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To understand phage infection and host cell lysis mechanisms in pathogenic Salmonella, a novel Salmonella enterica serovar
Typhimurium-targeting bacteriophage, SPN9CC, belonging to the Podoviridae family was isolated and characterized. The phage
infects S. Typhimurium via the O antigen of lipopolysaccharide (LPS) and forms clear plaques with cloudy centers due to lysogen
formation. Phylogenetic analysis of phage major capsid proteins revealed that this phage is a member of the lysogen-forming
P22-like phage group. However, comparative genomic analysis of SPN9CC with P22-like phages indicated that their lysogeny
control regions and host cell lysis gene clusters show very low levels of identity, suggesting that lysogen formation and host cell
lysis mechanisms may be diverse among phages in this group. Analysis of the expression of SPN9CC host cell lysis genes encod-
ing holin, endolysin, and Rz/Rz1-like proteins individually or in combinations in S. Typhimurium and Escherichia coli hosts
revealed that collaboration of these lysis proteins is important for the lysis of both hosts and that holin is a key protein. To fur-
ther investigate the role of the lysogeny control region in phage SPN9CC, a AcI mutant (SPN9CCM) of phage SPN9CC was con-
structed. The mutant does not produce a cloudy center in the plaques, suggesting that this mutant phage is virulent and no lon-
ger temperate. Subsequent comparative one-step growth analysis and challenge assays revealed that SPN9CCM has shorter
eclipse/latency periods and a larger burst size, as well as higher host cell lysis activity, than SPN9CC. The present work indicates
the possibility of engineering temperate phages as promising biocontrol agents similar to virulent phages.

ood poisoning is generally caused by the intake of a food or

drink contaminated with food-borne pathogenic bacteria,
such as Salmonella, Escherichia coli, Listeria, and Campylobacter
(1). Salmonella causes salmonellosis with various symptoms, such
as diarrhea, vomiting, high fever, and even death (2, 3). In the
United States, more than 1.4 million cases of salmonellosis have
been reported every year, and the number has increased by more
than 10% annually in recent years (1, 3, 4). Although antibiotics
have been widely used to control the pathogen responsible for
salmonellosis, multidrug-resistant Salmonella strains, such as Sal-
monella enterica serovar Typhimurium DT104, have appeared
(5,6).

Because of the emergence of antibiotic-resistant Salmonella
strains, an approach using bacteriophage has been proposed to
control them (7, 8). To take advantage of phage treatment against
salmonellosis, it is necessary to characterize Salmonella phages
phenotypically and genotypically. Moreover, understanding of
mechanisms of Salmonella host cell infection by Salmonella-tar-
geting phages is important for this purpose. The major processes
of host infection by phages include phage attachment via a host
receptor, control of the host lytic-lysogenic cycle, and the host cell
lysis mechanism.

Several Salmonella host receptors for phage infection have been
experimentally determined and characterized, such as flagella (9,
10), Vi capsular antigen (11), lipopolysaccharide (LPS) (12), and
host outer membrane proteins (OmpC [13], BtuB [14, 15], TolC
[16], and FhuA [17]). These receptors play a role in the determi-
nation of phage host specificity, suggesting that host receptor
study would be able to provide novel insights into the mechanisms
of phage infection of Salmonella host cells. Lambdoid lysogenic
phages generally contain a lysogeny control region consisting of
cro, cI, clI, clIl, N, and Q (18, 19). Constitutive bacteriophage
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promoters, P; and Py, express N and Cro proteins. N protein
binds to all terminators for antitermination. During this early
gene expression, CII, CIII, and Q proteins are produced. Among
these proteins, the CII-CIII complex activates Py and P; promot-
ers, resulting in the lysogenic cycle by the production of integrase
and CI protein, which are related to phage genome integration
and blocking of all phage gene expression. At this point, if the host
HfIA proteolytic enzyme is activated in the presence of a low con-
centration of cyclic AMP because of a sufficient supply of glucose
to the host, it digests CII protein such that the CII-CIII complex
cannot produce CI protein, resulting in prevention of the lyso-
genic cycle. Furthermore, Q protein activates gene expression re-
lated to phage structure and host cell lysis. Therefore, the study of
the lysogeny control region is important to understand the phage
lytic/lysogenic cycles in the host. Holin and endolysin are known
to be important for host cell lysis (20). Holin creates holes in the
cytoplasmic membrane. These holes are used as transport chan-
nels for endolysin, which digests the peptidoglycan layer. In addi-
tion, Rz/Rz1-like proteins often enhance endolysin activity as en-
dolysin accessory proteins (21).

