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Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii,
and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine
betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas
none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of sub-
strate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol).
However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trim-
ethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and
methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are
consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some
methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.

Glycine betaine (N,N,N-trimethylglycine) is one of the most
common compatible solutes in nature and is found in all

three domains of life (1–3). In addition to its role in osmoadapta-
tion, glycine betaine has been suggested to play a role in microbial
cryoprotection and barotolerance (4, 5). Considering that intra-
cellular glycine betaine concentrations can be some hundreds of
millimoles per liter, depending on the salinity of the medium (6),
it is clear that it must be very abundant in saline environments. For
example, in hypersaline mats, total glycine betaine contents of up
to 0.1 mmol per gram (dry weight) of sediment have been found
(7).

In anoxic sediments, the addition of glycine betaine leads to
methanogenic activity, but also to a simultaneous stimulation of
sulfate reduction (8). However, the transient formation of similar
amounts of trimethylamine (TMA) and acetate indicates that the
reduction of betaine, as found in members of the genera Clostrid-
ium and Halanaerobacter (9, 10), is the first step in degradation.
While acetate is utilized mainly by sulfate reducers, trimethyl-
amine is a well-known noncompetitive substrate for methanogens
(8, 11), allowing them to thrive within the sulfate reduction zone.
This degradation pattern involving three different metabolic
groups is quite complex, and it could be argued that it would be
advantageous for the methanogens if they could demethylate gly-
cine betaine directly, similar to direct choline (N,N,N-trimethyl-
ethanolamine) utilization, which has recently been documented
(12). Although a number of methanogens have been tested, no
glycine betaine consumption by methanogens has been reported
so far (13–15).

In the present study, we demonstrate the partial demethylation
of glycine betaine (N,N,N-trimethylglycine) to N,N-dimethylgly-
cine (DMG) by members of the genus Methanococcoides. The po-
tential implications of this novel methanogenic pathway are dis-
cussed.

MATERIALS AND METHODS
Sources of organisms. In total, nine Methanococcoides strains were inves-
tigated. They included the three type strains Methanococcoides methyl-
utens DSM 2657T, M. burtonii DSM 6242T, and M. alaskense DSM 17273T,

obtained from the Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ) (Braunschweig, Germany), and five new Methano-
coccoides strains (AM1, DM1, NM1, PM1, and PM2) obtained from a
range of marine habitats (12). Their 16S rRNA genes (GenBank numbers
HE862406 to HE862410) share �99% similarity with that of M. methyl-
utens DSM 2657T. One additional strain, MKM1, was isolated from an
enrichment inoculated with sediment from the Meknes mud volcano of
the Gulf of Cadiz with methylamine (MMA) as the substrate, using agar
shake tubes (16). All cultures were incubated at 25°C.

Cultivation and media. A bicarbonate-buffered and FeS-reduced ar-
tificial seawater medium (12, 17) was used for isolation, strain mainte-
nance, and physiological experiments. The pH of the reduced medium
was adjusted to 7.2 to 7.4 with sterile HCl or Na2CO3 if necessary. For
enrichment and isolation, 10 mmol methylamine per liter was added.

For growth experiments, 150-ml serum bottles filled with 30 ml me-
dium under an N2-CO2 (80/20 [vol/vol]) headspace and with 5 mmol of
substrate per liter were used. Growth was monitored by the increase in
headspace methane, and the specific growth rate (�) was calculated from
plots of the total accumulated methane against time (12, 18, 19). The
growth yield was estimated from the increase in protein content analyzed
by the method of Bradford (20).

Analytical techniques. Headspace gas was measured by gas chroma-
tography (PerkinElmer/Arnel Clarus [Sheldon, CT] 500 Natural Gas An-
alyzer), and the methane contents in the headspace and medium were
calculated as described previously (12). Anions (including the organic
acids acetate, lactate, and formate) were analyzed on a Dionex ICS-2000
Ion Chromatography System equipped with an AS50 autosampler (Di-
onex, Camberley, United Kingdom) (21).

Prior to ion chromatographic analysis, 1 ml of culture was centrifuged
(15 min at 16,000 � g at 10°C), and the supernatant was diluted (1:10
[vol/vol]) in ultrapure water (�18.2 M�; Milli-Q system; Millipore).
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Cations (including ammonium, methylamines, betaine, and dimethylg-
lycine) were analyzed using ion chromatography with nonsuppressed
conductivity detection (22) on a Dionex ICS-2000 Ion Chromatograph
equipped with a DS6 heated conductivity cell (45°C) and an AS50 au-
tosampler (Dionex, Camberley, United Kingdom). Chromatographic
separation was conducted on an Ionpac CS16 column at 50°C using meth-
anesulfonic acid eluent (3 mmol · liter�1) and acetonitrile (10%) at a flow
rate of 1.30 ml min�1.

