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In Vitro and In Vivo Antibacterial Activities of Omadacycline, a Novel
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Omadacycline is the first intravenous and oral 9-aminomethylcycline in clinical development for use against multiple infectious
diseases including acute bacterial skin and skin structure infections (ABSSSI), community-acquired bacterial pneumonia
(CABP), and urinary tract infections (UTI). The comparative in vitro activity of omadacycline was determined against a broad
panel of Gram-positive clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant
Enterococcus (VRE), Lancefield groups A and B beta-hemolytic streptococci, penicillin-resistant Streptococcus pneumoniae
(PRSP), and Haemophilus influenzae (H. influenzae). The omadacycline MIC,,s for MRSA, VRE, and beta-hemolytic strepto-
cocci were 1.0 pg/ml, 0.25 pg/ml, and 0.5 pg/ml, respectively, and the omadacycline MIC,.s for PRSP and H. influenzae were
0.25 pg/ml and 2.0 pg/ml, respectively. Omadacycline was active against organisms demonstrating the two major mechanisms
of resistance, ribosomal protection and active tetracycline efflux. In vivo efficacy of omadacycline was demonstrated using an
intraperitoneal infection model in mice. A single intravenous dose of omadacycline exhibited efficacy against Streptococcus
pneumoniae, Escherichia coli, and Staphylococcus aureus, including tet(M) and tet(K) efflux-containing strains and MRSA
strains. The 50% effective doses (ED;s) for Streptococcus pneumoniae obtained ranged from 0.45 mg/kg to 3.39 mg/kg, the
ED,s for Staphylococcus aureus obtained ranged from 0.30 mg/kg to 1.74 mg/kg, and the ED, for Escherichia coli was 2.02 mg/
kg. These results demonstrate potent in vivo efficacy including activity against strains containing common resistance determi-
nants. Omadacycline demonstrated in vitro activity against a broad range of Gram-positive and select Gram-negative pathogens,
including resistance determinant-containing strains, and this activity translated to potent efficacy in vivo.

Widespread resistance to antibiotics, including resistance to
the older tetracyclines (tetracycline, doxycycline, and mino-
cycline), has limited their usefulness in recent years (1, 2). New
tetracycline derivatives that inhibit resistant organisms have been ap-
proved or are in development, including the glycylcyclines and spe-
cifically tigecycline, and fluorocyclines, including eravacycline (TP-
434), and both tigecycline and eravacycline have potent Gram-
positive and Gram-negative in vitro activity (3—6). The discovery of
the 9-aminomethyl class of tetracyclines has led to the identification
of omadacycline (PTK 0796) that is poised to begin phase 3 clinical
trials in acute bacterial skin and skin structure infections (ABSSSI),
community-acquired (CA) bacterial pneumonia (CABP), and uri-
nary tract infections (UTI) with both an intravenous (i.v.) and
oral tablet formulation. Omadacycline, (4S,4aS,5aR,12aS)-4,7-
bis(dimethylamino)-9{[(2,2-dimethylpropyl)amino]methyl}-3,
10,12,12a-tetrahydroxy-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydro-
tetracene-2-carboxamide, contains a four-ring carbocyclic skeleton
and is a semisynthetic compound prepared by chemical modification
of minocycline (Fig. 1) (7, 8).

Omadacycline is distinct from older tetracyclines because it
demonstrates in vitro activity against a relatively broad spectrum
of organisms, including Gram-positive, Gram-negative, anaero-
bic, and atypical pathogens, and demonstrates similar in vitro ac-
tivity against pathogens that express not only tetracycline resis-
tance but resistance to other antibiotics, including methicillin,
vancomycin, erythromycin, and ciprofloxacin (9-20). This broad
in vitro activity has been confirmed in various in vivo models of
infection (21-24). Omadacycline is bioavailable in humans by
both oral and intravenous routes and does not demonstrate signifi-
cant gastrointestinal side effects (25-28). The targeted indications
encompass acute bacterial infections where a broad-spectrum antibi-
otic with activity against the most prevalent community-acquired
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multidrug-resistant organisms is desired. This report is the initial
description of the in vitro spectrum and in vivo efficacy of omada-
cycline. The in vitro activity of omadacycline translates into potent
in vivo efficacy in a lethal infection model, suggesting that the
pharmacodynamic requirements necessary for human clinical
trial investigation can be achieved.

