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We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and
combined, and the 5= section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A
hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the
factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size
and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results
at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All
of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differ-
ences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU
outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller frag-
ment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and
ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the
ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger
and more diverse classification training sets.

Fungi are one of the most diverse groups of eukaryotic organ-
isms on Earth, with estimates that range from 1.5 to 5.1 million

species (1, 2). The use of next-generation sequencing (NGS) is
playing a major role in the discovery of new species and ecological
studies of fungi. Large molecular data sets are being generated at
an extraordinary rate (3–6), but diversity estimations and taxo-
nomic identification at all taxonomic levels are constrained by the
lack of accurate, comprehensive taxonomic databases and infor-
mation on the accuracy of classification tools for comparison of
environmental survey data. The detection of emergent fungal dis-
eases, the determination of biogeographical patterns, and defini-
tion of strategies for conservation of fungi are just a few examples
of research areas that are challenged by the lack of reliable data-
bases and tools (7, 8). The large number of sequences generated
from platforms of high-throughput sequencing also demand fast
and accurate algorithms for sequence analysis and taxonomic
classification of fungi.

The entire internal transcribed spacer (ITS) rRNA region (ap-
proximately 600 bp in length) is composed of two hypervariable
regions (ITS1 and ITS2) with the highly conserved 5.8S rRNA
gene between them (Fig. 1). The ITS region has been used for
many years for diversity estimations and taxonomic identification
of fungal isolates and uncultured taxa (9–11) and was adapted as
the barcode region for Fungi by the Consortium for the Barcode of
Life (12). The large-subunit rRNA (LSU) region, located immedi-
ately downstream of the ITS, has also been widely used for phylo-
genetic assignment of cultures (13–15) and for environmental
surveys (6, 16). A 5= section of the gene, 635 to 651 bp in length,
contains two hypervariable regions (D2 and D3) that discriminate
among most fungal genera (17).

The use of the rRNA gene regions for fungal identification
presents several advantages over the use of functional genes (pro-

tein-coding genes): high sequence variability for identification of
the large majority of fungi at the species level; a high number of
copies per cell, which provides a direct advantage when little DNA
is available (e.g., for herbarium specimens or certain environmen-
tal samples); conserved primer sites not subject to variable third-
codon positions; and a growing number of sequences represented
by curated fungal cultures and environmental samples in public
databases (12, 18–22). The ITS and LSU regions each have
strengths and weaknesses as molecular signatures for fungal iden-
tification and environmental surveys. Drawbacks associated with
use of the ITS region are limitations of low taxonomic resolution
for some species delimitations (23, 24), difficulty in fungus-spe-
cific PCR primer design in this region, and high variability that
precludes the use of alignments and tree-based methods for anal-
ysis of environmental sequences (18, 21). The LSU region is gen-
erally considered less variable than the ITS region, which can limit
taxonomic resolution at the species levels and diversity analysis.
However, it is amenable to sequence alignment and phylogenetic
identification of new clades. While both regions represent infor-
mation-rich sequences for fungal identification (19), they have
not been directly compared for use with classifier approaches.
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Little information is available on the classification accuracy of
commonly used sections of the ITS (i.e., ITS1, ITS2, or combined
sections) (Fig. 1) or the LSU, with different tools of analysis, such
as the naive Bayesian classifier of the Ribosomal Database Project
(RDP) or BLASTN (12, 25, 26). With the availability of public
analysis tools for ITS and LSU sequence analysis (17, 27–30), this
information is fundamental to determine the optimal sections and
the criteria required to optimize primer design and selection of
sequencing platforms and to improve analysis at the genus and
species levels.

The naive Bayesian classifier has been available for analysis of
bacterial and archaeal sequences for many years (31). Recently,
Liu et al. (17) created a hand-curated fungal database of the large-
subunit rRNA (LSU) gene and demonstrated that the naive Bayes-
ian classifier can be used for accurate classification of fungal se-
quences using this LSU database. Recent surveys of soil fungal
communities have successfully used this database to track fungal
composition in different locations and responses to environmen-
tal perturbations (6, 53).

