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It has been suggested that the human gut microbiota can be divided into enterotypes based on the abundance of specific bacterial
groups; however, the biological significance and stability of these enterotypes remain unresolved. Here, we demonstrated that
subjects (n � 62) 18 to 65 years old with central obesity and components of metabolic syndrome could be grouped into two dis-
crete groups simply by their relative abundance of Prevotella spp. divided by Bacteroides spp. (P/B ratio) obtained by quantita-
tive PCR analysis. Furthermore, we showed that these groups remained stable during a 6-month, controlled dietary intervention,
where the effect of consuming a diet in accord with the new Nordic diet (NND) recommendations as opposed to consuming the
average Danish diet (ADD) on the gut microbiota was investigated. In this study, subjects (with and without stratification ac-
cording to P/B ratio) did not reveal significant changes in 35 selected bacterial taxa quantified by quantitative PCR (ADD com-
pared to NND) resulting from the dietary interventions. However, we found higher total plasma cholesterol within the high-P/B
group than in the low-P/B group after the intervention. We propose that stratification of humans based simply on their P/B ratio
could allow better assessment of possible effects of interventions on the gut microbiota and physiological biomarkers.

The human gut microbiota constitutes a very complex micro-
bial community which interacts with and influences the health

status of the human host (1). Gut microbiota composition has
been associated with several diseases and disorders, including obe-
sity, diabetes, allergies, and inflammatory bowel diseases (2–5).
Even though it is not fully understood to what extent shifts in
microbiota composition are part of the cause of such diseases,
evidence is mounting to support the view that gut microbial com-
position does play an important role in human health (6, 7). Clar-
ifying the microbial complexity of the gut microbiota and linking
the gut microbial patterns with clinical traits are needed. Recently,
it has been suggested to group human gut microbiota composi-
tions into three main compositional categories denoted entero-
types based on a relatively high abundance of Bacteroides spp.
(enterotype 1), Prevotella spp. (enterotype 2), or Ruminococcus
(enterotype 3) (8). Two of these enterotypes (1 and 2), which are
mostly driven by the abundance of the genera Prevotella and Bac-
teroides, have been suggested to be associated with long-term diets
within subjects 2 to 50 years old (9). Notably, a 10-day controlled
diet intervention with either high-fat/low-fiber or low-fat/high-
fiber diets in 10 subjects 18 to 40 years old caused modulations of
the gut microbiota but did not lead to a shift in enterotypes (9).
However, it is uncertain whether a longer dietary intervention
could cause a shift in enterotypes. The existence and biological
significance of enterotypes have been much debated (10), and
especially the Ruminococcus-driven enterotype (enterotype 3)
currently seems less evident (9, 11, 12). The possibility to broadly
categorize gut microbiota compositions to simplify and bring
clarity to complex ecosystems is attractive and could have both
biological and clinical relevance. To date, the biological signifi-
cance of enterotypes remains largely unknown (8). Neverthe-
less, a recent study has shown that individuals with an entero-
type characterized by enriched proportions of Prevotella have
significantly higher plasma concentration of trimethylamine-N-

oxide (TMAO), a proatherogenic metabolite, than individuals
with a Bacteroides enterotype, indicating that enterotypes affect
the host (13). The number of studies dealing with enterotypes is
still very limited, and their exact definition and stability in longi-
tudinal studies remain unresolved. Therefore, we aimed to inves-
tigate in Danish subjects 18 to 65 years old (i) whether enterotypes
could be inferred simply by a Prevotella-to-Bacteroides ratio (P/B
ratio), (ii) the stability of enterotypes during a 6-month controlled
diet intervention following the new Nordic diet (NND) recom-
mendations (14) with more fruits, vegetables, and whole grain,
less added sugar, and less saturated fat, as opposed to an average
Danish diet (ADD), and (iii) whether subjects responded differ-
ently to the diet intervention according to their enterotype as-
sessed by quantitative PCR of 35 selected bacterial groups repre-
senting different taxonomical levels, including phyla, genera, and
species, and by selected plasma biomarkers.