MATERIALS AND METHODS

Bacterial strains. Routine clinical isolates were obtained from the follow-
ing sources: Children’s Hospital, Boston, MA; Channing Laboratories,
Boston, MA; Clinical Microbiology Institute, Wilsonville, OR; Glaxo
Smith Kline, Collegeville, PA; Tufts Medical Center, Boston, MA; Univer-
sity of California at Los Angeles Medical Center, Los Angeles, CA; Uni-
versity of Wisconsin Hospitals and Clinics, Madison, WI. For testing,
isolates were chosen randomly so that all sites would be represented. All
isolates were stored frozen at —80°C in tryptic soy broth or Mueller-
Hinton broth (Northeast Laboratories, Waterville, ME) plus 20% glycerol
(Becton, Dickinson, Sparks MD). Horse or sheep blood supplementation
was used for fastidious organisms. Isolates were subcultured twice onto
appropriate solid medium (tryptic soy agar with 5% sheep blood or choc-
olate agar; Becton, Dickinson, Sparks MD) prior to MIC testing. Quality-
control isolates were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA).

For the in vivo experiments, the bacterial strains Streptococcus pneu-
moniae 700905 and Staphylococcus aureus 29213 and the clinical isolate S.
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FIG 1 Chemical structure of omadacycline.

aureus USA300 were obtained from the American Type Culture Collec-
tion (ATCC 700905, ATCC 29213, and CA USA300 FPR3757/ATCCBAA
1556, respectively) (ATCC, Manassas, VA). Tetracycline-sensitive S.
pneumoniae PBS1339 (GSK1629) was obtained from GlaxoSmithKline,
Philadelphia, PA. S. pneumoniae 157E-2 was derived from passing S.
pneumoniae 157E (originally called GSK157E and obtained from Glaxo-
SmithKline) twice through mice. S. aureus USA400 is a clinical isolate (CA
USA400 REF 571) obtained from Paul Fey, University of Nebraska Med-
ical Center, Omaha, NE. S. aureus MRSAS5 (where MRSA is methicillin-
resistant S. aureus) was obtained from the University of Maryland, College
Park, MD. Escherichia coli PBS1478 (also referred to as SC8294) was orig-
inally obtained from Bristol Meyers Squibb, Fort Devens, MA.

Antibiotics and in vitro susceptibility testing. Omadacycline was
synthesized at Paratek Pharmaceuticals, Inc. Antibiotic comparators used
for the in vitro studies were obtained from Sigma-Aldrich, St. Louis, MO.
For the in vivo studies, tigecycline was obtained from Bosche Scientific,
New Brunswick, NJ. Doxycycline was obtained from Hovione, East
Windsor, NJ. Linezolid and levofloxacin were purchased from Sequoia
Research, Pangbourne, United Kingdom. Vancomycin HCI and ceftriax-
one were purchased from Sigma, Atlanta, GA. Daptomycin was obtained
from Cubist Pharmaceuticals, Inc., Lexington, MA. Microdilution broth
MICs were performed according to CLSI (formerly NCCLS) guidelines
(18).

PCR for detection and identification of tetracycline resistance
genes. The presence of the efflux genes tet(K) and tet(L), as well as tet(A),
tet(B), and genes of the ribosomal protection (RP) family [tet(M), tet(O),
and fet(S)] was assessed by multiplex PCR (29).