Salmonella-targeting phage P22 belongs to the family of Podo-
viridae morphologically and has been well characterized to de-
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velop genetic transfer tools via lysogenization (18, 19). Host re-
ceptor studies have revealed that the phage tailspike protein plays
a role in the interaction with the host by interacting with the O
antigen of LPS in S. Typhimurium (22, 23). Complete analysis of
the phage P22 genome sequence also revealed the presence of
functional genes related to lysogenization and host specificity de-
termination (18, 24). In addition, comparative genomic analysis
of P22 and closely related phages revealed the presence of the
P22-like phage group (25). This group includes €34, ST104,
ST64T, SE1, c341, and HK620. They share phage morphogenesis
and assembly genes for similar morphology and generally infect
Salmonella, E. coli, and Shigella in the Enterobacteriaceae family.
However, while ant moron regions in phage P22 have been known
to be involved in the regulation of gene expression, these regions
are completely or partially missing from other P22-like phages
(26). Although the role of this region is not clearly understood, it
may be related to lysogeny conversion (27). Further studies of the
genomes of these P22-like phages indicate that morphogenesis-
related genes are highly conserved, but other genes are variable,
suggesting that even though they have similar phage morpholo-
gies, the host specificity of these P22-like phages may differ among
them. Therefore, further study of these P22-like phages would
provide new information about host infection by phages in this
group.

To understand the infection mechanisms of the bacteriophage
at the genomic level, the complete genome of SPN9CC was ana-
lyzed and compared with P22-like phage genomes. In addition, a
AcI mutant of the lysogen-forming P22-like phage SPN9CC was
constructed and characterized. This study will be useful for in-
creasing our knowledge of the host infection and lysis mechanisms
of P22-like phages, including SPN9CC.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this
study and gene knockout mutant strains for the host receptor study are
listed in Table 1. Prophage-free Salmonella enterica serovar Typhimurium
LT2C was used for the isolation and propagation of S. Typhimurium-
targeting phages (28) (Cancer Research Center, Columbia, MO). All of
the bacteria listed in Table 1 were cultivated at 37°C for 12 h in Luria-
Bertani (LB) broth medium (Difco, Detroit, MI), and the agar medium
was prepared by 1.5% agar supplementation (Difco) of the broth me-
dium.

Bacteriophage isolation and propagation. Commercially processed
broiler chicken skin samples were collected from the Moran traditional
market, Seongnam, South Korea, and used for isolation of S. Typhimu-
rium-targeting bacteriophage SPN9CC with S. Typhimurium strain
LT2C. The basic procedures for the isolation and propagation of bacte-
riophage SPN9CC were previously described by Shin et al. (29).

Lysogen induction. Selected SPN9CC lysogens of S. Typhimurium
LT2C were cultivated at 37°C until the optical density at 600 nm (ODy,)
reached 1.0, and 0.5 pg/ml of mitomycin C (Sigma, St. Louis, MO) was
added to the cultures. Then, these cultures were additionally incubated at
37°C for 2 h. After incubation, the cells were removed by centrifugation
and filtration, and the supernatant was collected. The spotting assay of this
supernatant with S. Typhimurium LT2C was conducted to confirm the
presence of induced phage SPN9CC.

Electron microscopy. A transmission electron microscope (TEM)
was used for morphological analysis of purified phage SPN9CC. This
TEM analysis was performed as described by Shin et al. (29). The mor-
phological classification of phage SPN9CC was conducted according to
the guidelines of the International Committee on Taxonomy of Viruses
(30).
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TABLE 1 Host range of SPN9CC bacteriophage

Source’ or
Bacterial host SPNoCC* reference
Salmonella enterica serovar Typhimurium
LT2 +++ 73
LT2C +++ 28
SL1344 +++ NCTC
UK1 +++ 74
ATCC 14028s +++ ATCC
DT104 + 6
ATCC 43174 ++ ATCC
Salmonella enterica serovar Enteritidis + ATCC
ATCC 13076
Salmonella enterica serovar Paratyphi
AIB211 ++ VI
BIB 231 - VI
CIB 216 - VI
Salmonella enterica Dublin IB 2973 + IVI
Escherichia coli
K-12 MG1655 - 75
DH5«a - ATCC
0157:H7 ATCC 35150 - ATCC
0157:H7 ATCC 43890 - ATCC
Gram-negative bacteria
Shigella flexneri 2a strain 2457T - IVI
Shigella boydii 1B 2474 - IVI
Vibrio fischeri ATCC 700601 - ATCC
Pseudomonas aeruginosa ATCC 27853 - ATCC
Cronobacter sakazakii ATCC 29544 - ATCC
Gram-positive bacteria
Enterococcus faecalis ATCC 29212 - ATCC
Staphylococcus aureus ATCC 29213 - ATCC
Bacillus cereus ATCC 14579 - ATCC
Listeria monocytogenes ATCC 19114 - ATCC
Salmonella Typhimurium SL1344 mutants
AflgK mutant +++ 29
AbtuB mutant +++ 15
Arfal mutant - 31
Arfal (pUHE21-laclg::rfal) mutant +++ 31

“ +++, EOP of 1 to 0.01; ++, EOP 0f 0.01 to 0.0001; +, EOP of, <0.0001; —, not
susceptible to SPN9CC.

