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Rapid and accurate strain identification is paramount in the battle against microbial outbreaks, and several subtyping ap-
proaches have been developed. One such method uses clustered regular interspaced short palindromic repeats (CRISPRs), DNA
repeat elements that are present in approximately half of all bacteria. Though their signature function is as an adaptive immune
system against invading DNA such as bacteriophages and plasmids, CRISPRs also provide an excellent framework for pathogen
tracking and evolutionary studies. Analysis of the spacer DNA sequences that reside between the repeats has been tremendously
useful for bacterial subtyping during molecular epidemiological investigations. Subtyping, or strain identification, using
CRISPRs has been employed in diverse Gram-positive and Gram-negative bacteria, including Mycobacterium tuberculosis, Sal-
monella enterica, and the plant pathogen Erwinia amylovora. This review discusses the several ways in which CRISPR sequences
are exploited for subtyping. This includes the well-established spoligotyping methodologies that have been used for 2 decades to
type Mycobacterium species, as well as in-depth consideration of newer, higher-throughput CRISPR-based protocols.

Subtyping, the differentiation of bacteria below the species or
subspecies level (i.e., to the strain level), is a vital epidemiolog-

ical tool in the recognition of outbreaks and identification of in-
fection sources. It is imperative to accurately identify isolates that
are part of an outbreak in as timely manner as possible in order to
mount an appropriate public health response. An ideal subtyping
method is highly discriminatory in that it can differentiate be-
tween strains but is not so discriminatory that epidemiologic con-
cordance is compromised (1). Beyond strain identification, high-
resolution subtyping methods can provide opportunities to
improve our understanding of bacterial population genetics, evo-
lution, and epidemiology.

Replacing traditional methods such as phage typing and anti-
biograms, several higher-throughput and higher-resolution sub-
typing methods have been developed in the past 2 decades. These
include PCR-centered approaches such as multilocus variable-
number tandem-repeat (VNTR) analysis (MLVA) and multilocus
sequence typing (MLST) and protocols relying on restriction di-
gestion such as restriction fragment length polymorphism
(RFLP), pulsed-field gel electrophoresis (PFGE), and ribotyping
analyses, plus, more recently, whole-genome sequence-based
techniques (for a review, see reference 2). Clustered regularly in-
terspaced short palindromic repeats, or CRISPRs, are bacterial
loci whose dynamic nature has allowed them to be harnessed as
ideal targets for molecular subtyping. This review details the use of
CRISPRs for subtyping and highlights the diverse typing applica-
tions that use these loci.

ORGANIZATION OF CRISPR LOCI

CRISPRs were first identified over 25 years ago as ambiguous re-
peats in Escherichia coli (3); the repeats are now referred to as
CRISPR spacer arrays (4–6). CRISPR arrays consist of tandem
direct repeats (DRs) of 23 to 55 bp in length separated by similarly
sized variable spacer sequences that are generally derived from
bacteriophages or plasmids (7–10).

In their best-characterized capacity, CRISPR elements func-
tion as an elegant nucleic acid-based adaptive immune system in
both archaea and bacteria (reviewed in references 11, 12, and 13).
Approximately 85% and 48% of archaea and bacteria, respec-

tively, that have been sequenced to date harbor CRISPR elements
(14).

WHAT ARE CRISPRS?

CRISPR loci comprise of two main elements, the CRISPR spacer
array and a group of CRISPR-associated (cas) genes (Fig. 1), col-
lectively referred to as a “CRISPR-Cas system” (15). An AT-rich
region, known as the leader sequence, is present directly upstream
of the spacer array (5) and thought to function as a promoter (16).
The length of a CRISPR array is dependent on the number of
spacers and varies dramatically among different organisms and
also among different bacterial serotypes or strains. The smallest
spacer arrays comprise one spacer flanked by direct repeats, and to
date, the largest single spacer array has been identified in Halian-
gium ochraceum DSM 14365, with 587 spacers (14).