Systemic i.p. challenge model. Six-week-old, specific-pathogen-free,
male CD-1 mice, weighing 18 to 30 g (Charles River, Wilmington, MA),
were used for all experiments. Animals were acclimated for 1 week follow-
ing delivery. Mice were allowed food and water ad libitum and kept in a
constant 12-h light/dark cycle. Bacterial cultures were grown by either
streaking frozen colonies onto tryptic soy agar II plates with 5% sheep’s
blood (Northeast Laboratories, Waterville, ME) and incubating them
overnight in a CO, enriched environment at 37°C (S. pneumoniae) or
growing frozen isolates in a 37°C shaker at 180 rpm in Mueller-Hinton
broth (Northeast Labs, Waterville, ME) (for S. aureus and E. coli). For S.
pneumoniae, following the overnight incubation, the colonies were asep-
tically collected from two to three agar plates and resuspended in 3 ml of
sterile phosphate-buffered saline (PBS) (Fisher Scientific, Boston, MA)
for a final concentration of approximately 1 X 10° CFU/ml. For S. aureus
and E. coli strains, an overnight broth was grown to a concentration of
approximately 1 X 10 CFU/ml. Serial dilutions of all bacterial suspen-
sions were performed in sterile PBS to obtain the infectious dose used for
individual experiments. Infectious doses used in each experiment were
confirmed by plating serial dilutions on tryptic soy agar II plates with 5%
sheep’s blood and incubating plates overnight (in a CO, enriched envi-
ronment for S. pneumoniae) at 37°C, after which bacterial colonies were
then enumerated. Septicemia was induced by infecting mice intraperito-
neally (i.p.) with 500 wl containing (6.85 = 1.58) X 10> CFU (mean *
standard deviation) of S. pneumoniae PBS1339, (1.07 = 1.15) X 10° CFU
of S. pneumoniae 700905, (1.02 = 1.22) X 10° CFU of S. pneumoniae
157E-2, (7.13 = 3.31) X 107 CEU of S. aureus USA300, (6.40 = 1.53) X
10° CFU of S. aureus 29213, (1.08 £ 0.43) X 10°/ml CFU of S. aureus
USA400, (1.06 = 0.56) X 10® CFU of S. aureus MRSA5, and (6.60 =+
2.34) X 10° CFU of E. coli PBS1478 in an autoclaved 4.5% bacteriological
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mucin (VWR Scientific, Pittsburg, PA) suspension. Mice were infected
using a 3-ml lock-top sterile syringe with a sterile 25-gauge, 5/8-in. needle
(Becton, Dickinson, Franklin Lakes, NJ). At 1 h postinfection (p.i.), mice
were dosed intravenously (i.v.) with omadacycline or comparator com-
pounds of interest, dissolved in sterile saline for injection at a volume of 10
ml/kg. All drug doses were formulated fresh immediately prior to admin-
istration and adjusted to account for percent activity. A minimum of four
dose levels were tested per experiment with 5 mice/group. The typical
doses tested ranged from 0.11 to 18 mg/kg of body weight, with exceptions
for comparators that required significantly higher or lower doses to
achieve 50% efficacy (dose range minimum-maximum, 0.08 to 54 mg/
kg). Each study also included an untreated control group. Mice were
housed in filter-topped cages in an isolated room and monitored for mor-
bidity at least every 24 h for 7 days. Efficacy was determined by calculating
the 50% effective dose (EDs,) for all drugs tested. The EDsj, is defined as
the dose required to achieve 50% survival at 7 days p.i. and was estimated
when possible using the formula y = 1/[1 + 100°8(0)-108()x 42)] ‘yyhere
k = 0.5, by nonlinear regression analysis with Prism, version 3.0 software.
All animal protocols were critically reviewed and approved by the Paratek
Pharmaceuticals, Inc., Institutional Animal Care and Use Committee.

RESULTS

MICs of omadacycline, tetracycline, and doxycycline on charac-
terized tetracycline-resistant Gram-positive and Gram-nega-
tive bacteria. Omadacycline demonstrated activity against the
Gram-positive pathogens S. aureus, Enterococcus faecalis, Entero-
coccus faecium, S. pneumoniae, and beta-hemolytic streptococci
carrying ribosomal protection [tet(M), tet(O), and tet(S)] and ef-
flux [tet(K) and tet(L)] tetracycline resistance genes (Table 1). The
concentration of omadacycline required to inhibit growth of sev-
eral strains of E. coli carrying efflux genes [fet(A)] was also reduced
compared to conventional tetracyclines.

Omadacycline demonstrates in vitro activity against a broad
panel of clinically relevant Gram-positive and Gram-negative
bacterial strains. The comparative in vitro activity of omadacy-
cline was assessed against a broad panel of clinically significant
Gram-positive and Gram-negative bacteria. Omadacycline was as
active as comparators against susceptible S. aureus and was more
active than most comparators against MRSA strains, most of
which were resistant to more than one comparator antibiotic (Ta-
ble 2). These results indicate that omadacycline specifically over-
comes the problem of tetracycline, doxycycline, and minocycline
resistance in S. aureus.

One of the more difficult to treat pathogens, and the pathogen
that has been the most problematic in terms of resistance to anti-
biotics, is the genus Enterococcus, including both Enterococcus
faecalis and Enterococcus faecium. Isolates of both species have
acquired mechanisms of resistance to vancomycin, and such
strains present a difficult therapeutic challenge. Omadacycline is
active against both species and is equally active against vancomy-
cin-susceptible and -resistant isolates (Table 2). Omadacycline is
also equally active against tetracycline-resistant and -susceptible
isolates of E. faecalis and E. faecium.

S. pneumoniaeis an important respiratory pathogen in the hos-
pital and community. Of particular concern in the community are
isolates resistant to accepted oral antibiotics, particularly penicil-
lins and cephalosporins, macrolides, and tetracyclines. Omadacy-
cline exhibits activity against all S. pneumoniae isolates tested, re-
gardless of resistance to these agents and even when isolates are
resistant to multiple antibiotics (tetracycline plus penicillin plus
azithromycin) (Table 2).