RESULTS
Utilization of N-methylated glycines by Methanococcoides spp.
All Methanococcoides strains tested grew well with mono-, di-, and
trimethylamine, and fresh methylamine-grown cultures were
used to inoculate media with glycine betaine (N,N,N-trimethylg-
lycine), DMG, or N-monomethylglycine (sarcosine) as the sub-
strate. While none of the strains formed methane from DMG or
sarcosine, three strains (NM1, PM2, and MKM1) produced meth-
ane from glycine betaine within 1 to 2 weeks. These positive results
were confirmed by subcultivation on the same substrate. Negative
cultures were incubated for at least 3 months, and regularly mea-
sured for methane production, since methanogenic cultures
sometimes show very long lag phases (12).

When the three strains were grown with glycine betaine, only a
relatively small amount of methane was formed, with a methane-
to-glycine betaine ratio of around 0.7. This suggested that glycine
betaine was only partly demethylated. Since the three strains
showed similar lag phases and growth rates, only one strain, NM1,
was investigated in more detail. Ion chromatographic analysis
identified DMG as the end product of methanogenesis from gly-
cine betaine by strain NM1 (Fig. 1). At the end of the growth
experiment, residual betaine concentrations were below the detec-

tion limit (130 �mol liter�1). After glycine betaine was consumed,
the cultures were further incubated for a number of weeks but
showed no decrease in DMG concentrations.

The maximum growth rate of strain NM1 with glycine betaine
was 0.93 � 0.01 day�1 (n � 3). This is a growth rate comparable to
that of cultures with methylamine (0.96 day�1) but slightly lower
than that of cultures with dimethylamine (DMA) (1.05 day�1) or
trimethylamine (1.24 day�1) and higher than with methanol (0.64
day�1). On average, 0.97 mol of DMG and 0.67 mol of methane
were formed per mole of betaine. The amount of protein
formed in cultures with trimethylamine and glycine betaine
was similar. However, as glycine betaine is only partially dem-
ethylated, the growth yield per methyl group is 3.96 g (dry
weight) mol (methyl group)�1 and significantly higher than
with mono-, di-, or trimethylamine (Table 1). Acetate, for-
mate, and other organic acids were found only at minor con-
centrations (	0.04 mmol · liter�1).

Impact of trimethylamine on methanogenesis from glycine
betaine by strain NM1. Cultures of strain NM1 with trimethyl-
amine and glycine betaine showed no clear diauxic substrate uti-

FIG 1 Metabolism of glycine betaine by Methanococcoides sp. NM1. All values
are the averages of three replicates, with the error bars indicating 1 standard
deviation. �, methane; �, glycine betaine; Œ, N,N-dimethylglycine; d, days.

FIG 2 Successive metabolism of trimethylamine, its intermediates, and
glycine betaine by Methanococcoides sp. NM1. Both substrates were present
in the medium from day 0. Note the different scale in the bottom graph
showing the concentrations of intermediates of trimethylamine consump-
tion. Only the first 10 days of the experiment are shown. The cultures were
monitored for another 3 weeks but did not show any significant concen-
tration changes. All values are the averages of three replicates, with the
error bars indicating 1 standard deviation. �, methane; �, glycine betaine;
Œ, N,N-dimethylglycine; , trimethylamine; �, ammonium; } dimethyl-
amine; �, methylamine.

TABLE 1 Metabolic products and growth yields of Methanococcoides sp. strain NM1 grown on methylamine, dimethylamine, trimethylamine, and
glycine betainea

Substrate

Substrate
consumed
(mM)

Product formed (mM)
Protein formed
(mg liter�1)