We evaluated two new hand-curated sequence training sets,
one that contains sequences spanning the ITS and LSU regions
(modified from reference 12) and a larger database containing
only ITS region sequences. We compared the performance of the
naive Bayesian classifier for classification of ITS1, ITS2, the entire
ITS region (ITS1 plus 5.8S rRNA plus ITS2), and the 5= section of
the LSU. We then compared the performance of the naive Bayes-
ian classifier to BLASTN using fragment sizes ranging from 50 to
�600 bp and employing a 50% bootstrap cutoff to improve taxo-
nomic classification. The naive Bayesian classifier and supporting
databases for ITS and LSU regions are available through the RDP
website, http://rdp.cme.msu.edu/classifier/classifier.jsp.

MATERIALS AND METHODS
Fungal ITS-LSU gene training set. To compare classification accuracy
among sections of the ITS and LSU, we needed a training set that con-
tained sequences spanning both the ITS and LSU regions for each fungal
isolate. We downloaded 1,125 sequences, published by the fungal barcode
of life consortium (12), from the NCBI nucleotide and taxonomy data-
base using NCBI Entrez in batch mode. After removal of duplicate se-
quences and sequences with unclear taxonomy, a total of 1,091 fungal ITS
gene sequences spanning 20 classes and 6 phyla were recovered. The tax-
onomic composition of this ITS-LSU training set is shown in Table S1 in
the supplemental material. Four genera that were each represented by
only a single sequence (here termed singletons) were excluded from leave-
one-out cross-validation (LOOCV) analyses for classification accuracy to

avoid incorrect taxonomic representation due to the lack of representative
sequences, as reported by Liu et al. (17). The resulting data set used for
LOOCV classification accuracy included 1,087 sequences. Every sequence
(excluding singletons) was evaluated as a query against the data set to
determine taxonomic classification accuracy and bootstrap support using
in-house Perl scripts (17). Classification accuracy was evaluated from
phylum to genus to determine differences between LSU and ITS. We did
not perform analysis at the species level because when using a LOOCV
approach, the species level accuracy is determined by the number of dif-
ferent strains (the same species) present in the data set, and the current
data sets that include both ITS and LSU regions (see, e.g., reference 12) do
not have adequate coverage at the species level to conduct rigorous or
informative species-level comparisons. The availability of more accurate
databases will facilitate in the future comparisons among different taxo-
nomic ranks (e.g., Ascomycota versus Basidiomycota or species-level
analysis). With the current state of the public databases, analyses compar-
ing species or even phyla will be highly affected by the lack of enough
species representation and/or the taxonomic uncertainty that is more
prevalent for certain taxonomic ranks.

Large fungal ITS gene training set. A set of 9,838 fungal ITS GenBank
sequences were manually checked and downloaded from the NCBI data-
base. Sequences were selected from published phylogenies in the peer-
reviewed literature or in NCBI using the search tool. Sequences were also
obtained from other sources, including AFTOL publications (http://aftol
.org/), MycoBank (http://www.mycobank.org), CBS type cultures (http:
//www.cbs.knaw.nl/Collections/), and mor (32). Curation of the database
was intended to ensure that (i) the taxonomic placement was consistent
across the database, (ii) all taxa had some information associated with
each taxonomic rank (at least Fungi incertae sedis as a minimum for fungi
with uncertain taxonomic placement), and (iii) each sequence contained
no errors (blank spaces, a family name instead of an order name, or spell-
ing errors). In addition, we reduced duplications and normalized taxon-
omy assignments; there were many incidences where family names/order
names were inconsistent or different for taxa with the same name. We
used Index Fungorum (http://www.indexfungorum.org) as a guideline to
reflect currently accepted taxonomic placement. Using NCBI Entrez in
batch mode and an in-house Perl script, we extracted the sequence and
taxonomy information from the NCBI nucleotide and taxonomy data-
base (17). The ITS gene sequences were aligned using the program
MUSCLE (33) using the 5.8S rRNA gene and PCR primer sequences as
guidelines to determine the correct orientation and location of the ITS1
and ITS2 regions. Alignments were trimmed using MEGA (34), and se-
quences that had only a small portion of the ITS region (50 to 100 bp) or
poor quality (a large number of undefined nucleotides) were excluded.
The final hand-curated database contained 8,967 fungal ITS gene se-
quences, and this final data set was designated the “large ITS training set”
for LOOCV analyses using the naive Bayesian classifier and BLASTN. The

FIG 1 Primer locations in the ITS region, showing the variable ITS1 and ITS2 regions and sequence length in the ITS-LSU training set. Two fragment extraction
methods were utilized. Fragment sizes are shown with arrows.
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database contains 36 classes, including 118 orders, 332 families, and 1,110
genera (Table 1).