Omadacycline also exhibits in vitro activity against other strep-
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TABLE 1 In vitro activity of omadacycline against tetracycline-resistant and -susceptible bacteria

MIC range (pg/ml)*

Tetracycline resistance No. of
Organism(s) gene(s) isolates Omadacycline Tetracycline Doxycycline
Staphylococcus aureus tet(M) 19 0.125-1 32->64 2-16
tet(K) 5 0.125-0.25 16-32 1-4
35 =0.06-0.5 =0.06-0.25 =0.06-0.125
Enterococcus faecalis tet(M) 14 0.125-0.5 32-64 4-8
tet(L) 1 0.25 64 16
tet(M), tet(L) 3 0.5 >64 16
tet(S) 1 0.25 32 2
11 0.25-0.5 =0.06-0.25 =0.06-0.125
Enterococcus faecium tet(M) 13 0.125-0.5 32-64 2-8
tet(M), tet(L) 2 0.25 >64 8-16
tet(K) 1 0.12 32 4
tet(O) 1 0.12 32 4
8 0.125-0.5 0.125-0.25 =0.06
Streptococcus pneumoniae tet(M) 22 =0.06 4-64 2-4
18 =0.06-0.25 =0.06-0.25 =0.06-0.25
Beta-hemolytic streptococci’ tet(M) 17 =0.06-0.5 4-64 2-16
tet(0) 4 =0.06-0.25 30-64 8
26 =0.06-0.5 =0.06-0.125 =0.06
Escherichia coli tet(A) 2 64->64 16
17 0.5-2 0.5-2 0.5-1

“ Commercial-grade tigecycline was not available at the time of in vitro testing.
b'S. pyogenes and S. agalactiae.

tococci. Streptococcus pyogenes (Lancefield group A, beta-hemo-
Iytic streptococcus) and Streptococcus agalactiae (Lancefield group
B, beta-hemolytic streptococcus) are susceptible to omadacycline
(Table 2).

Finally, omadacycline exhibits activity in vitro against some
Gram-negative bacteria including E. coli, Klebsiella pneumoniae,
and Haemophilus influenzae (Table 3).

Comparative efficacy studies in the in vivo systemic infection
model. The efficacy of omadacycline was tested in a systemic in-
fection model to determine if omadacycline has potential as a
clinical therapy in humans. The i.p. challenge model is a standard
in vivo model of systemic infection commonly used as a basic
screening tool to evaluate the antibiotic potential of novel thera-
pies (30).

Omadacycline has demonstrated favorable pharmacokinetics
intravenously in multiple species and has demonstrated good in-
travenous and oral bioavailability in humans (27, 28, 31). Omada-
cycline is currently being developed as both an intravenous and
oral broad-spectrum clinical therapy (25, 26, 32). However, the
oral bioavailability of omadacycline in rodents is significantly
lower, as demonstrated by pharmacokinetic evaluation and sub-
sequent efficacy studies (data not shown). Because murine om-
adacycline bioavailability is particularly poor compared to the
good oral bioavailability previously observed in other nonrodent
species and humans, in vivo efficacy studies in mice were con-
ducted by administering omadacycline intravenously.

A single i.v. dose of omadacycline demonstrated potent efficacy
against tetracycline-sensitive and tetracycline-resistant strains of S.
pneumoniae and S. aureus, as well as proving efficacious against
the common Gram-negative pathogen E. coli, in the murine sys-
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temic i.p. challenge model (Table 4). Efficacy was evaluated by
determining the EDs,s for omadacycline and each comparator
antibiotic. Against the highly virulent, mucoid, tetracycline-sen-
sitive S. pneumoniae PBS1339 strain, the ED;, of 3.34 mg/kg for
omadacycline was similar to that of the glycycline, tigecycline
(4.13 mg/kg). Omadacycline was over 4 to 5 times more effica-
cious than doxycycline, vancomycin, and levofloxacin and over 7
times more efficacious than linezolid (with EDs of 14.23 mg/kg,
15.7 mg/kg, 19.35 mg/kg, and 24.47 mg/kg, respectively). Ceftri-
axone and daptomycin were slightly more potent than omadacy-
cline (1.10 mg/kg and 1.43 mg/kg, respectively).

Against the tetracycline-resistant, azithromycin-resistant Tet
M S. pneumoniae 700905 strain, the ED5, for omadacycline (0.45
mg/kg) was lower than that of all the other comparators tested.
Omadacycline was over 30 times more active than linezolid (13.88
mg/kg) and slightly more efficacious than vancomycin (0.91 mg/
kg) and tigecycline (1.72 mg/kg). Doxycycline failed to demon-
strate any efficacy even at the highest dose tested (54 mg/kg); thus,
an ED, value could not be calculated.