Growth yield (g [dry wt]
mol methyl group�1)Ammonium DMG Methane

Methylamine 5.4 5.4 3.1 5.81 2.15
Dimethylamine 5.1 5.1 6.7 8.95 1.75
Trimethylamine 4.9 4.9 10.1 10.1 1.37
Betaine 5.4 5.2 3.6 10.7 3.96
a All data are averages of triplicate cultures. The protein formed was converted into dry mass assuming that protein represents 50% of the dry weight (34).
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lization (Fig. 2). As in previous studies (12, 13), TMA was first
partially demethylated to DMA and MMA. However, although
TMA was utilized first, there was some simultaneous decrease in
glycine betaine in the presence of TMA. The highest rate of glycine
betaine consumption occurred immediately after TMA was de-
pleted, and this was simultaneous with DMA consumption. Strain
NM1 utilized MMA only when glycine betaine and DMA were
almost depleted. This pattern differs significantly from that found
for Methanococcoides sp. strain AM1 in the presence of choline
and TMA, where a significant lag occurred between the consump-
tion of TMA and its intermediates and the start of choline utiliza-
tion (12).

Glycine betaine content in cells of Methanococcoides sp.
strain NM1. At the end of the growth experiment shown in Fig. 1,
1.5 ml of culture was washed in artificial seawater, and the cell
pellet was resuspended in 1.5 ml of deionized water to lyse the
cells. Cation analysis of three parallel cultures revealed the pres-
ence of N,N-dimethylglycine (353 � 140 �mol · liter�1), Na


(34 � 10 mmol · liter�1), and K
 (0.69 � 0.29 mmol · liter�1), but
no glycine betaine, methylamines, or ammonium, in the cell pel-
lets. In contrast, cells grown with trimethylamine (10 mmol · li-
ter�1) contained significant concentrations of ammonium (53
�mol · liter�1), MMA (294 �mol · liter�1), DMA (41 �mol ·
liter�1), Na
 (5.3 mmol liter�1), and K
 (5.3 mmol liter�1), but
no detectable glycine betaine or DMG.

DISCUSSION
Glycine betaine, a new substrate for methanogenic pure cul-
tures. In this study, we have shown the direct use of glycine be-
taine by pure cultures of methanogens. Previously, methanogenic
degradation of glycine betaine was thought to require syntrophic
interaction with a fermenter (or sulfate reducer) producing trim-
ethylamine, which was then used by the methanogen (8, 13).
However, like choline and N,N-dimethylethanolamine, which
have recently been reported to be novel direct substrates for meth-
anogens (12), glycine betaine can also be directly demethylated by
methanogens. The presence of a syntrophic partner in our cul-
tures can be ruled out, as no intermediates, TMA or acetate, were
detected, which would have accumulated if glycine betaine was
degraded by coculture.

At present, we can only speculate about how widespread the
capacity to use glycine betaine is among methanogens. Like
choline and N,N-dimethylethanolamine, glycine betaine is an N-
methylated amine bearing a C2 side chain and belongs to a group
of compounds that was thought not to support the growth of
methanogenic pure cultures. Therefore, only a limited number of
pure cultures belonging to the genera Methanococcoides, Metha-
nosarcina, Methanohalophilus, and Methanomicrococcus (13–15,
23, 24) have been tested with glycine betaine or choline. However,
choline and glycine betaine are not the only C2 methylated
amines utilized by methanogens. Methanosarcina barkeri was
shown to grow with N-ethyldimethylamine, but not with cho-
line, glycine betaine, or N,N-diethylmethylamine (13). How-
ever, since N-ethyldimethylamine was considered of little bio-
logical significance, later studies neglected this substrate.
Glycine betaine, in contrast, is a common osmolyte in saline
environments (1, 3), and choline and N,N-dimethylethano-
lamine are headgroups of phospholipids present in anoxic sed-
iments (25). Considering that three of the nine strains tested
used glycine betaine and 5 out of 15 Methanococcoides spp. have

been recently shown to utilize choline or N,N-dimethylethano-
lamine (12), it is clear that methanogens are more versatile
than previously thought. Therefore, this physiological diver-
sity, particularly with respect to N-methylated amines bearing
a larger side chain, has been largely overlooked.

Whether glycine betaine is a direct substrate for methanogens
in the marine environment needs to be investigated, although it is
unlikely that they can compete with sulfate reducers for the sub-
strate. Several sulfate reducers can utilize glycine betaine as an
electron donor (26, 27), and it was shown that in intertidal sedi-
ments, sulfate reduction was strongly stimulated by the addition
of glycine betaine (8). In sulfate-free layers, however, being able to
use glycine betaine directly would make the methanogens inde-
pendent of syntrophic interaction with fermenters, some of which
may not release trimethylamine that could then be used by the
methanogens and therefore would restrict methanogenesis. For
example, in the presence of glycine betaine when methanogens
were inhibited in intertidal sediments by the addition of 2-bromo-
ethanesulfonate (BES), less than 60% of the theoretically possible
TMA was formed (8). This indicates that either not all of the
betaine is degraded via trimethylamine or that some of the TMA is
used by other processes, such as homoacetogenesis.