Genetic region representation. All conserved sections of the ITS re-
gion (a small portion of the 3= end of the small-subunit rRNA [SSU] gene,
the 5.8S rRNA gene between ITS1 and ITS2, and the 5= end of the LSU
gene) were aligned using MUSCLE to generate the master alignment. The
actual ITS1 and ITS2 sections are so highly variable they cannot be aligned
with confidence, and the alignments using surrounding conserved regions
were conducted to determine that all sequences contained ITS1, ITS2, and
the 5.8S rRNA gene and were oriented in the 5=-to-3= direction (Fig. 1).
The location of the 5.8S rRNA gene was determined following positions as
described by Bell et al. (35). The quality of the alignments was determined
by visual evaluation of the conserved regions and identification of primer
sites for primers ITS1, ITS4, ITS2, and ITS3 as a guideline (http://nature
.berkeley.edu/brunslab/tour/primers.html). For LSU alignments, se-
quences were trimmed at the LR0R and LR3 primer sites (http://biology
.duke.edu/fungi/mycolab/primers.htm).

Extraction of different test fragments for comparisons of the ITS
and LSU regions. Classification accuracy was evaluated for ITS1, ITS2,
and LSU for different fragment lengths. The first comparison was based
on full-length regions for each section (ITS1, 208 � 57 bp; ITS2, 310 � 67
bp; entire ITS, 599 � 113 bp; and LSU, 627 � 51 bp), allowing the varia-
tion in sequence length between the sections. Two methods were then
used to extract fragments of different sizes to enable comparisons that
were not biased by sequence length. The first method, termed “primer
anchored,” created length range extractions for fragment sizes from 50 to
200 bp, 100 to 200 bp, and 150 to 200 bp based on PCR primer positions
commonly used for the ITS1, ITS2, and LSU regions and was used with the
ITS-LSU training set (Fig. 1). For LSU, test sequences were anchored at
the 3= end of the LR3 primer in the reverse direction. For ITS1, the frag-
ments were anchored to the 3= end of the ITS2 primer in reverse direction,
and the ITS2 fragments were anchored at the 3= end of the ITS3 primer in
the forward direction. LR3 was used for the LSU analysis because Liu et al.
(17) showed that the D2 region upstream of the LR3 priming site is the
most informative for LSU taxonomic classification. A minimum length
cutoff of 50 bp was chosen because the naive Bayesian classifier does not
perform well with sequences smaller than 50 bases (data not shown), and
the majority of current high-throughput platforms produce fragments
larger than 50 bp. This poor performance with short fragments is likely
due to insufficient information to conduct accurate taxonomic classifica-
tion.

The sequence length extractions described above represent sequences
that are often obtained using current PCR and sequencing platforms. Due
to primer location, the fragments will contain portions of the 5.8S rRNA
gene region and 28S rRNA gene in addition to the actual ITS sequences.
This results in 31 to 33 additional nucleotides that lie in the adjacent
conserved genes for the ITS1 and ITS2 regions (Fig. 1). To facilitate the
comparison of the ITS1 and ITS2 regions without these adjacent con-
served regions, a second method, termed “identical-length extraction,”
was used, which created fragments of identical size for the ITS1 and ITS2
sections in the large ITS training set. Sequences of 100 bp, 150 bp, and 200
bp were created for LOOCV testing based on the start positions of the
ITS1 and ITS2 regions using the alignment of the SSU, 5.8S rRNA, and
LSU sections to identify the specific start sites (Fig. 1).

Naive Bayesian classifier and bootstrap analysis. The Java tool of the
naive Bayesian classifier was obtained from RDP’s sourceforge page (http:
//sourceforge.net/projects/rdp-classifier/) and installed locally. The naive
Bayesian classifier provides rapid taxonomic assignment of rRNA se-
quences, with reference to a training set of sequences of known taxonomy
(17). For each query sequence, a subset was chosen from all 8-base over-
lapping subsequences (words) in the query. The joint probability of ob-
serving the selected words was calculated for each taxon and the sequence
assigned to the taxa with the highest probability based on the naive Bayes-
ian assumption that the probabilities for each word are independent (31).
The sampling is repeated for 100 bootstrap trials to provide an estimate of

confidence in the assignment. The naive Bayesian classifier assigns query
sequences at each taxonomic rank from phylum to genus and provides a
bootstrap confidence estimate at each rank. The naive Bayesian classifier is
available in web-based and stand-alone formats (31).