The ED;, of 1.10 mg/kg for omadacycline was lower than that
of all the other antibiotics tested against the tetracycline-sensitive
S. pneumoniae 157E-2 strain. The efficacy of omadacycline was
similar to that of doxycycline (1.55 mg/kg) and tigecycline (1.72
mg/kg), but omadacycline was over 11 times more active than
vancomycin (12.32 mg/kg). Linezolid failed to protect the mice at
the highest dose tested (27 mg/kg); thus, an EDs, value could not
be calculated.

In the tetracycline-sensitive S. aureus 29213 i.p. challenge
model, omadacycline was more than 3 to 5 times more potent
than vancomycin and linezolid (1.74 mg/kg versus 6.09 mg/kg and
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TABLE 2 In vitro activity against Gram-positive organisms

Organism name or group No. of isolates Antibiotic” MIC range (jg/ml) MIC;,, (pg/ml) MIC,,, (pg/ml)
S. aureus 55 Omadacycline =0.06-1 0.125 0.5
Tetracycline =0.06-64 0.125 64
Minocycline =0.06-16 0.125 8
Cefotaxime 1->64 32 >64
Vancomycin 0.25-2 0.5 1
Levofloxacin =0.06—>64 4 32
Linezolid 0.5-2 2 2
Azithromycin 0.25->64 >64 >64
Clindamycin =0.06->64 0.125 >64
Doxycycline =0.06-8 =0.06 8
Methicillin-resistant S. aureus 39 Omadacycline 0.125-1 0.25 0.5
Tetracycline =0.06-64 0.25 64
Minocycline =0.06-16 0.25 8
Cefotaxime 4->64 >64 >64
Vancomycin 0.25-2 0.5 1
Levofloxacin 0.5->64 8 32
Linezolid 0.5-2 2 2
Azithromycin 0.5->64 >64 >64
Clindamycin =0.06->64 >64 >64
Doxycycline =0.06-8 0.125 8
Methicillin-sensitive S. aureus 16 Omadacycline =0.06-0.25 0.125 0.125
Tetracycline =0.06-16 =0.06 0.125
Minocycline =0.06-0.125 =0.06 0.125
Cefotaxime 1-2 2 2
Vancomycin 0.25-0.5 0.5 0.5
Levofloxacin =0.06—4 0.125 0.125
Linezolid 1-2 1 2
Azithromycin 0.25-32 0.5 0.5
Clindamycin =0.06-0.125 =0.06 0.125
Doxycycline =0.06-1 =0.06 =0.06
Multidrug- and methicillin-resistant S. aureus 10 Omadacycline 0.25-0.5 0.5 0.5
Tetracycline 32->64 >64 >64
Minocycline 2-16 8 8
Cefotaxime 32-64 >64 >64
Vancomycin 0.5-1 1 1
Levofloxacin 8-32 8 32
Linezolid 0.5-2 1 2
Azithromycin >64 >64 >64
Clindamycin >64 >64 >64
Doxycycline 2-8 8 8
E. faecalis 31 Omadacycline 0.125-0.5 0.25 0.5
Tetracycline 0.125->64 32 64
Minocycline 0.125-16 8 16
Vancomycin 0.5-8 1 2
Levofloxacin 0.5-64 1 32
Linezolid 1-4 1 2
Azithromycin 1->64 8 >64
Clindamycin 2->64 32 >64
Doxycycline =0.06-16 4 16
Multidrug-resistant E. faecalis 3 Omadacycline 0.25-0.5 0.25 0.5
Tetracycline 32-64 32 64
Minocycline 8-16 8 16
Vancomycin 0.5-8 0.5 8
Levofloxacin 16-64 32 64
Linezolid 1 1 1
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TABLE 2 (Continued)

In Vitro and In Vivo Activities of Omadacycline

Organism name or group No. of isolates Antibiotic” MIC range (jg/ml) MIC;,, (pg/ml) MIC,,, (pg/ml)
Azithromycin >64 >64 >64
Clindamycin >64 >64 >64
Doxycycline 4 4 4

E. faecium 24 Omadacycline 0.125-0.5 0.25 0.5
Tetracycline 0.125->64 32 64
Minocycline 0.125-32 8 16
Vancomycin 0.5->64 >64 >64
Levofloxacin 1->64 64 >64
Linezolid 0.5-4 2 2
Azithromycin 4->64 >64 >64
Clindamycin =0.06—>64 >64 >64
Doxycycline =0.06-16 2 8

Vancomycin-resistant E. faecium 19 Omadacycline 0.125-0.5 0.25 0.5
Tetracycline 0.125->64 32 64
Minocycline 0.25-32 8 16
Vancomycin 64->64 >64 >64
Levofloxacin 1->64 64 >64
Linezolid 0.5-4 2 2
Azithromycin >64 >64 >64
Clindamycin >64 >64 >64
Doxycycline =0.06-8 2 4