Incomplete degradation of glycine betaine. All three strains
utilizing glycine betaine only partially demethylated their sub-
strates to N,N-dimethylglycine. This may be surprising, particu-
larly considering that the Methanococcoides spp. using choline
demethylated their substrates completely to ethanolamine (12).
However, a range of organisms also produce DMG from glycine
betaine, including several Desulfobacterium spp. and Acetobacte-
rium spp. (26, 28). In addition, Eubacterium limosum converts
glycine betaine and CO2 into DMG, acetate, and butyrate (29),
while some homoacetogens, like Sporomusa spp., ferment glycine
betaine into acetate, trimethylamine, and DMG (30).

The demethylation of glycine betaine to DMG or glycine
produces �180.4 and �248.2 kJ per mol of glycine betaine,
respectively (Table 2). This means that the first methyl group
yields more than five times more energy than the other two.
This high energy yield may also explain the relatively high

TABLE 2 Equations and free energies of reaction for the methanogenic
degradation of glycine betaine to N,N-dimethylglycine (equation 1),
glycine betaine to glycine (equation 2), N,N-dimethylglycine to glycine
(equation 3), sarcosine to glycine (equation 4), and methanogenesis
from methylamine (equation 5)

Equation
no. Reaction

�G°=a
(kJ/reaction)

1 4 (CH3)3N
CH2COO� 
 2 H2O¡4
(CH3)2NH
CH2COO� 
 3 CH4 
 CO2

�721.7

2 4 (CH3)3N
CH2COO� 
 6 H2O¡4
H3N
CH2COO� 
 9 CH4 
 3 CO2

�992.8

3 2 (CH3)2NH
CH2COO� 
 2 H2O¡2
H3N
CH2COO� 
 3 CH4 
 CO2

�135.5

4 4 (CH3)NH2

CH2COO� 
 2 H2O¡4

H3N
CH2COO� 
 3 CH4 
 CO2

�157.7

5 4 (CH3)NH3

 
 2 H2O¡4 NH4


 
 3 CH4 
 CO2 �172.1
a �Gf°= values for the single compounds were taken from Jankowski et al. (35,
supplemental material). �Gf°= values for glycine betaine (�129.8 kJ mol�1), N,N-
dimethylglycine (�306.6 kJ mol�1), and sarcosine (�331.3 kJ mol�1) were estimated
using the group contribution method described by Jankowski et al. (35). All values are
calculated for standard conditions (298 K; pH 7; 1 atm) in aqueous systems and for the
predominant ions at neutral pH.
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growth yield observed for growth on glycine betaine (Table 1).
However, the �G°= for the demethylation of DMG to glycine is
still �67.8 kJ per mol DMG, and considering that DMG has
two methyl groups, the �G°= per methyl group is comparable to
the value for methylamine (�43.0 kJ per mol). However, al-
though it seems a potential waste of energy, the cultures inves-
tigated here did not utilize the DMG produced even after pro-
longed incubation of several weeks.

Glycine betaine as a compatible solute in Methanococcoides
sp. NM1. Both glycine betaine and DMG have been documented
as compatible solutes in halotolerant and halophilic methano-
genic archaea (31–33). However, cells of strain NM1 grown in
artificial seawater with trimethylamine as the substrate did not
contain any detectable amounts of glycine betaine but showed a
slight accumulation of K
 plus significant amounts of methyl-
amine. This is similar to other methanogens, like Methanosarcina
spp., that can accumulate K
 for osmoregulation and synthesize
the amino acids �-glutamate and Nε-acetyl--lysine as osmolytes
but can take up glycine betaine if it is present in the medium (33).
However, the uptake and accumulation of glycine betaine in
Methanosarcina spp. suppresses the formation of other osmolytes,
which is thought to save significant energy. Cells of strain NM1
might not only save energy by taking up glycine betaine instead of
synthesizing other osmolytes, they also can use glycine betaine as a
metabolic substrate. Since DMG acts as a compatible solute, as
well, this means that the partial demethylation of glycine betaine
allows energy generation and energy saving by the metabolic end
product being an osmoregulant.
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