For each naive Bayesian classifier-based LOOCV test, a single random
sequence was removed from the training set as a query sequence to test its
taxonomic placement against the remaining training sequence set. The
process was repeated for all sequences in the training set. In-house Perl
scripts were then used to parse the taxonomy assignment.

Evaluation of BLASTN classification. We used BLASTN as a tool to
compare the accuracy of the naive Bayesian classifier. BLASTN was in-
stalled locally from http://www.ncbi.nlm.nih.gov/. Both short sequences
with a maximum of 200 bp (50 to 200 bp) and full-length sequences with
an average range from 200 to 600 bp were tested in this study. BLASTN
parameters were set to a word size of 7 for short sequences and the default
11 for full-length sequences and an E value threshold of 1,000. For each
BLASTN-based LOOCV test, a single sequence was reserved from the ITS
and LSU gene training set sequences as the test sequence, and the remain-
ing sequences in the database comprised a reformatted BLASTN database.
The process was repeated for all sequences in the training set. An in-house
Perl script was used to obtain BLASTN information for the top hits. Anal-
ysis was conducted using a Mac OS X (10.5.8) server with a 2.66-GHz
Quad-Core Intel Xeon processor and 3 GB of 1,066-MHz DDR3 memory.
Bootstrap and BLASTN analyses were conducted for the ITS-LSU training
set (1,087 sequences) and for the large ITS training data set (8,967 se-
quences).

Assessment of taxonomic assignment consistency. To assess classifi-
cation accuracy, we used Matthew’s correlation coefficient (MCC) as a
statistical measure of the quality of the classification (36). This statistic is
used in machine learning control theory by measuring four metrics to
decompose classification accuracies acquired from different classification
tools, and it facilitates the identification of false positives and negatives.
For a set of query read fragments, we counted the assignment combina-
tions that could be considered consistent positives, consistent negatives,
divergent positives, and divergent negatives. A set of assignments was
considered a consistent positive if the query read fragment was assigned to
the same and correct taxonomy by each classification tool. A consistent
negative was a set of queries that were assigned to the same but incorrect
taxonomy. A divergent positive denoted that at least one classification
tool’s assignment was correct. A divergent negative was a query read frag-
ment that was assigned to different taxonomies by each classification tool
and none of them were correctly assigned. There are numerous methods
to weigh these four values. To evenly balance the terms, we used Mat-
thew’s correlation coefficient (MCC). This coefficient can vary between
�1 and �1 and represents a value for measuring diversity between tax-
onomy classification results (e.g., different classifier, primers, or data
sets). A coefficient of �1 represents a perfect prediction, 0 represents no
better than random prediction, and �1 indicates total disagreement be-
tween prediction and observation (36).

RESULTS
LSU versus ITS classification accuracy using the ITS-LSU train-
ing set. Accuracy in the classification of full-length ITS and LSU
regions was compared for the naive Bayesian classifier and
BLASTN (Fig. 2). With the exception of the ITS1 region, the ac-
curacy levels obtained by the naive Bayesian classifier and
BLASTN were very similar for ITS2, the entire ITS, and LSU. At
the genus level, classification accuracy was 94 to 95% when either
the entire ITS or LSU region was used, 93% for the ITS2 section,
and 89 to 91% for ITS1 section (Fig. 2). Similar performance was
obtained at the family level, with 98 to 99% classification accuracy
for the entire ITS, the LSU region, or the ITS2 section. When
BLAST and the naive Bayesian classifier were compared, BLASTN
showed the lowest performance at all taxonomic levels for ITS1,
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TABLE 1 Taxonomic composition of the large ITS training set used for LOOCV comparisons of ITS1 and ITS2

Kingdom
(n � 1)

Domain
(n � 4) Phylum (n � 12) Class (n � 36) Order (n � 118)

No. of:

Families
(n � 332)

Genera
(n � 1,110)