Multidrug- and vancomycin-resistant E. faecium 12 Omadacycline 0.125-0.5 0.25 0.5
Tetracycline 32->64 32 >64
Minocycline 4-16 8 16
Vancomycin >64 >64 >64
Levofloxacin 8—>64 32 >64
Linezolid 0.5-2 1 2
Azithromycin >64 >64 >64
Clindamycin >64 >64 >64
Doxycycline 2-8 2 4

S. pneumoniae 41 Omadacycline =0.06-0.25 =0.06 0.125
Tetracycline =0.06-64 16 32
Minocycline =0.06-8 2 8
Cefotaxime =0.06-8 1 2
Vancomycin =0.06-0.5 0.25 0.25
Levofloxacin 0.25-1 0.5 1
Penicillin =0.06-8 2 4
Linezolid 0.25-2 1 1
Azithromycin =0.06—>64 2 >64
Clindamycin =0.06—>64 =0.06 >64
Doxycycline =0.06—4 2 4

Penicillin-resistant S. pneumoniae 23 Omadacycline =0.06 =0.06 =0.06
Tetracycline =0.06-64 32 32
Minocycline 0.125-8 8 8
Cefotaxime 0.5-8 1 8
Vancomycin 0.125-0.25 0.25 0.25
Levofloxacin 0.5-1 0.5 1
Penicillin 2-8 4 8
Linezolid 0.5-2 1 1
Azithromycin =0.06—>64 4 >64
Clindamycin =0.06—>64 =0.06 >64
Doxycycline =0.06—4 4 4

Multidrug- and penicillin-resistant S. pneumoniae 18 Omadacycline =0.06 =0.06 =0.06
Tetracycline 16-64 32 32
Minocycline 4-8 8 8
Cefotaxime 0.5-8 1 8
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TABLE 2 (Continued)

Organism name or group No. of isolates Antibiotic” MIC range (jg/ml) MIC;,, (pg/ml) MIC,,, (pg/ml)
Vancomycin 0.125-0.25 0.125 0.25
Levofloxacin 0.5-1 0.5 1
Penicillin 2-8 4 8
Linezolid 0.5-1 1 1
Azithromycin 2->64 >64 >64
Clindamycin =0.06->64 >64 >64
Doxycycline 2-4 4 4

S. pyogenes 30 Omadacycline =0.06-0.5 0.125 0.25
Tetracycline =0.06-64 =0.06 64
Minocycline 0.125-8 0.25 8
Cefotaxime =0.06 =0.06 =0.06
Vancomycin 0.25 0.25 0.25
Levofloxacin 0.25-1 0.25 1
Linezolid 0.5-1 1 1
Azithromycin =0.06—>64 =0.06 8
Clindamycin =0.06—->64 =0.06 =0.06
Doxycycline =0.06-8 =0.06 8

S. agalactiae 18 Omadacycline =0.06-0.25 0.125 0.125
Tetracycline =0.06-64 32 64
Minocycline 0.125-32 16 16
Cefotaxime =0.06 =0.06 =0.06
Vancomycin 0.125-0.5 0.25 0.5
Levofloxacin 0.125-0.5 0.5 0.5
Linezolid 1-1 1 1
Azithromycin =0.06-8 =0.06 0.125
Clindamycin =0.06 =0.06 =0.06
Doxycycline =0.06-16 8 8

@ Commercial-grade tigecycline was not available at the time of in vitro testing.

TABLE 3 In vitro activity against Gram-negative organisms

No. of MIC range MIC;, MIC,,

Organism isolates Antibiotic” (pg/ml) (pg/ml)  (pg/ml)

E. coli 23 Omadacycline 0.5-2 1 2
Tetracycline  0.5->64 2 >64
Cefotaxime =0.06-0.5 =0.06 0.125
Levofloxacin ~ <0.06-16 =0.06 4
Minocycline  0.5-16 1 8
Ampicillin 2->64 >64 >64
Gentamicin 0.25-64 1 8
Ciprofloxacin  =0.06-32 =0.06 8
Doxycycline  0.5-64 1 64

K. pneumoniae 14 Omadacycline 1-8 2 4
Tetracycline  0.5->64 2 >64
Cefotaxime =0.06->64 =0.06 32
Levofloxacin ~ =0.06—64 =0.06 32
Minocycline  2->64 2 64
Gentamicin 0.5-32 0.5 32
Ciprofloxacin =0.06->64 =0.06 >64
Doxycycline  1-64 2 32

H. influenzae 53 Omadacycline 0.5-8 1 2
Tetracycline  0.125-64 2 32
Cefotaxime =0.06-1 =0.06 =0.06
Levofloxacin ~ =0.06 =0.06 =0.06
Ampicillin =0.06->64 64 >64
Azithromycin = 0.25-4 1 2
Doxycycline ~ 0.125-8 0.5 4

“ Commercial-grade tigecycline was not available at the time of in vitro testing.
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9.91 mg/kg, respectively) but was slightly less effective than doxy-
cycline and tigecycline (0.91 mg/kg and 0.73 mg/kg, respectively).