The activity of a CRISPR locus occurs in three stages: acquisi-
tion, expression, and interference. Acquisition, or “adaptation,”
of the CRISPR locus involves addition of new spacers, generally to
the 5= end, or “leader proximal end,” of the spacer array and oc-
curs as the CRISPR-Cas system adapts to a new invader (7). The
CRISPR spacer array is constitutively transcribed into a precursor
CRISPR RNA (pre-crRNA) that is cleaved by specific Cas proteins
and further processed into mature, small interfering crRNAs.
These crRNAs typically comprise the spacer flanked on either side
by portions of the DRs (17–20). Subsequently, mature crRNAs
guide the Cas-crRNA ribonucleoprotein complex to complemen-
tary nucleic acids, typically invading bacteriophages or plasmids,
resulting in degradation of the target (21).

As new spacers are always added to one end of the CRISPR
array, a polarity exists: spacers at the leader distal end are more
ancient and are often shared among common ancestors (10, 22).
Thus, the specific spacer composition of a CRISPR array can ele-
gantly reflect the divergence of bacterial strains or serotypes (for
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an example, see reference 23). Spacer acquisition itself differs dra-
matically among different species, and endogenous acquisition
has been observed in the laboratory in only a few bacteria (7, 24,
25). Acquisition, along with spacer loss and duplication, makes
CRISPR elements among the fastest evolving loci in bacteria (26–
30).

Given the temporal organization of spacers, sequencing of
CRISPR arrays has been a tremendously useful tool in investigat-
ing and constructing phylogenetic relationships between different
bacterial lineages, specifically, in Yersinia species, Erwinia amylo-
vora, E. coli, and Salmonella enterica and, most recently, in the
periodontal pathogen Porphyromonas gingivalis (23, 31–38).
CRISPR analysis from metagenomic data can also be used to iden-
tify both the presence of and relationship between viruses and
hosts within complex and diverse ecological niches (26, 30, 39–
41). Beyond subtyping and these examples, more-versatile
CRISPR-based applications exist, namely, their use in develop-
ment of commercial phage-resistant bacterial strains (22, 42, 43)
and as genome editing tools in eukaryotes (44–48).

In this review, we focus on how CRISPR spacer sequence in-
formation has been utilized for efficient bacterial subtyping in the
context of molecular epidemiology. We discuss initial CRISPR-
based subtyping methodologies, as well as review sequenced-
based CRISPR subtyping approaches. We finish with a few exam-
ples of unique and alternative uses of CRISPRs for subtyping
bacteria.

WHAT MAKES AN IDEAL CRISPR-TYPING LOCUS?

Though present in 48% of bacteria, not all CRISPRs are appropri-
ate for molecular subtyping. Bacteria that acquire spacers at a
higher rate are not likely to be tremendously useful for subtyping
as, in the presence of bacteriophages or replicating plasmids, ac-
quisition may happen within the time frame of an outbreak inves-
tigation. Spacer acquisition is not the only manner in which
CRISPR loci from different strains can be modified; internal spac-
ers can also be lost (31, 38, 42, 49–51), and single nucleotide poly-
morphisms (SNPs) can be introduced into the spacers or direct
repeats (7). These changes can also contribute strain-to-strain dif-
ferences (52). Conversely, bacterial species that contain homoge-
nous CRISPR loci which are not adapting at all, or whose genetic
integrity is diminishing (frequent mutations/deletions within cas
genes and/or disruption of the spacer array), are not likely to ex-
hibit strain-to-strain differences.

SPOLIGOTYPING

CRISPR applications existed long before their function was eluci-
dated. The first use of spacer information for subtyping was in
spacer-oligonucleotide typing, or “spoligotyping,” of Mycobacte-
rium tuberculosis strains (53, 54). The principle of spoligotyping is
PCR amplification of the CRISPR array with labeled primers that
recognize the DR sequences (Fig. 2A), followed by hybridization
of the PCR products to a membrane that contains probes bearing
spacer DNA sequences (Fig. 2B). Due to strain-specific spacer
content, differential hybridization patterns enable separation of
different strains (Fig. 2C). Spoligotyping was able to separate the
members of a group of closely related Mycobacterium species that
comprise the M. tuberculosis complex (MTBC) (55).