MATERIALS AND METHODS
Samples and subjects. Fecal samples analyzed in the present study were
collected from a subgroup of 62 subjects who participated in a 6-month
dietary intervention study, including a total of 147 Danish participants 18
to 65 years old with central obesity and components of metabolic syn-
drome (see Table S1 in the supplemental material) (15). The 62 subjects
were, prior to the dietary intervention, selected by random to deliver fecal
samples during the study. The effect of consuming a diet following the
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NND recommendations as opposed to an ADD were investigated, and
findings on the primary endpoints, including body weight loss and risk
markers of metabolic syndrome, type 2 diabetes, and cardiovascular dis-
eases, are reported elsewhere (15). The dietary intervention study is reg-
istered with ClinicalTrials.gov, study identifier NCT01195610. The Ethi-
cal Committee of the Capital Region of Denmark approved the study
(H-3-2010-058), and informed written consent was obtained from the
subjects involved in the study. The dietary intervention study of the NND
(n � 36 subjects) compared to the ADD (n � 26 subjects) was performed
as a 6-month, nonblinded, parallel, randomized, controlled, ad libitum
dietary intervention trial and was carried out between October 2010 and
July 2011. For 6 months, the subjects could collect free food from a ded-
icated store at the Department of Nutrition, Exercise and Sports at Uni-
versity of Copenhagen. All food was registered and ensured to be in ac-
cordance with the subject’s designated diet (see Table S2 in the
supplemental material). All subjects initially completed a run-in period of
7 to 10 days of consuming an ADD, after which the subjects were random-
ized into two diet groups, receiving either the NND or ADD (Table 1). The
randomization was concealed until the end of the run-in period (base-
line). The randomization list was generated by an independent senior
investigator who did not participate in the subsequent randomization
procedure, which was carried out by a scientific assistant. The interven-
tion lasted for 24 to 28 weeks. Two fecal samples from each of the 62
subjects were collected. One fecal sample was collected at the end of the
run-in period (baseline) and the other at the end of the intervention.

Fecal sample collection handling. Fecal samples were stored at 5°C
upon defecation, and within the same day each fecal sample (minimum of
50 g) was processed by adding an equal amount of demineralized water
followed by homogenization with an immersion blender. Aliquots of 0.75
ml of the homogenized fecal samples were transferred to 1-ml CryoTubes
and stored at �80°C until use. The immersion blender was cleaned in
water and ethanol after each fecal sample was processed.

Fecal sample preparation and DNA extraction. Prior to DNA extrac-
tion, each fecal sample was thawed at room temperature, vortexed for 5 s,
and centrifuged at 13,000 � g for 5 min, and the supernatant was subse-
quently removed. The pellet was resuspended in 1.8 ml maximum recov-
ery diluent (0.9% NaCl with peptone) and centrifuged at 300 � g for 2 min
to precipitate the largest particles. The liquid phase containing bacteria
was distributed into aliquots of 250 �l. Finally, aliquots were centrifuged
at 13,000 � g for 5 min, the supernatant was discarded, and pellets were
stored at �80°C. All centrifugation steps were carried out at 4°C. DNA
was extracted from the frozen pellets using the Mo Bio PowerLyzer Pow-
erSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA) by follow-
ing the instructions provided by the manufacturer. Bead beating was con-
ducted at 30 cycles/s for 4 min (Retsch MM 300 mixer mill). The final
concentration of the DNA was determined using a fluorescence-based
quantification assay (Qubit double-stranded DNA [dsDNA] BR assay;
Invitrogen) and stored at �20°C until use. Fecal samples from the same
individual were prepared in parallel to ensure equal handling.

Primers used for qPCR. The majority of the primers used in the pres-
ent study have been published previously (16). Additionally, primers tar-
geting Alistipes species were designed using 16S rRNA gene sequences

obtained through Ribosomal Database Project 10 (17). Sequences repre-
senting all known species within the Alistipes genus were aligned using
CLC Sequence Viewer 6.7 (CLC bio, Aarhus, Denmark), and putative
target sites for primers were identified manually. Target sites were further
assessed by Primer3 (18) and Primer BLAST (19), and primers were ob-
tained from TAG Copenhagen A/S. Primer specificity was evaluated in
silico using the blastn algorithm (20) and by PCR using purified DNA
from Alistipes putredinis (DSM17216), Alistipes finegoldii (DSM17242),
Alistipes onderdonkii (DSM19147), Alistipes shahii (DSM19121), and Bac-
teroides vulgatus (DSM1447), obtained from the DSMZ collection (Deut-
sche Sammlung von Mikroorganismen und Zellkulturen GmbH, Ger-
many), as the template.