Y NCTC, National Collection of Type Cultures; ATCC, American Type Culture
Collection; KCTC, Korean Collection for Type Cultures; IVI, International Vaccine
Institute.

Host range determination by spotting assay. The host range and
comparative efficiency of plating (EOP) of phage SPN9CC were deter-
mined with a spotting assay using S. Typhimurium, S. Paratyphi, E. coli,
and other Gram-negative and Gram-positive bacterial strains by the pro-
cedure previously described by Park et al. (31).

Genome sequencing and bioinformatic analysis. Genomic DNA of
phage SPN9CC was isolated and purified as described by Sambrook and
Russell (32). The construction of a genomic DNA library and pyrose-
quencing with Genome Sequencer FLX (GS-FLX) Titanium (Roche,
Mannheim, Germany) were conducted by Macrogen, Seoul, South Korea.
The prediction of open reading frames (ORFs) was conducted with Glim-
mer 3.02 (33), GeneMarkS (34), and FgenesV (Softberry, Inc., Mount
Kisco, NY). The prediction of ribosomal binding sites of ORFs was per-
formed with RBSfinder (J. Craig Venter Institute, Rockville, MD). The
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TABLE 2 Primers used in this study

Primer Sequence (5" to 3")* Reference

SPN9CC_0042_F TAAAAGAATTCAAATCCCCTCAATAAAGGGGGTAGAG This study

SPN9CC_0042_R TTTTTGTCGACTTATCGCCGCTATTACGCTATTTC This study

SPN9CC_0043_F AAAAAGAATTCAAACGCAAAGAGCGTGAGGACAG This study

SPN9CC_0043_R TTTTTGTCGACATAATCGCGGTTACTCTGCTCATTG This study

SPN9CC_0044_F AAATTGAATTCTTGAGCGTGAAGTCTGTTTGTGGG This study

SPN9CC_0044_R AAAAAGTCGACTATGTGATGGAAATTATTTCAGGCATTG This study

9CC-BRED_C TCTTAAAAGTGAACTCATCACCACATAACCTTGCAATGCAAAAAGCTTCGC This study
TATGTCATACCAGTTCATTTTCATCCTTAAATTATACA

9CC-BRED_CF TTGTAGGAATACTTGTCCGCTGTCTTTGATGAGCTTCTTAAAAGTGAACT This study
CATCATGTAGGCTGGAGCTGCTTCG

9CC-BRED_CR TTTACGATTTGTGACTGTTCTTGTTTGATACAAATTGTATAATTTAAGGAT This study
GAAAATTCCGGGGATCCGTCGACC

9CC-BRED_conf_F TATCTCATCAGGCCATTGGCTGGCTACAAC This study

9CC-BRED_conf_R TAATGACAAACTGCACCACGCGTACAACCG This study

“ Specific restriction enzymes used for cloning are underlined. Forward and reverse primers contain EcoRI and Sall sites, respectively.

annotation of predicted ORFs was conducted with BLASTP (35) and In-
terProScan (36) by using conserved protein domain databases. The
GenBank data file was generated with the GAMOLA (37) and Sequin
programs (National Center for Biotechnology Information, Bethesda,
MD). The phylogenetic analysis of major capsid proteins (MCPs) from
bacteriophages, including SPN9CC, was performed with MEGAS5 by the
neighbor-joining method by using p distance values (38). The program
Mobyle was used for comparative codon usage analysis of the S. Typhi-
murium SL1344 host and phage SPN9CC (39). Comparative genomic
analysis of SPN9CC with other P22-like phages and visualization were
conducted with BLASTN (35) and ACT12 (40).

Expression of the host cell lysis gene cluster. The SPN9CC_0042,
SPN9CC_0043, SPN9CC_0044, and SPN9CC_0044_1 genes, encoding
holin, endolysin, and Rz/Rz1 endopeptidases, respectively, in the host cell
lysis gene cluster were amplified by PCR with the primers listed in Table 2.
These PCR products were doubly digested with EcoRI and Sall and cloned
into the multiple cloning site of pBAD18 (41) individually or in combi-
nation with more than two genes. These cloned plasmids are listed in
Table 3. S. Typhimurium SL1344 and E. coli MG1655 were used as gene
expression hosts of the cloned pBAD18 plasmids after transformation.
The expression of the cloned genes was induced by the addition of 0.2%
(final concentration) arabinose after 2 h of incubation of the subinocu-
lated cultures. To test the lysis activity of host cell lysis proteins during

TABLE 3 Plasmids used in this study

Plasmid Description Reference
pBADI18 P,,.c ColEl ori Amp* 41
pBAD18-42 pBADI18 expressing SPNICC_0042 This study
pBAD18-43 pBADI18 expressing SPN9CC_0043 This study
pBAD18-44 pBADI18 expressing SPNICC_0044 This study

pBAD18-42/43 pBADI18 expressing SPNICC_0042 This study
and SPN9CC_0043

pBADI18 expressing SPN9CC_0043 This study
and SPN9CC_0044

pBADI18 expressing This study
SPN9CC_0042, SPN9CC_0043,

and SPN9CC_0044

pBADI18-43/44

pBAD18-42/43/44

pUHE21-2 lacl? pMB1 ori Amp" lacI? 76
pUHE21-2 lacI%:rfal pUHE21-2 lacI® expressing rfal 31
pUHE21-2 lacl®:flgk pUHE21-2 lacl? expressing flgKk 29
pACYC184 p15A ori Cm" Tet" 77
pMS100 PACYC184 expressing btuB 15
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incubation and the induction of the cultures, the ODg, was measured
every hour.