Improvements to classical spoligotyping include automation
and the use of microbeads to replace the membrane, enabling a
higher-throughput procedure (56). Addition of 25 new probes to
the original 43 probes has also increased genotyping ability using
this approach (57, 58). Spoligotyping remains the gold standard
for MTBC subtyping, and data are shared in the international
spoligotyping database, spo1DB4, which contains over 2,000
unique spoligotype patterns (59). The disadvantage of spoligotyp-
ing is that it determines the presence of only preestablished spac-
ers. Fortuitously, in the case of MTBC, sequencing of several iso-
lates has shown that these loci have ceased acquiring new spacers.
The number of spacers in the CRISPR region of M. tuberculosis
ranges from 6 to 47, and yet the number of different spacers in a set
of more than 1,000 strains tested was limited to approximately 50,
showing that strain-to-strain differences in M. tuberculosis
CRISPR occur by loss of spacers (51).

The “next-generation” microbead-spoligotyping approach
was recently applied to Salmonella, in an assay termed CRISPOL
(for “CRISPR polymorphism”) (49). Weill and colleagues showed
100% concordance between CRISPOL types and CRISPR se-
quence data from 150 Salmonella enterica subsp. enterica serovar
Typhimurium isolates. When the method was applied to over
2,000 isolates of Salmonella serovar Typhimurium and the corre-
sponding monophasic variant I 4,5,12:i:- (so-called on the basis of
its antigenic formula, as defined by the Kauffman and White clas-
sification scheme; see reference 60), 245 unique CRISPOL types
were identified.

Traditional spoligotyping has also been applied to Corynebac-
terium diptheriae (61–63) and Legionella pneumophila (64). Since
not all Legionella spp. contain CRISPR elements, spoligotyping
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GTGTGTTCCCCGCGCCAGCGGGGATAAACCGacgttggctgaaaacggtttttcggtccgcctGTGTTCCCCGCGCCAGCGGGGATAAACCGagagcgagcacgtccgccgtaaaattgccatgGTGTTCCCCGCGCCAGCGGGGATAAACCG

FIG 1 CRISPR-cas system. There are two CRISPR loci in Salmonella enterica and seven cas genes (light gray arrows). All CRISPR-Cas systems contain cas1 and
cas2 (medium gray boxes). S. enterica has a type I CRISPR-Cas system of which cas3 is the signature gene (dark gray box). An AT-rich leader sequence is
immediately upstream of each spacer array (white boxes; L). The direct repeats (DRs) are shown as black diamonds, and the terminal DR, which differs from the
consensus DR, is shown as a white diamond. Spacers are shown as colored rectangles, and unique spacers are represented by unique colors. Below the spacer array,
the sequence of two spacers and the respective three flanking DRs is shown with the DRs in black uppercase characters and the spacers color coded and in
lowercase characters.
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lacks general utility with regard to routine genotyping but can
certainly be used to further discriminate among common strains
(64). Another alternative to the classical spoligotyping method is
the use of a primer extension assay combined with mass spectrom-
etry analysis. Use of 23- or 25-multiplex primers in this assay
provided concordance of 96.9% with traditional membrane-
based spoligotyping (65).

SEQUENCE-BASED CRISPR TYPING

DNA sequence-based molecular subtyping methods are becom-
ing increasingly popular as cost continues to decrease while the
fidelity, base-pair output, and high-throughput nature of the
technology grow. As a result, sequence-based analysis of CRISPR
arrays has been increasingly used for microbial subtyping.

CRISPR TYPING

Beyond spoligotyping, the first use of CRISPR spacer alleles for
subtyping was in the group A Streptococcus (GAS) M1 serotype

(66). Initial investigations in a limited number (14) of isolates
showed that the size of PCR products corresponding to the spacer
array correlated with the RFLP types of two insertion sequences
(IS1548 and IS1562). Sequence analysis of these and an additional
30 isolates showed variation arising from altered numbers of spac-
ers in different isolates and from different spacer compositions.
The number of spacers present ranged from two to seven. Due to
the presence of a better subtyping target (the sic gene), CRISPR
typing in GAS was not extended. Nonetheless, this work showed
for the first time the potential utility of sequence-based CRISPR
typing in bacteria.