Quantitative real-time PCR of fecal samples. Quantitative real-time
PCR was performed on all fecal samples (n � 124) by using primers
targeting 16S ribosomal DNA of 35 different bacterial taxa, including
phyla, class, family, genera, and species. Primer sequences and amplicon
lengths are reported in Table S3 in the supplemental material. The ampli-
fication reactions were carried out with 1.5 �l template DNA (1 ng/�l), 4
�l primer (200 �M), and 5.5 �l 2� SYBR green mix (Roche Applied
Science) in a total volume of 11 �l. All reactions were performed with four
technical replicates on a LightCycler 480 II (Roche Applied Science) by
using the following program: 5 min at 95°C, followed by 45 cycles of 10 s
at 95°C, 15 s at 60°C, and 45 s at 72°C, followed by dissociation curve
generation for assessing amplicon specificity (95°C for 5 s and 65°C for 1
min and then increasing the temperature to 98°C with a rate of 0.11°C/s
with continuous fluorescence detection). For amplification of the three
Alistipes species, namely, A. putredinis, A. finegoldii, and A. onderdonkii,
the annealing temperature was adjusted to 65°C, 63°C, and 61°C, respec-
tively. Lastly, the butyryl coenzyme A (CoA):acetate CoA transferase
(BCoAT) genes were quantified in all samples using primers BCoATscrF
and BCoATscrR (21), with a primer concentration of 2.5 �M, by using the
following program: 3 min at 95°C, followed by 40 cycles of 30 s at 95°C, 30
s at 53°C, and 30 s at 72°C, followed by dissociation curve generation for
assessing amplicon specificity (95°C for 5 s and 65°C for 1 min and then
increasing the temperature to 98°C with a rate of 0.11°C/s with continu-
ous fluorescence detection).

qPCR data processing. The qPCR data were processed and analyzed
according to Bergström et al. (16). Raw data recorded by the LightCycler
480 software (version 1.5.0) were converted by LC480 Conversion (ver-
sion 1.6) and imported and analyzed in the LinRegPCR software (22, 23).
The LinRegPCR software performs baseline correction, calculates the
mean PCR efficiency for each amplicon, and calculates the initial quanti-
ties (N0; arbitrary fluorescence units) for each amplicon. The relative
abundances of the 35 specific amplicon groups were obtained by normal-
izing to the N0 value obtained for the universal bacterial amplicon group
(all bacteria). Due to interindividual variation, fold changes for specific
amplicon groups were calculated as the ratio of the normalized abundance
after intervention to the normalized abundance before intervention for all
subjects. The fold changes were log2 transformed, and the relative abun-
dances were log transformed before further analysis.

Plasma samples. Plasma samples were collected at the end of the
run-in period (baseline) and at the end of the intervention. Fasting blood
samples were obtained from an intravenous catheter in the antecubital
vein. The blood samples were analyzed for plasma total cholesterol,
plasma triglyceride, and plasma high-density lipoprotein (HDL) choles-
terol by using Vitros reagents on a Vitros 5.1 FS (Ortho Clinical Diagnos-
tics, Johnson & Johnson, Denmark). Low-density lipoprotein (LDL) cho-
lesterol was calculated from the measured values of total cholesterol, HDL
cholesterol, and triglyceride according to Friedewald et al.’s equation (24).