Deletion of the cI gene from the SPN9CC genome by BRED. The cI
gene of SPNICC was specifically deleted by the bacteriophage recom-
bineering of electroporated DNA (BRED) method previously described
by Marinelli et al. (42). To delete the cI gene by the BRED method, a
200-bp double-stranded DNA substrate containing a 100-bp region up-
stream and the other 100-bp region downstream of the cI target gene was
PCR amplified with primers 9CC-BRED_C, 9CC-BRED_CF, and 9CC-
BRED_CR (Table 2). An S. Typhimurium SL1344 electroporation host
with pKD46 encoding recombinase was induced with arabinose and used
for electrocompetent cell preparation (43). The phage genomic DNA and
200-bp DNA substrate were coelectroporated into the arabinose-induced
electrocompetent cells for homologous recombination. After a 1-h shak-
ing incubation of the transformants at 37°C, 6 ml of 0.4% molten LB top
agar containing 200 .l of the transformant culture was overlaid on the
1.5% LB base agar and incubated overnight. Plaques were randomly
picked, and plaque PCR was performed with specific primers 9CC-
BRED_conf_Fand 9CC-BRED_conf_R (Table 2). The plaque PCR prod-
ucts were partially sequenced with the same primers to confirm the dele-
tion of the cI gene. Phage SPN9CCM with the cI gene deleted was purified
by the single-picking method and propagated as described above.

One-step growth curve and bacterial challenge test. S. Typhimurium
SL1344 was used as the host strain for one-step growth curve determina-
tion and a bacterial challenge test. The overall procedures used for the
one-step growth curve assay and the challenge test were previously de-
scribed by Park et al. (31).

Nucleotide sequence accession number. The GenBank accession
number of the complete genome sequence and annotation information of
bacteriophage SPN9CC is JF900176.1.

RESULTS

Isolation and morphology of phage SPN9CC. For the develop-
ment of new biocontrol agents, Salmonella-targeting bacterio-
phages were isolated from a commercially processed broiler
chicken skin sample with the host strain S. Typhimurium LT2C.
Of these phages, SPN9CC produced distinct clear plaques with
cloudy centers (see Fig. S1A in the supplemental material), sug-
gesting the possibility of lysogen formation in the cloudy center.
Mitomycin C treatment of the colonies isolated from the cloudy
centers of the clear plaques revealed the induction of phage
SPNICC, confirming lysogen formation (data not shown). TEM
morphological observation revealed that this phage has the short
tail typical of members of the Podoviridae family (see Fig. S1B).
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FIG 1 Genome map of phage SPNICC. (A) Functions of gene clusters. (B) Predicted ORFs by strand. The colors indicate the functions of the gene clusters. Black
ORFs encode hypothetical proteins. (C) Comparative analysis of phage SPN9CC and P22 ORFs at the amino acid sequence level. Different degrees of homology
between phage SPN9CC and P22 ORFs are indicated by different levels of darkness, as shown in the lower right corner. (D) Comparative genomic analysis of
phages SPN9CC and P22 at the DNA sequence level. (E) tRNA prediction is indicated by the blue arrowheads. (F) GC content of phage SPN9CC. The scale values

are in base pairs.

Host range and host receptor study. The host range test of
phage SPN9CC demonstrated specific inhibition of S. Typhimu-
rium, S. Paratyphi, and S. Dublin. However, various Gram-posi-
tive and Gram-negative bacteria, including other Salmonella
strains, were not inhibited by this phage, suggesting that it specif-
ically infects certain Salmonella strains (Table 1). To determine
the host receptor for phage SPN9CC, previously constructed mu-
tants of S. Typhimurium SL1344 were used, including a AflgK
mutant (flgK encodes a flagellar hook-associated protein), a
AbtuB mutant (btuB encodes a vitamin B, uptake protein), and a
Arfal mutant (rfal encodes O-antigen ligase) (15, 29, 31). Only
the Arfal mutant displayed resistance to phage SPN9CC, suggest-
ing that the O antigen of LPS is a host receptor for phage infection.
Subsequent complementation of this mutant with the pUHE21-
lacI::rfal expression vector (31) confirmed O antigen as a recep-
tor of SPN9CC (Table 1).