The next pathogen to be subtyped using CRISPR was Yersinia
pestis, which is responsible for causing the plague and contains
three CRISPR arrays, Ypa, Ypb, and Ypc (10). A limited study of
strains representing three Y. pestis biovars showed that CRISPR
typing was able to separate some isolates that had the same MLVA
type (10). Subsequent investigations of a larger and more diverse
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FIG 2 Spoligotyping. (A) Labeled primers (arrows; labeled primer indicated by asterisks [*]) complementary to the DRs are used to amplify the CRISPR spacer
array and result in several PCR products of various lengths. (B) The mixture of labeled PCR products is hybridized to an array of probes, each of which
corresponds to a unique spacer. The schematic shows unhybridized (top) and hybridized (bottom) membranes, with probes color coordinated for clarity.
Positively hybridized probes are depicted with black borders. In this example, the hybridization pattern correlates to Strain a in panel C. (C) The spoligotype
patterns show black boxes for a positive signal (spacer present) and white boxes for a negative signal (spacer absent). Different bacterial strains (Strain a, Strain
b, and Strain c) can be identified on the basis of different hybridization profiles.
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number of isolates showed that different CRISPR types were asso-
ciated with different geographical regions of origin (31).

Subsequently, the majority of sequenced-based CRISPR typing
has been performed in Salmonella, which contains two CRISPR
loci, CRISPR1 and CRISPR2 (Fig. 1). There are over 2,500 S. en-
terica subsp. enterica serovars (or serotypes). Sequence analysis of
over 1,000 Salmonella CRISPRs showed that this pathogen is not
rapidly acquiring new spacers (49, 50, 52, 67–69). Within individ-
ual serovars, CRISPR polymorphisms are due to spacer “micro-
evolution,” specifically, multiplication or loss of internal spacers,
as well as to the presence of SNP spacer or direct-repeat variants
(49) (Fig. 3). Spacer multiplication and/or loss occurs much more
frequently than the introduction of SNPs, and such multiplication
or loss is likely the result of replicative errors promoted by the
homologous direct repeats (31). That spacer microevolution ap-
pears to occur relatively frequently, specifically, in Salmonella se-
rovar Typhimurium, may provide strain discrimination capacity
comparable to that of other subtyping techniques such as PFGE
(49). Whether this is true of all serovars will require further anal-
ysis.

Analysis of 34 S. enterica 6,7:c:1,5 isolates showed that CRISPR
types correlate with MLST types (49). Furthermore, the spacer
content of several Salmonella serovar Typhimurium and Salmo-
nella serovar Enteritidis isolates from 10 documented outbreaks
showed that all isolates from individual outbreaks exhibited the
same CRISPR type (49), thus demonstrating superb epidemiolog-
ical concordance. A new multiplex PCR assay has been developed

for detection of Salmonella serovar Typhi and Salmonella serovar
Paratyphi A, based on the presence of specific spacers in CRISPR2
and CRISPR1 of these serovars, respectively (F.-X. Weill, personal
communication). This method shows 100% specificity when
tested in several different Salmonella serovar Typhi and Salmo-
nella serovar Paratyphi A strains from diverse genetic and geo-
graphical origins as well as when tested among a large number of
different bacterial species.

In-depth spacer analysis of both CRISPR loci from over 1,500
Salmonella isolates (representing 130 different serovars) shows a
high degree of CRISPR polymorphism within some serovars (49,
50, 52), enabling the use of these elements as excellent subtyping
tools. Within a serovar, the order of spacers is strictly conserved
and, importantly, spacer composition correlates strongly with se-
rovar (49). These findings, also corroborated by a CRISPR-based
phylogenetic analysis (23), suggest that CRISPR sequence analysis
could provide a one-shot approach for both serotyping and sub-
typing, with the benefit of much-reduced time and expense to
public health laboratories.

CRISPR sequence-based typing in Campylobacter jejuni, which
is a leading bacterial cause of gastroenteritis, is also comparable to
other subtyping methods. In one study, a clear association of
CRISPR types (CTs) was found predominantly in certain MLST or
amplified fragment length polymorphism (AFLP) clusters (70).
CRISPR sequence typing of multiple isolates representing three
outbreaks of C. jejuni was concordant with the epidemiological
data (70). Unfortunately, �25% of Campylobacter species inves-
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tigated either lacked an amplifiable CRISPR locus (10%) or con-
tained a single DR (without a spacer; 15%), thus, CRISPR typing
does not appear to be a versatile approach for routine Campylo-
bacter genotyping. Given this, however, there was an association
between isolates with a particular MLST sequence type and those
that contained a single DR and between isolates with another se-
quence type and those that lacked a CRISPR locus (70).