Statistics and principal component analysis. Statistical analyses were
performed using the GraphPad Prism software (version 5.0b). The bi-
modal distributions of the log-normalized Prevotella-to-Bacteroides ratio
and the log-normalized Prevotella abundance were tested by the dip test of
unimodality (25), where the null hypothesis is a unimodal distribution,
calculated by the diptest R package (26). Correlations among the log-

TABLE 1 Characteristics of subjects

Characteristic

Valuec

P value
ADD
(n � 26 subjects)

NND
(n � 36 subjects)

No. (%) of males 9 (35) 11 (31) 0.74b

Mean age (yrs) � SD 43.3 � 12.7 44.9 � 13.9 0.64a

Mean BMI (kg/m2) � SD 29.7 � 4.4 29.3 � 4.8 0.72a

a Unpaired two-sided t test.
b Chi-square test.
c ADD, average Danish diet; NND, new Nordic diet.
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normalized abundances were calculated using the Spearman rank corre-
lation. A cooccurrence network was created by the qgraph R package (27)
of the Spearman rank correlation matrix of log-normalized relative abun-
dances of 35 quantified bacterial taxa correcting for false discovery rate
using the fdrtool R package (28). Comparisons between NND and ADD
groups for individual bacterial groups were done by t tests (if normally
distributed) or Mann-Whitney U test (if not normally distributed) using
log2-transformed fold change values. Comparisons of fold changes with
baseline (before intervention) were done by a one-sample t test against a
theoretical mean value of 0 (indicating no change) if normally distributed
and a Wilcoxon signed-rank test against a theoretical median value of 0 if
not normally distributed. P values were adjusted for multiple testing using
the Benjamini-Hochberg false discovery rate (q value) (29). The normal-
ized N0 values obtained from all bacterial amplicon groups were used as
input for principal component analysis (PCA) by using LatentiX (version
2.11) (Latent5, Frederiksberg, Denmark).

RESULTS
Enterotypes inferred by the Prevotella-to-Bacteroides ratio. To
investigate the presence and characteristics of enterotypes, the gut
microbiota was characterized by quantitative PCR of 35 bacterial
taxa of human fecal samples from subjects (n � 62) that partici-
pated in a dietary intervention examining the effect of the NND.
The abundances of Prevotella and Bacteroides have been suggested
to be the main drivers of two of the enterotypes, while Rumino-
coccus abundance drives the third type (8, 9). We found that sub-
jects could be grouped by plotting the relative abundance of Bac-
teroides spp. against the relative abundance of Prevotella spp.,
resulting in two clearly separated “clouds” in the two-dimensional
space (Fig. 1A). A kernel density plot, which can be considered a
refinement of a frequency plot, of the relative abundance of Bac-
teroides before intervention (Fig. 1B) showed a unimodal distri-

bution, whereas a kernel density plot of the relative abundance of
Prevotella before intervention indicated a bimodal distribution
(P � 0.001) (Fig. 1C). A more pronounced bimodal distribution
with only few intermediates was observed when plotting the P/B
ratio (P � 0.001) (Fig. 1D).

Microbial differences between P/B groups. Microbial differ-
ences between the P/B groups were investigated by comparing the
relative abundances of 35 bacterial taxa (see Table S3 in the sup-
plemental material). Grouping subjects according to their P/B ra-
tio, either low-P/B (P/B � 0.01; n � 34 samples) or high-P/B (P/B �
0.01; n � 28 samples), revealed, besides differences in the relative
abundance of Bacteroides spp. and Prevotella spp., that the low-
P/B group had significantly higher relative abundance of Bacte-
roides fragilis (q � 0.005) and Bacteroides eggerthii (q � 0.03) and
a tendency for higher relative abundance of Alistipes spp. than the
high-P/B group (q � 0.08) (see Fig. S1 in the supplemental mate-
rial). To investigate the observed tendency for Alistipes spp., which
seemed to differ between low- and high-P/B groups, three Alistipes
species primers were designed and Alistipes putredinis, Alistipes
finegoldii, and Alistipes onderdonkii were quantified by qPCR. A.
putredinis and A. onderdonkii were found to be present in all sub-
jects, while A. finegoldii was observed in two-thirds of the subjects
(see Fig. S2 in the supplemental material). However, none of the
Alistipes species differed significantly between the low- and high-
P/B groups. To further identify potential microbial differences
between P/B groups, microbial cooccurrence relationships with
Prevotella and Bacteroides were examined by correlating the log-
normalized relative abundances of 35 bacterial taxa of all subjects
using the Spearman rank correlation. A cooccurrence network
revealed a negative correlation between Prevotella spp. and Bacte-