Bacteriophage genome analysis. Sequencing of the complete

January 2014 Volume 80 Number 1

genome of SPN9CC was performed with approximately 90 times
coverage by next-generation sequencing (NGS) technology with a
454 pyrosequencer, revealing 40,128 bp with a GC content of
47.33%, 63 putative ORFs, and two tRNAs (tRNA_Thr and
tRNA_Asn) (Fig. 1). Comparative analysis of the codon usage
preferences of tRNA_Thr of the S. Typhimurium SL1344 hostand
phage SPN9CC indicated a different preference in threonine, sug-
gesting that this tRNA may play a role in the translation of phage
mRNA and not of host mRNA. In addition, the gene density was
observed to be 1.545 genes/kb and the coding percentage was
90.9%. The average length of each ORF was determined to be 588
bp. A comparative phylogenetic analysis using MCPs from various
phages revealed that SPN9CC is closely related to Salmonella-tar-
geting P22-like phages such as P22, ST64T, ST104, and €34
(Fig. 2).

Annotation and functional analysis of the 63 ORFs in this ge-
nome revealed that 44 of them have putative functions. Func-
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FIG 2 Comparative phylogenetic analysis of MCPs from various bacteriophages. The MCPs were compared with the ClustalW multiple-alignment algorithm,
and the phylogenetic tree was generated with MEGA5 by the neighbor-joining method by using p distance values.

tional categorization of these genes revealed 14 groups, such as
LPS modification and superinfection exclusion (O-antigen con-
version proteins GtrABC and superinfection exclusion protein B),
integration (phage integrase), P22 ea genes (Eaa and Eai), recom-
bination (Erf recombination protein, Abcl, and Abc2 anti-
RecBCD proteins), antitermination (antitermination proteins N
and Q), lysogeny control (Cro, CI, and CII), replication (DNA
replication protein and helicase), nin genes (NinABEFHXZ), host
cell lysis (holin, endolysin, and Rz/Rz1 endopeptidases), DNA
packaging (terminase large and small subunits), head (portal pro-
tein, scaffolding protein, and MCP), tail (DNA stabilization pro-
teins/tail accessory proteins [Gp4, Gp10, and Gp26], head assem-
bly protein, and DNA transfer proteins/ejection proteins), Ant
moron (Mnt regulatory protein), and host specificity (tailspike
protein).

Comparative genomic analysis of SPN9CC with P22-like
phages. Comparative genomic analysis of phage SPN9CC with
P22-like phages such as P22 and €34 revealed that DNA packaging
and morphogenesis (heads and tails) gene clusters are highly con-
served, indicating that P22-like phages commonly share phage
structure genes and belong to the Podoviridae family (Fig. 3A). A
recent comparative genomic study of P22-like phages supports
our analysis result (25). However, the tailspike protein of €34 dif-
fers enough from those of phages P22 and SPNICC that it most
likely has a different host specificity (Fig. 3A). While host range
analyses of phages P22 and SPN9CC displayed the same inhibition
spectrum (data not shown), the specific infection of S. Anatum by
phage €34 substantiates this (44). The lysogeny control region
(Cro, CI, and CII) of phage SPNICC differs from that of phage
P22 but is similar to that of phage €34, suggesting that SPN9CC
and €34 may share lytic/lysogenic decision and lysogen formation
mechanisms (Fig. 3B). Comparative analysis of the host cell lysis
gene clusters of phages SPN9CC, P22, and €34s revealed that they
are not conserved among them, suggesting that they most likely
lyse their host strains in different manners (Fig. 3C). Although the
functions of the genes in this gene cluster of phage P22 were ex-
perimentally confirmed (45-47), the function of each gene in the
host cell lysis gene cluster of phage SPN9CC cannot be deduced
from those in the gene cluster of phage P22 because of the low
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levels of identity between the amino acid sequences encoded by
these genes of P22 and phage SPN9CC. To understand the host
cell lysis mechanism of phage SPN9CC, the function of each gene
in the host cell lysis gene cluster of phage SPN9CC should be
confirmed experimentally. Interestingly, the genes in this gene
cluster of phage SPNICC are similar to those of ST104 and even E.
coli K-12 prophage DLP12, suggesting that they may use the same
mechanism for host cell lysis (Fig. 3D). Successful S. Typhi cell
lysis results obtained with endolysin from E. coli phage DLP12
support this (48). However, whereas the amino acid sequence
identity levels of host cell lysis proteins, such as holin, endolysin,
and Rz/Rz1-like proteins, between two host cell lysis gene clusters
in phages SPN9CC and ST104 are extremely high, the functions of
the genes in the gene cluster of ST104 have not been experimen-
tally confirmed. Therefore, the expression of these genes in S. Ty-
phimurium and E. coli host strains needs to be examined to eluci-
date the functions of all of the genes in the host cell lysis gene
cluster of phage SPN9CC and their cooperation effect on host cell
lysis.