Beyond human pathogens, CRISPR typing has also been
adapted to Erwinia amylovora, the Gram-negative plant pathogen,
which contains three CRISPR arrays. Different E. amylovora
strains exhibit extremely low levels of genome diversity (71, 72)
and are challenging to separate by traditional subtyping methods
such as PFGE (73), ribotyping (74), and VNTR (75), among oth-
ers. Two in-depth investigations showed that CRISPR typing was
able to successfully separate strains that had previously been con-
sidered indistinguishable by PFGE and ribotyping (32, 34). Inter-
estingly, in one of the studies, there were clear differences in spacer
content, array length, and diversity that appeared to be based on
geography and plant host (32).

CRISPR-MVLST

It has been shown that multi-virulence-locus sequence typing
(MVLST) is a more powerful typing approach than traditional
MLST (76–79). Addition of such a scheme to CRISPR sequencing
(CRISPR-MVLST) in Salmonella (using fimH and sseL virulence
genes) increased discriminatory power compared to either
method used alone (50). Subsequent analysis of over 400 isolates,
representing four of the five most prevalent clinical serovars in the
United States, showed that the discrimination provided by
CRISPR-MVLST is comparable to that provided by PFGE (52, 69,
80). In clonal serovars such as Salmonella serovar Enteritidis and
Salmonella serovar Heidelberg, neither subtyping method pro-
vided sufficient discrimination to separate unrelated strains. A
higher and more appropriate discrimination index (as defined in
reference 81) was achieved by combining CRISPR-MVLST and
PFGE. For example, in a screen of 141 Salmonella serovar Enteri-
tidis isolates, CRISPR-MVLST defined 13 sequence types (dis-
crimination index [D] � 0.71) and PFGE defined 22 pulsotypes
(D � 0.79) but a combination of the two typing methods provided
45 unique types with a discrimination index of 0.92 (52). In Sal-
monella serovars Typhimurium (diphasic) and Newport, which
collectively account for almost a quarter of salmonellosis cases
(82), strain discrimination data provided by CRISPR-MVLST are
sufficient (0.94 and 0.96, respectively) (69, 80).

These two studies of several Salmonella serovar Newport and
Salmonella serovar Typhimurium isolates showed for the first
time that there is an extremely high level of correlation between
CRISPR-MVLST sequence types and PFGE patterns (69, 80). This
is somewhat surprising, given that differences in PFGE typically
arise from horizontal gene transfer whereas CRISPR-MVLST dif-
ferences in Salmonella generally arise through vertical transmis-
sion. Interestingly, a correlation between patterns of antibiotic
resistance/sensitivity and CRISPR-MVLST sequence types has
also recently been observed in Salmonella serovar Typhimurium
(67).

Importantly, as the first example used in the context of an
outbreak, CRISPR-MVLST was able to identify outbreak-specific
isolates. In a blinded study, Salmonella serovar Newport isolates,
from a 2012 Pennsylvanian tomato-associated outbreak that sick-
ened nearly 40 people, were successfully separated from sporadic

case control isolates (69). Notably, in that study, epidemiological
concordance determined by CRISPR-MVLST was as good as that
by PFGE and better than that by MLVA. In another investigation
involving two outbreaks of Salmonella serovar Typhimurium,
CRISPR-MVLST was similarly able to identify and separate out-
break isolates (80). These findings clearly demonstrate that
CRISPR-MVLST provides levels of strain discrimination similar
to those of other subtyping approaches, notably PFGE, and that
this discrimination is not detrimental to epidemiological concor-
dance.

ALTERNATIVE CRISPR-BASED TYPING APPROACHES

There are several other ways that CRISPR arrays can be utilized for
subtyping, including the application of real-time PCR protocols
or exploitation of the inherent variations in the sizes of different
CRISPR arrays.