FIG 1 Inferred Prevotella/Bacteroides groups. (A) The log-normalized abundances of Bacteroides spp. versus the log-normalized abundances of Prevotella spp. for
all subjects before the intervention. Subjects fall into two groups, indicated with two circles. Kernel density plots of log-normalized relative abundance of
Bacteroides spp. (B), Prevotella spp. (C), and Prevotella-to-Bacteroides ratio (D) for all subjects. Subjects (n � 8) with no measured Prevotella spp. at any time point
were excluded in this figure.
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roides spp., which indicates a competition between these two gen-
era (Fig. 2). Furthermore, Prevotella spp. were shown to be nega-
tively correlated with B. fragilis, Alistipes spp., A. onderdonkii,
Clostridium cluster I, and Clostridium cluster IV. Bacteroides spp.
were positively correlated with Gammaproteobacteria and several
groups within the Bacteroidetes phylum and negatively correlated
with Lactobacillus spp.

Stability of P/B groups over 6 months. To test the stability of
the P/B groups, we compared the P/B ratio of the subjects before
and after a 6-month diet intervention with either the ADD or
NND. The P/B ratio was generally shown to be stable during the 6
months, as only two individuals (both in the NND group) expe-
rienced a change in this ratio sufficient enough to result in a shift
in the P/B group (Fig. 3). The P/B ratio for these two subjects after
the intervention was verified by repeating the qPCR analysis. The
overall effect of the diet intervention was evaluated by examining
the relative abundances as well as the mean fold changes in 35
bacterial taxa relative to baseline for each diet group, i.e., NND
and ADD. The two diet groups could not be distinguished from
each other by principal component analysis of the relative bacte-
rial abundances after intervention (Fig. 4). With respect to mean
fold changes of all bacterial taxa within both diet groups, no bac-
terial taxon was found to differ significantly between the ADD and
NND group after correcting for multiple testing (see Fig. S3 in the
supplemental material). Nevertheless, compared to baseline, sev-
eral bacterial groups differed significantly (q � 0.05) within both
diet groups (see Fig. S3).

Stratification of subjects by P/B ratio. We showed that the P/B
ratio generally was stable over 6 months, suggesting that the P/B
ratio could be a tool to stratify subjects when examining the effect
of an intervention on the gut microbiota. Although no bacterial
differences were seen between the diet groups as a result of the

intervention, we hypothesized that by stratifying subjects into
low- and high-P/B groups, we might be able to see bacterial dif-
ferences between diet groups within each P/B group. However,
examining the relative abundances as well as the mean fold
changes in 35 bacterial taxa relative to baseline for each diet group,
the low- and high-P/B groups did not differ significantly in their
responses to the diet intervention (data not shown). Nevertheless,
stratification of subjects into P/B groups revealed significant dif-
ferences between P/B groups in the total plasma cholesterol after
the diet intervention (P � 0.05) and a tendency before interven-
tion (P � 0.08) (Fig. 5A). In comparison, no significant differ-

FIG 2 Cooccurrence network of 35 quantified bacterial taxa. The different colors refer to the different bacterial phyla, and nodes represent bacterial taxa.
Positively correlated taxa are marked with blue lines, and negatively correlated taxa are marked with orange lines, with the thickness of the line indicating the
significance of the correlation. Note that different taxonomical levels are shown. BCoAT, butyryl CoA:acetate CoA transferase.

FIG 3 Log-normalized Prevotella-to-Bacteroides ratio (P/B ratio) for all sub-
jects before and after the intervention, sorted by increasing the log-normalized
P/B ratio before the intervention. The P/B ratios remain stable overall during
the 6 months, as only two subjects (marked by two arrows) shifted their ratio
substantially. Subjects (n � 8) with no measured Prevotella spp. at any time
point were excluded from the figure.
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ences were seen between the ADD and NND groups in total
plasma cholesterol before and after diet intervention (Fig. 5B).
The other measures from plasma (triglyceride, LDL, and HDL)
did not differ between P/B groups.