Function of host cell lysis gene cluster. Interestingly, the high
level of amino acid sequence identity of the host cell lysis proteins
(except for holin) encoded by the host cell lysis gene clusters of S.
Typhimurium-targeting phage SPN9CC and E. coli K-12 pro-
phage DLP12 suggests that host cell lysis proteins encoded by the
genes in this cluster of phage SPN9CC should function in both
Salmonella and E. coli. To elucidate the host cell lysis mechanism
of this phage, each gene in this cluster was cloned into pBAD18
and transformed into S. Typhimurium and E. coli host cells, re-
spectively.

The expression of a single gene encoding holin (SPN9CC_
0042) in S. Typhimurium resulted in host cell lysis (Fig. 4A). How-
ever, the expression of a single gene encoding endolysin
(SPN9CC_0043) or Rz/Rzl-like proteins (SPN9CC_0044) in S.
Typhimurium did not, suggesting that the endolysin needs holin
to cross the cytoplasmic membrane. To elucidate their coopera-
tion effects on S. Typhimurium host cell lysis, various combina-
tions for the expression of more than two genes were prepared
and those genes were coexpressed in S. Typhimurium. The expres-
sion of combinations of the genes for holin and endolysin or all
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complete genome sequences of SPN9CC, P22, and €34 with BLASTN and ACT12. Black and gray bars indicate the functions of gene clusters in the genomes. (B
and C) Comparative analyses of lysogeny control regions (B) and host cell lysis gene clusters (C) in SPN9CC, P22, and €34. (D) Comparative analysis of host cell
lysis gene clusters in SPN9CC, ST104, and E. coli K-12 prophage DLP12. The percentages of amino acid identity between homologous genes are indicated.

four cell lysis proteins (holin plus endolysin or holin plus endoly-  the host cells, suggesting that holin is a key protein for the lysis of
sin plus Rz/Rzl-like proteins) in S. Typhimurium resulted in  S. Typhimurium (Fig. 4A).

much higher host cell lysis efficiency than expression of the holin However, the expression of these genes in E. coli host cells
gene alone (Fig. 4A). However, gene expression combinations displayed different host cell lysis patterns (Fig. 4B). As for the S.
without holin (endolysin plus Rz/Rz1-like proteins) did not lyse ~ Typhimurium host cells, endolysin alone did not contribute to the
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FIG 4 Confirmation of the host cell lysis system of phage SPN9CC via the
expression of host cell lysis genes encoding holin, endolysin, and Rz/Rz1 en-
dopeptidases in S. Typhimurium SL1344 (A) and E. coli MG1655 (B). Closed
gray circles represent the negative control without gene expression. Closed
black circles, triangles, and squares indicate the expression levels of the
SPN9CC_0042 (holin), SPN9CC_0043 (endolysin), and SPN9CC_0044/
0044.1 (Rz/Rzl) genes, respectively. Open black circles and triangles with
dotted lines indicate the coexpression of SPN9CC_0042/0043 and
SPN9CC_0043/0044/0044.1, respectively. Open gray circles indicate the coex-
pression of all of the genes, SPN9CC_0042/0043/0044/0044.1.

lysis of E. coli host cells but the coexpression of endolysin and
other proteins (endolysin plus holin or endolysin plus Rz/Rz1-like
proteins) in E. coli host cells did result in host cell lysis, suggesting
that endolysin may need support to cross the E. coli cytoplasmic
membrane and that either holin or Rz/Rz1-like proteins could
help endolysin to cross the membrane (Fig. 4B). It is intriguing
that the main difference between the patterns of E. coli and Salmo-
nella host cell growth inhibition by the SPN9CC lysis gene cluster
is the role of Rz/Rz1-like proteins, which inhibit only E. coli host
cell growth bacteriostatically (Fig. 4B).

Conversion of phenotypes in phage SPN9CC by deletion of
the cI gene. CI, CII, and Cro are key proteins in the lysogeny
control region (49-51). Among them, CI is a repressor causing
termination of gene expression in the phage genome. Therefore,
mutation of the I gene can inhibit lysogen formation. The effects
of cI gene deletion on the life cycle of phage SPN9CC was studied
by constructing the AcI mutant phage by the BRED method (42).

380 aem.asm.org

—
>

-

w

log(PFUl/infected cell)

0 10 20 30 40 50

Time after infection (min)

—
w

'

w

log(PFU/infected cell)

0 1'0 2I0 3I(l 4I0 5‘0
Time after infection (min)

FIG 5 One-step growth curve analysis of phages SPN9CC (A) and SPN9CCM

(B). Circles represent non-chloroform-treated samples, and triangles repre-

sent chloroform-treated samples. The error bars indicate the standard devia-
tions of triplicate experiments. E, eclipse period; L, latency period; B, burst size.