REAL-TIME PCR METHODOLOGIES

E. coli strains are serogrouped based on the O antigen and sero-
typed based on both the O and H antigens (83). Shiga-toxin-pro-
ducing E. coli (STEC) strains represent a pathotype with over 100
different serotypes that can cause clinical outcomes, running the
gamut in terms of symptoms from mild or bloody diarrhea to
hemolytic uremic syndrome (HUS) (84). Not all STEC strains are
equally pathogenic, although a new policy from the USDA Food
Safety and Inspection Service (FSIS) mandates the classification of
six E. coli serogroups (the “Big Six” [O26, O45, O103, O111, O121,
and O145]), along with the prototypical STEC, O157:H7, as adul-
terants in beef products (FSIS Notice 47-13; www.fsis.usda.gov).
This new policy has resulted in efforts to develop rapid and spe-
cific typing methodologies to identify these bacteria. Two groups
have recently analyzed the two E. coli CRISPR loci with an aim to
develop CRISPR-based typing protocols. Delannoy et al. devel-
oped real-time PCR assays with primers designed using specific
spacers present in the following Big Six serotypes: O26:H11, O45:
H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7
(85). These serotypes represent the most clinically predominant
STECs within a particular O serogroup in the United States and
Europe (86). Testing these real-time PCR assays among 958
strains provided 95.7% to 100% sensitivity (ability of an individ-
ual assay to identify all strains of a given serotype) and 97.5% to
100% specificity (lack of cross-reactivity with another serotype)
(85). The same group also developed a real-time PCR assay that
was specific for O104:H4 (87), a rare E. coli serotype that was
responsible for a large European outbreak in 2012, affecting 3,950
people and killing 53 (88). A schematic for strain-specific
CRISPR-based real-time PCR is shown in Fig. 3B. An in-depth
analysis by Yin et al. of several Big Six and O157:H7 STEC strains
of both clinical and nonclinical origin showed that CRISPR se-
quences were similar but were not the same among isolates of the
same O serogroup (38). In that study, the authors examined the
CRISPR regions from 252 isolates and also analyzed CRISPR data
from over 1,100 sequences available on GenBank. Their data seem
to suggest that there are occasional correlations between H anti-
gen and spacer composition, especially in phylogenetically related
E. coli strains. The development of real-time PCR protocols to
identify specific and dominant STEC strains appears promising,
though the data from both groups seem to suggest that CRISPR
sequence analysis in E. coli is more suited to use as a tool for
identification rather than for subtyping (38, 85, 87).
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As mentioned earlier, some Campylobacter strains contain a
single DR in the CRISPR array (70). Price and Smith utilized an
elegant high-resolution melt (HRM) approach to differentiate be-
tween some isolates that exhibited a SNP in this sole DR as well as
between isolates that harbor multiple spacers (89).

SUBTYPING BASED ON CRISPR LOCUS SIZE

Variations in spacer numbers produce different lengths of
CRISPR arrays that can be exploited to rapidly screen isolates by
PCR and electrophoretic analysis (Fig. 3C). As mentioned previ-
ously, data from early work in GAS suggested that PCR/CRISPR
array size correlated with RFLP typing results (66). Following this
work, Vergnaud and colleagues used the YPa (Yp1) locus as a
VNTR marker for MLVA in Y. pestis (33, 90). More recently, using
both outbreak and control isolates, two groups have shown that
“CRISPR size typing” can be successfully implemented in Salmo-
nella serovar Typhimurium and Salmonella serovar Newport (49,
69). This approach can likely be extended to other Salmonella
serovars, with its main utility being in developing countries where
access to sequencing equipment can be limited.

CONCLUSIONS

CRISPR-based typing techniques have been well established for
some bacterial species such as Mycobacterium and are currently
being developed and studied extensively, especially for human
pathogens but also for some agriculturally important species such
as Erwinia. In most cases, CRISPR-based subtyping techniques
provide discriminatory power and epidemiological concordance
that are at least similar to, if not improved from, those of other
methodologies. The benefits of CRISPR-based subtyping, espe-
cially in Salmonella, where this method can be used for serotyping
as well as subtyping, include a dramatic decrease in the time to
serovar and strain identification plus the capacity to fully auto-
mate the process. Additionally, as has been proven for spoligotyp-
ing, the great advantage is the capability of interlaboratory sharing
of tractable sequencing data or numerically coded information
that corresponds to the presence of specific spacers (91). CRISPR
analysis again requires less time and money than subtyping by
whole-genome sequencing to both perform and analyze the data;
plus, data storage and transfer are much simpler.

Regarding CRISPR-based typing, there are several tools avail-
able to researchers and public health laboratories. Databases that
contain CRISPR spacer sequence information are currently being
populated for both Salmonella and Legionella (92). We foresee
such databases growing with respect to the number of pathogens
represented as well as the depth of strain diversity, providing re-
sources similar to those of the international PFGE database, PulseNet.
Additionally, there are user-friendly, free-access tools available: the
CRISPRs Web Server (http://crispr.u-psud.fr/) provides several ex-
cellent tools, including CRISPRdb and CRISPRfinder (CRISPI; http:
//crispi.genouest.org/) (14, 93).