DISCUSSION

We found a negative correlation between Prevotella spp. and Bac-
teroides spp. in the fecal communities of the 62 subjects included
in this study (Fig. 2). Competition for nutrients in the intestinal
ecosystem between these two genera, both belonging to the Bac-
teroidales order, has previously been suggested (30) and has been
proposed to be the main driver of two of the three previously
described enterotypes (8, 9). In agreement with this, we found that
the relative abundance of Prevotella spp. separated the subjects
into low- and high-Prevotella groups, as seen from the clear bi-
modal distribution (Fig. 1C). Even though the distribution of Bac-
teroides spp. appeared monomodal (Fig. 1B), which has also been
observed in other studies (8, 9, 31), it was observed that applying

the ratio between Prevotella spp. and Bacteroides spp. (P/B ratio)
further augmented the separation into two distinct groups (Fig.
1D). This supports that humans can be stratified effectively into a
low-P/B group and a high-P/B group, with Prevotella being the
main discriminatory taxon, as previously reported (9, 32). Using
the P/B ratio as a simplified proxy to determine enterotypes, we
focused on the two enterotypes driven by these genera and thus
did not expect to detect subjects belonging to the proposed Rumi-
nococcus-driven enterotype (8) based on this approach. Whether
the low- and high-P/B groups are directly comparable to the pre-
viously suggested enterotypes is uncertain, as several approaches
to define these enterotypes have been suggested and the entero-
type definition is highly dependent on choice of clustering method
(31). In the current study, a tendency was observed for a higher
abundance of Alistipes spp. in the low-P/B group than in the high-
P/B group (see Fig. S1 in the supplemental material), and a posi-
tive correlation between Alistipes spp. and Bacteroides spp. was

FIG 4 Principal component analysis (PCA) of subjects’ fecal composition before and after diet intervention. The PCA is based on relative abundances of 16S
ribosomal DNA of 28 different bacterial groups in a total of 124 fecal samples collected before and after the intervention. B. breve and B. eggerthii were excluded
from the PCA due to low prevalence in the fecal samples, and A. onderdonkii, A. putredinis, and A. finegoldii were not included. (A) PCA score plot with the average
Danish diet (ADD) before intervention (red), ADD after intervention (blue), new Nordic diet (NND) before intervention (green), and NND after intervention
(pink). (B) PCA loading plot of the different bacterial groups. The six colored circles indicate the five main phyla (two circles for Firmicutes) and show how the
bacterial groups cluster together within their phylum.

FIG 5 Total plasma cholesterol concentrations in low- and high-P/B groups (A) and ADD and NND groups (B) before and after the diet intervention. ADD,
average Danish diet; NND, new Nordic diet; ns, not significant.
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observed (Fig. 2), which is in line with previous reports showing
the Bacteroides enterotype to be additionally characterized by the
presence of Alistipes (9). Additionally, the two P/B groups differed
significantly with respect to relative abundance of B. fragilis and B.
eggerthii, and the abundance of Prevotella spp. was shown to be
negatively correlated with B. fragilis and Alistipes spp. (Fig. 2).

The Bacteroides enterotype has previously been associated with
animal protein, a variety of amino acids, and saturated fat, while
the Prevotella enterotype has been associated with carbohydrate-
based diets (9). This has been supported by a study comparing the
gut microbiota of children from Burkina Faso, characterized by
consuming a rural diet, with European children, characterized by
consuming a modern Western diet, reporting a higher abundance
of Bacteroidetes, including Prevotella, in the children from Burkina
Faso (33). Moreover, a recent study compared Africans and Afri-
can-Americans and found predominance of Prevotella in native
Africans (Prevotella enterotype) and of Bacteroides in African-
Americans (Bacteroides enterotype) (34). The subjects of the pres-
ent study all had a Western life style, and subjects with the Pre-
votella enterotype would thus not be expected in a high number.
However, we found a higher frequency of the high-P/B group
(Prevotella enterotype) than observed in some previous studies (8,
9) based on the original definition of enterotypes. We speculate
that the higher frequency of the high-P/B group could be caused
by the included subjects all being overweight and/or having com-
ponents of metabolic syndrome. Comparable results in Irish el-
derly subjects have, however, recently been obtained in a study
(11) where the P/B ratio, deduced from 16S rRNA sequencing, was
distributed in a similar way as reported here.