Interestingly, whereas phage SPN9CC generates distinct clear
plaques with cloudy centers as lysogens, the AcI mutant phage
SPN9CCM does not produce cloudy centers in the plaques, sug-
gesting that the phenotype of AcI mutant phage may be converted
from temperate to virulent (see Fig. S1C in the supplemental ma-
terial). To further understand the plaque morphology change
caused by cI deletion, one-step growth analyses and bacterial chal-
lenge assays of phages SPN9CC and SPN9CCM were compared.
The one-step growth analyses revealed that while phage SPN9CC
has relatively long eclipse and latency periods and a small burst
size, phage SPN9CCM has much shorter eclipse and latency peri-
ods and a larger burst size (Fig. 5). The eclipse and latency periods
of SPN9CC and SPN9CCM were 15 and 30 min and 10 and 20
min, respectively. The average burst sizes of phages SPN9CC and
SPNICCM were 220 and 280 PFU per cell, respectively, suggesting
that the efficiency of phage multiplication was increased for
SPN9CCM most likely because of an inability to form lysogens.
Furthermore, bacterial challenge assays of phages SPN9CC and
SPN9CCM with S. Typhimurium SL1344 demonstrated that the
inhibition activity of phage SPN9CCM is much higher than that of
phage SPN9CC (Fig. 6).
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FIG 6 Assay of S. Typhimurium LT2C challenge with phages SPN9CC
and SPN9CCM. Circles represent non-phage-treated samples, triangles repre-
sent SPN9CC-treated samples, and squares with a broken line represent
SPN9CCM-treated samples. The SPN9CC- and SPN9CCM-treated samples
were tested at a multiplicity of infection of 10.

DISCUSSION

Salmonellosis is one of the most common types of food poisoning
caused by food-borne pathogens all over the world. To reduce this
food poisoning, the bacteriophage approach has recently been ap-
pearing more attractive than antibiotic treatment because of the
emergence of multidrug-resistant Salmonella strains (5, 6). To
maximize the efficiency of this phage approach, further under-
standing of phage infection and host cell lysis mechanisms is re-
quired (15, 52). Phage P22 has been studied in the context of the
development of a molecular transduction tool (18, 19), the iden-
tification of host cell specificity and a receptor (22, 23), the tail
structure for host cell interaction (53, 54), the lysogeny control
region (55, 56), superinfection exclusion (57, 58), and other areas.
The P22-like phage group was previously proposed on the basis of
the homology of virion assembly genes, which include those for
ST104, €34, ST64T, L, 516, c341, and HK620, among others (25).
Recent improvement of genome sequencing and analysis technol-
ogies, such as NGS and bioinformatic tools, enabled us to analyze
the full genome sequences of these P22-like phages and to study
their characteristics at the genomic level. Recent comparative
genomic analysis revealed that while their genomic characteristics
are diverse, most likely because of horizontal gene transfer/ex-
change in the group, morphogenesis and DNA packaging are
highly conserved (25, 26). However, the diversity of other
genomic features may determine the specific characteristics of
each phage in the group, such as host cell specificity, the lysogeny
control region, and the host cell lysis system, involved in the
mechanisms of host cell infection and lysis.

Salmonella-targeting temperate phage SPN9CC was isolated
from a commercially processed broiler chicken skin sample, and
its complete genome analysis suggests that phage SPN9CC s in the
P22-like phage group. One-step growth analysis of phage
SPNICC revealed a longer latency period and a smaller burst size
than those of other lytic phages, such as T7-like Podoviridae family
phages (Fig. 5A) (59-61), suggesting that lysogen formation dur-
ing phage infection may affect the host cell lysis activity of phage
SPNICC. A high frequency of observed mutants insensitive to this
phage during a bacterial challenge test also supports this (see Fig.
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S2 in the supplemental material). Generally, superinfection of a
lysogen by other phages is prevented by repression of the expres-
sion of superinfecting phage genes by CI repressor proteins by
lysogen or host cell receptor modification (62). It is well known
that the host cell receptor is modified once the host cell is lysog-
enized by phage (18, 26, 63). SPN9CC has LPS modification pro-
teins homologous to GtrABC (SPN9CC_003, SPN9CC_002, and
SPN9CC_001, respectively), which modify LPS to prevent super-
infection of the SPN9CC lysogen. Furthermore, the resistance ac-
tivity of the host cell lysogen caused by LPS modification during
lysogenization may contribute to the formation of cloudy centers
in SPNICC plaques (see Fig. SIA). In the center of the plaques, a
high phage concentration may promote lysogenization of phage
SPNICC, similar to phage P22 (64, 65) or the first lysogens formed
may expand from the middle outward (see Fig. S1A).