As seen in the genera Legionella and Campylobacter, not all
strains of a particular bacterial species must contain CRISPRs.
Though this limitation precludes the use of CRISPR typing as a
general subtyping tool in such species, CRISPR could still be used
to refine common strains. Another caveat is that some CRISPR
alleles are extremely long and are thus not amenable to sequenc-
ing. In such cases, alternative approaches could involve amplify-
ing certain strain-specific portions of a CRISPR allele using

spacer-specific primers or third-generation long-read sequencing
such as the PacBio platform.

FUTURE PERSPECTIVES

There is no doubt that next-generation sequencing has become
cheaper and more amenable to standard laboratory practices at a
tremendous rate. It is quite feasible that, in the near future, whole-
genome sequencing will become the new gold standard and re-
place subtyping techniques such as PFGE. Would this spell the end
for the short-lived use for CRISPR-based sequence typing? We
argue that it would not: CRISPRs, along with other genetic targets
such as virulence genes and genes with serotype-specific alleles,
could be included as sequence targets that would be routinely
extracted from draft genomes using automated bioinformatics
tools.

Harnessing CRISPR biology, specifically, identifying the pres-
ence/absence of spacer sequences for subtyping purposes, is dis-
tinct from studying the functionality of CRISPR-Cas systems.
Though 48% of bacterial genomes that have been sequenced to
date contain CRISPR-Cas sytems (14), for many of these species,
only a single strain or a few strains in a limited number of species
have been investigated in detail with regard to the function and
composition of the spacer arrays. We anticipate that projects such
as the “100K Genome Project,” headed by the Food and Drug
Administration and the University of California, Davis, which
aims at completing whole-genome sequencing of 100,000 food-
borne pathogens, will provide insights into CRISPR occurrence,
diversity, and activity in many relevant pathogenic species (http:
//100kgenome.vetmed.ucdavis.edu/). This will be especially in-
sightful because the majority of the strains that are being used in
that study are primary clinical strains rather than “laboratory
strains” such as E. coli K-12.

Additionally, the accumulation of spacer sequence informa-
tion generated by extensive CRISPR typing studies will provide
greater insight into microbial evolution, similar to what has been
revealed for the phylogenetics of Salmonella (23). While evolu-
tionary relationships are simpler to define when CRISPR arrays
are actively acquiring spacers, it is more challenging to deter-
mine evolutionary relationships between bacterial strains
when CRISPR loci differ primarily by loss of internal spacers. It
has not been ascertained whether there is any global selection for
loss of particular spacers, although there seems to be a bias toward
the loss of ancestral spacers (22, 94). Why are some spacers main-
tained whereas others are lost? Is it due to relief of functional
selection (the target bacteriophage no longer exists)? Is it
sequence/structure dependent? Are there positional parameters
within the array that determine loss? Does loss occur one spacer at
a time, or are “blocks” of spacers lost simultaneously?

For most of the CRISPR arrays investigated during typing
studies, acquisition does not appear to be occurring rapidly, if at
all. It is therefore interesting that in these species, the genetic in-
tegrity of CRISPR arrays (with respect to spacer and direct-repeat
length and organization) appear to be well maintained. This sug-
gests that CRISPRs may have an alternative function beyond im-
munity to exogenous DNA (95, 96).

Given that almost half of all bacterial genomes sequenced to
date harbor these remarkable elements, it would not be surprising
to see adaptation of the CRISPR methodologies discussed here to
other bacterial pathogens. There are three distinct CRISPR types,
type I, type II, and type III, each defined by its complement of Cas
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proteins and processing of crRNAs (15). It is interesting, however,
that in the majority of bacteria where CRISPRs have been used for
subtyping, namely, Salmonella (types I to E), E. coli (types I to E),
Erwinia (types I to E), Legionella (types I to F), Yersinia species
(types I to F), and P. gingivalis (types I to C), type I CRISPR-Cas
systems are predominant. This suggests that CRISPR typing may
be ideally suited to other pathogenic bacteria harboring type I
CRISPR-Cas systems such as Clostridium and Klebsiella.
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