Against the clinical MRSA Tet K, Tet 38 S. aureus USA300
strain, omadacycline had an EDs, of 0.90 mg/kg and was over 9
times more active than linezolid (8.18 mg/kg). Omadacycline was
over 4 times more potent than doxycycline (4.13 mg/kg) but
slightly less potent than tigecycline (0.58 mg/kg). Vancomycin
failed at all the doses tested including 18 mg/kg; thus, an EDj,
could not be accurately calculated.

A single i.v. dose of omadacycline resulted in an ED5, of 0.45
mg/kg against the tetracycline-sensitive clinical S. aureus USA400
strain. Omadacycline was more efficacious than any of the other
comparators tested. Omadacycline was twice as active as doxycy-
cline and tigecycline (1.12 mg/kg and 1.09 mg/kg, respectively)
and 7 and 18 times more effective, respectively, than vancomycin
and linezolid (3.29 mg/kg and 8.12 mg/kg, respectively).

Omadacycline also had a lower ED5, than any of the other
comparators tested against the MRSA Tet M S. aureus MRSA5
strain. With an ED,,, of 0.30 mg/kg, omadacycline was over 5 times
more efficacious than tigecycline (1.74 mg/kg) and over 80 times
more active than linezolid (24.53 mg/kg). Neither vancomycin
nor doxycycline demonstrated efficacy at the highest doses tested
(18 mg/kg and 54 mg/kg, respectively).

With an EDs, of 2.02 mg/kg, omadacycline also demonstrated
in vivo efficacy against the Gram-negative bacteria, tetracycline-
sensitive E. coli PBS1478. Although omadacycline was not as po-
tent as ciprofloxacin (0.07 mg/kg), a single i.v. dose of omadacy-
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TABLE 4 In vivo efficacy of omadacycline versus clinically used
antibiotic comparators in a murine i.p. challenge model

Strain (mean CFU/mouse) and MIC ED,,
compound (pg/ml) (mg/kg [95% CI])”
S. pneumoniae PBS1339 (6.85 X 107)
Omadacycline 0.125 3.34 £ 1.56
Ceftriaxone 0.015 1.1 (1.08-1.12)
Daptomycin 0.125 1.43 (1.24-1.62)
Doxycycline =0.06 14.23 (11.72-16.74)
Levofloxacin 0.25 19.35 (9.15-29.56)
Linezolid 1 24.47 (13.70-35.23)
Tigecycline 0.125 4.13 (2.46-5.79)
Vancomycin 0.5 15.70 (9.26-22.14)
S. pneumoniae 700905 (1.07 X 10°)
Omadacycline =0.06 0.45 (0.32-0.58)
Vancomycin 0.25 0.91 (0.73-1.09)
Doxycycline 4 >54
Tigecycline 0.125 1.72 (0.6-2.82)
Linezolid 0.5 13.88 (3.20-24.56)
S. pneumoniae 157E-2 (1.02 X 10°)
Omadacycline =0.06 1.10 (1.08-1.12)
Vancomycin 1 12.32 (6.83-17.81)
Doxycycline =0.06 1.55 (0.85-2.25)
Tigecycline =0.06 1.72 (0.06-3.37)
Linezolid 0.5 >27
S. aureus 29213 (6.40 X 10°)
Omadacycline 0.25 1.74 (0.91-2.58)
Vancomycin 1 6.09 (3.62-8.56)
Doxycycline 0.125 0.91 (0.89-0.92)
Tigecycline 0.125 0.73 (0.69-0.76)
Linezolid 2 9.91 (7.94-11.87)
S. aureus USA300 (7.13 X 107)
Omadacycline 0.25 0.90 (0.33-1.46)
Vancomycin 0.5 >18
Doxycycline 1 4.13 (3.88-4.38)
Tigecycline 0.125 0.58 (0.40-0.75)
Linezolid 1 8.18 (8.05-8.31)
S. aureus USA400 (1.08 X 10%)
Omadacycline 0.5 0.45 (0.43-0.48)
Vancomycin 0.5 3.29 (0.42-6.16)
Doxycycline =0.06 1.12 (0.88-1.35)
Tigecycline =0.06 1.09 (0.49-1.69)
Linezolid 2 8.12 (3.07-13.17)
S. aureus MRSAS5 (1.06 X 10%)
Omadacycline 0.25 0.30 (0.295-0.305)
Vancomycin 1 >18
Doxycycline 8 >54
Tigecycline =0.06 1.74 (0.91-2.57)
Linezolid 1 24.53 (16.13-32.94)
E. coli PBS1478 (6.60 X 10°)
Omadacycline 1 2.02 (1.09-2.96)
Ciprofloxacin =0.06 0.07 (0.05-0.09)
Doxycycline 1 17.46 (13.51-21.42)
Tigecycline =0.06 1.75 (1.12-2.38)

