feces has been
shown by recent metagenomics studies (30–32). Among these,
many remark on the high number of sequences of ARGs in the
virome fraction of the human gut (17, 33). A recent report indi-
cates that the number of ARGs in the “phageome” is significant
and that the ARG content in the phage DNA fraction of the gut
microbiome increases after antibiotic treatment (34). Specific
phages could carry ARGs of Gram-positive (4–6) and Gram-neg-
ative (7–10) bacteria. Although these reports do not indicate the
nature of the phage particles, some authors suggest that they could
have been generated by means of generalized transducing phages
that can mobilize chromosomal genes and plasmids (4, 8, 35).

As phages harboring ARGs are excreted in human feces from
healthy individuals (or animals) (14–16), there must be many of
these phages circulating in the population. These phages probably
exist in some food and water, but they will not normally be de-
tected by regular quality controls. They could be ingested as free
particles and cause conversion of susceptible hosts within the gut
that could be later selected by the presence of antimicrobial agents.
At present, phages seem to be suitable vehicles for the mobiliza-
tion and transmission of ARGs, and probably many other genes,
in both intra- and extraintestinal environments.
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