The role of LPS modification proteins GtrABC and superinfec-
tion exclusion protein B is the prevention of other phage infec-
tions after lysogen formation via modification of the host cell O
antigen of LPS (18, 19). Among the recombination proteins, the
Abcl and Abc2 anti-RecBCD proteins are involved in phage re-
combination and protect both ends of the linear phage genome
from host cell RecBCD exonuclease and Erf recombination pro-
tein circularizes this linear genome by the ligation of both ends of
the phage genome (66). Lysogeny control and antitermination
determine the phage lytic/lysogenic cycles, depending on the host
cell status. Replication proteins are produced during early gene
expression, and they are responsible for phage genome replica-
tion. However, the functions of the ea and nin genes are unknown
(67). Host cell lysis proteins such as holin, endolysin, and Rz/Rz1-
like proteins have been suggested to cooperate in bursting the host
cell after replication and reconstruction of the phage (21). Holin
creates pinholes in the host cell inner membrane, and the subse-
quent secretion of endolysin via these pinholes results in host cell
lysis. Although ant moron regions have been found in P22-like
phages, these regions are highly variable among them (26) and the
function of the ant moron is not clearly understood. Phage
SPNICC also has only one gene in this region, a mnt gene encod-
ing a repressor protein, which is very similar to phages ST104 and
ST64T. This Mnt repressor has been suggested to control the ex-
pression of ant gene encoding an antirepressor (68). As with other
P22-like phages in the Podoviridae family, phage SPN9CC has
only a tailspike protein without a tail fiber protein. This tailspike
protein is homologous to other tailspike proteins observed in cer-
tain P22-like phages that target S. Typhimurium.

The complete genome sequence of phage SPN9CC and com-
parative genomic analyses with other P22-like phages revealed a
diversity of phage infection and host cell lysis mechanisms in the
group (Fig. 1 and 3). P22-like phages are in the family Podoviridae
and have short tails, indicating that the tailspike protein is a major
determinant of host specificity in P22-like phages (23, 69, 70).
However, the tailspike protein is variable in the group, suggesting
that the host specificity and host range of P22-like phages could be
variable. Whereas phages P22, ST104, and ST64T with homolo-
gous tailspike proteins infect S. Typhimurium, phages €34 and Sf6
with different types of tailspike proteins infect S. Anatum and even
Shigella, respectively, supporting the notion of variable host range
and specificity (25, 44, 71). Comparative analysis of the lysogeny
control regions of P22-like phages indicated that the region of
SPNICC is nearly identical to that of phage €34 but quite different
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from that of phage P22, suggesting that P22-like phages may have
diverse lytic/lysogenic decision mechanisms (Fig. 3B).

Characterization of the host cell lysis gene cluster of SPN9CC s
important to understanding the host cell lysis mechanism of
SPNICC. The host cell lysis gene cluster encodes putative holin,
endolysin, and Rz/Rz1-like proteins. This gene cluster of phage
SPNICC is quite different from those of P22 and phage €34s but
very similar to those of ST104 and even the E. coli K-12 DLP12
prophage, suggesting the possibility of E. coli cell lysis via the ac-
tivity of lysis proteins that are encoded in the gene cluster of phage
SPNICC. The expression of these genes individually or in combi-
nations in S. Typhimurium or E. coli host cells revealed that holin
is a key protein for the lysis of the cells of both hosts, but endolysin
could not achieve lysis by itself (Fig. 4A and B). These results
indicate that endolysin of SPN9CC requires holin to cross the
cytoplasmic membrane to act on the peptidoglycan in the
periplasm. Rz/Rz1-like proteins are known accessory proteins of
endolysin (21), and Rz/Rz1-like proteins alone or in combination
with endolysin in S. Typhimurium did not exhibit cell lysis activ-
ity. Interestingly, Rz/Rz1-like proteins alone and even in combi-
nation with endolysin resulted in growth inhibition of E. coli even
though the degree of inhibition was relatively low. However, the
lysis activity of Rz/Rz1-like proteins in E. coli host cells is not fully
understood. Comparative functional analysis of the S. Typhimu-
rium and E. coli host cell lysis gene clusters revealed that this lysis
protein combination works better in E. coli than in S. Typhimu-
rium (Fig. 4A and B).

Comparison of host cell lysis activities by the bacterial chal-
lenge assay revealed that phage SPN9CCM had higher host cell
lysis activity than phage SPN9CC. However, an SPN9CCM-resis-
tant strain emerged 4 h after infection (Fig. 6). The phage adsorp-
tion assay conducted with the SPN9CCM-resistant strain indi-
cated that more than 98% of phage SPN9CCM adsorbed to the
wild-type S. Typhimurium host in 10 min but less than 5% of
phage SPN9CCM adsorbed to the SPN9CCM-resistant strain un-
der the same conditions (data not shown), suggesting that the host
receptor for phage infection may be modified. Various LPS mod-
ification mechanisms (72) are known, and the exact growth recov-
ery mechanism of SPN9CCM-infected host strains needs to be
elucidated in the future.

In this study, comparative analysis of phage SPN9CC and P22-
like phages provided novel insights into phage infection and S.
Typhimurium host strain lysis mechanisms. We therefore believe
that this study contributes to a better understanding of the new
approach to bacteriophage treatment to inhibit food-borne
pathogens, as well as to the development of newly optimized
phages for therapy.
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