To test the stability of the low- and high-P/B groups, we com-
pared the P/B ratios before and after a 6-month dietary interven-
tion. Until now, few studies have assessed the stability of entero-
types over time. However, enterotypes have been shown to be
stable over 10 days (9), and a long-term study of the gut microbi-
ota composition over several years suggested that enterotypes may
shift during a period of 10 years (35). Here, we showed that only 2
out of 62 subjects had changed their P/B ratio notably after the
intervention (Fig. 3), indicating that this ratio generally remains
stable over 6 months. One of the two shifters consumed antibiot-
ics for 1 week in the middle of the intervention, which may explain
the shift in P/B group. However, 15 other subjects also consumed
antibiotics (see Table S4 in the supplemental material) during the
intervention without experiencing a shift in P/B group. The other
shifter did not take antibiotics and experienced a more dramatic
change in the overall gut microbiota composition compared to
that of the shifter who took antibiotics during the intervention.
Both subjects were above 55 years of age, and both consumed the
NND but did not differ from other subjects in terms of physiolog-
ical changes as a result of the dietary intervention. Based on the
available data, it is not possible to conclude what caused the shifts.

Overall, the gut microbiota of subjects was not markedly dif-
ferently affected by the two types of diet (ADD or NND) over a
6-month period (Fig. 4; see also Fig. S3 in the supplemental ma-
terial). Previous reports of diet-induced changes in the gut micro-
biota have examined the effect of more extreme dietary changes,
such as a shift to a high-fat/low-fiber, low-fat/high-fiber, or high-
protein/low-carbohydrate diet (9, 36, 37). In the present study, we
addressed the effects of a more moderate dietary intervention,
based on NND recommendations. Our results highlight the in-
trinsic stability of the gut microbiota, which has been shown to

remain stable over years (38, 39). Even though diet is well known
to influence our gut microbiota (9, 33), substantial changes in the
diet might be needed in order to shift P/B groups (enterotypes).
This is supported by a recent study which showed that even a diet
shift to a strict vegetarian diet for 1 month did not result in a
change of enterotypes (40). Stratification of subjects based on P/B
ratio is expected to facilitate the detection of changes not seen
when looking at all subjects collectively; however, in the present
case, we did not find any significant differences between the low-
and high-P/B groups with respect to their response to the dietary
interventions after correcting for multiple testing. However, in-
spired by a recent study which showed that individuals belonging
to the Prevotella enterotype had significantly higher plasma con-
centrations of TMAO, a proatherogenic metabolite, than individ-
uals belonging to the Bacteroides enterotype (13), we compared
measurements of plasma between P/B groups before and after
intervention. Interestingly, we found higher total plasma choles-
terol within the high-P/B group than in the low-P/B group after
the intervention and a tendency for this also before intervention
(Fig. 5A); however, no differences were seen between diet groups
(Fig. 5B). This observation suggests a link between the gut micro-
biota and the amount of cholesterol in plasma. A relationship
between blood cholesterol levels and cardiovascular disease is un-
disputed (41), while the link between blood cholesterol and gut
microbiota is still unresolved. It is known that the gut microbiota
affects the blood metabolome (42), and it has been shown in mice
that the gut microbiota affects the lipid and cholesterol metabo-
lism, thereby changing the level of cholesterol in serum (43, 44).
Also a study on pregnant women observed associations between
the gut microbiota and plasma cholesterol (45). Koeth et al.
showed that, apart from a higher presence of TMAO in plasma of
subjects with the Prevotella enterotype, TMAO in vivo reduces
reverse cholesterol transport (13). We therefore propose that the
larger amount of cholesterol in the plasma of subjects in the high-
P/B group than in the low-P/B group could be due to reduced
reverse cholesterol transport caused by an increased level of
TMAO in plasma.

In conclusion, we were able to group subjects by their P/B ratio
into two discrete groups, which remained stable over a period of 6
months. The stability of the P/B groups suggests that classification
of human subjects by the P/B ratio may be a useful tool to reduce
the variability given by the large interindividual variation of the
gut microbiota, which could help to better assess effects of inter-
ventions on the gut microbiota and corresponding metabolome of
feces, blood, and urine. However, in the present study, stratifica-
tion of subjects into low- and high-P/B groups did not reveal dif-
ferences in terms of microbial composition response to the dietary
interventions. Therefore, the use of the P/B ratio to stratify sub-
jects should be further investigated.
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