“ Values are means of seven independent in vivo experiments * standard deviations. CI,
confidence interval.
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cline demonstrated similar efficacy as tigecycline (1.75 mg/kg) and
was over 8 times more effective than doxycycline (17.46 mg/kg).

DISCUSSION

Omadacycline demonstrates in vitro activity against staphylo-
cocci, including methicillin-resistant S. aureus strains also resis-
tant to conventional tetracyclines (tetracycline, doxycycline or
minocycline), macrolides (azithromycin), or lincosamides (clin-
damycin). The in vitro activity of omadacycline was also superior
to doxycycline, minocycline, clindamycin, linezolid, or vancomy-
cin against enterococcus, including vancomycin-resistant E.
faecalis or E. faecium, and S. pneumoniae strains including peni-
cillin- and multiresistant strains. Commercial-grade tigecycline
was not available when these in vitro studies were conducted. Like
other new tetracyclines, omadacycline MICs were minimally af-
fected by the presence of tetracycline ribosomal protection or ma-
jor efflux determinants in Gram-positive or Gram-negative bac-
teria (6, 33, 34). Omadacycline exhibited in vitro activity against
specific Gram-negative bacteria including E. coli, H. influenzae,
and K. pneumoniae. Other new tetracyclines, including the previ-
ously approved tigecycline and eravacycline (TP-434), which is
currently in development, have demonstrated excellent Gram-
positive in vitro activity and clinical efficacy (tigecycline) and
more potent in vitro Gram-negative activity (eravacycline and
tigecycline) (6, 35). The excellent broad-spectrum activity of these
new tetracyclines accounts in part for the pursuance of develop-
ment and approval pathways for several serious Gram-positive
(for ABSSSI and CABP, tigecycline and omadacycline) and Gram-
negative disease indications (complicated intra-abdominal infec-
tion [cIAI], tigecycline; for cIAl and complicated UTI [cUTI],
eravacycline (6, 35).

The in vitro activity of omadacycline was demonstrated in an in
vivo systemic infection model. A single intravenous dose of om-
adacycline exhibited efficacy against a variety of clinically relevant
strains of S. aureus and S. pneumoniae, as well as E. coli, in a lethal
i.p. challenge model, indicating that omadacycline was compara-
ble or more efficacious than other currently available antibiotics.

Omadacycline is metabolically stable and has demonstrated
low protein binding across all concentrations and species tested
(36). In a phase 1 oral absorption, distribution, metabolism, and
excretion (ADME) study, no metabolites of omadacycline were
isolated, and balanced elimination via the gut and urinary systems
and a high concentration of omadacycline were detected in urine
(27). These data support further consideration of clinical trial test-
ing in patients with urinary tract infections. In a phase 2 study of
patients with complicated skin and soft tissue infections, oral and
i.v. omadacycline was well tolerated, with efficacy demonstrating
comparability with the comparator linezolid. These data support
further clinical trial investigation in skin and soft tissue infections
(37).

Antimicrobial resistance continues to grow while the remain-
ing effective antibiotic arsenal continues to diminish. Staphylo-
cocci including methicillin-resistant S. aureus, enterococcus in-
cluding vancomycin-resistant E. faecalis and E. faecium, and
pneumococcus including penicillin and multidrug-resistant S.
pneumoniae remain problems in the community and the hospital,
with limited treatment options (38—43). Omadacycline is capable
of overcoming multiple mechanisms of tetracycline resistance as
well as of maintaining efficacy against the tetracycline-susceptible
strains, as demonstrated both in vitro and in vivo. Omadacycline
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may be an important and desirable treatment alternative for pa-
tients with community-acquired infections where the epidemiol-
ogy suggests a problematic prevalence of resistant pathogens. Our
data support the clinical evaluation of intravenous and oral treat-
ment with omadacycline for multiple infectious disease indica-
tions.
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