Sequences
(n � 8,967)

Eukaryota Fungi Ascomycota Lecanoromycetes Acarosporales 1 2 2
Lecanorales 8 26 126
Pertusariales 4 4 7
Ostropales 2 6 8
Lecanoromycetes incertae

sedis
1 1 1

Peltigerales 1 1 1
Dothideomycetes Jahnulales 1 2 2

Dothideomycetes incertae
sedis[O]

1 1 76

Botryosphaeriales 1 21 101
Capnodiales 13 54 507
Pleosporales 12 44 294
Dothideales 3 11 81
Myriangiales 1 2 22
Hysteriales 1 2 2
Trypetheliales 1 1 1

Sordariomycetes Xylariales 5 26 83
Sordariomycetes incertae

sedis[O]
1 1 25

Hypocreales 7 46 1,596
Calosphaeriales 1 7 26
Microascales 4 7 32
Sordariales 3 6 56
Chaetosphaeriales 2 2 9
Coniochaetales 1 1 3
Diaporthales 7 26 501
Glomerellales 1 3 127
Lulworthiales 1 1 1
Magnaporthales 1 2 23
Ophiostomatales 1 4 72
Trichosphaeriales 2 2 3

Pezizomycetes Pezizales 9 28 178
Ascomycota incertae sedis[C] Ascomycota incertae sedis[O] 1 1 67
Eurotiomycetes Chaetothyriales 4 16 54

Eurotiomycetes incertae sedis 2 2 3
Eurotiales 2 9 185
Pyrenulales 2 3 3
Mycocaliciales 1 1 1
Onygenales 2 3 13
Verrucariales 1 9 19

Saccharomycetes Saccharomycetales 7 17 96
Leotiomycetes Helotiales 7 47 215

Erysiphales 1 3 23
Leotiomycetes incertae sedis 5 12 73

Geoglossomycetes Geoglossales 1 2 2
Lichinomycetes Lichinales 2 2 3
Neolectomycetes Neolectales 1 1 1
Orbiliomycetes Orbiliales 1 2 6
Taphrinomycetes Taphrinales 2 2 3
Arthoniomycetes Arthoniales 1 3 3

Basidiomycota Agaricomycetes Agaricales 29 212 1,980
Agaricomycetes incertae sedis 1 1 1
Russulales 11 32 263
Amylocorticiales 1 1 1
Boletales 20 45 231
Atheliales 1 7 28
Auriculariales 3 6 22
Polyporales 14 74 366

(Continued on following page)
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TABLE 1 (Continued)

Kingdom
(n � 1)

Domain
(n � 4) Phylum (n � 12) Class (n � 36) Order (n � 118)

No. of:

Families
(n � 332)

Genera
(n � 1,110)

Sequences
(n � 8,967)

Thelephorales 3 14 106
Cantharellales 7 18 190
Corticiales 1 24 114
Gomphales 2 7 99
Geastrales 2 2 9
Gloeophyllales 1 3 5
Hymenochaetales 4 16 56
Hysterangiales 1 1 3
Phallales 1 3 7
Sebacinales 1 6 25
Trechisporales 1 2 3

Agaricostilbomycetes Agaricostilbales 3 7 7
Microbotryomycetes Sporidiobolales 4 7 27

Heterogastridiales 1 1 1
Leucosporidiales 1 3 5
Microbotryales 1 2 61
Microbotryomycetes incertae

sedis[O]
1 1 1

Ustilaginomycetes Ustilaginales 2 8 23
Urocystales 3 3 3

Pucciniomycetes Pucciniales 7 12 86
Platygloeales 1 1 1
Septobasidiales 1 1 1

Tremellomycetes Cystofilobasidiales 2 7 30
Filobasidiales 1 1 4
Tremellales 3 10 126
Tremellomycetes incertae

sedis[O]
1 1 66

Dacrymycetes Dacrymycetales 1 4 4
Entorrhizomycetes Entorrhizales 1 1 1
Exobasidiomycetes Entylomatales 1 1 2

Exobasidiales 1 1 2
Exobasidiomycetes incertae

sedis[O]
1 1 4

Malasseziales 1 1 2
Microstromatales 3 4 9
Doassansiales 1 1 1
Tilletiales 1 2 4
Georgefischeriales 1 1 1

Cystobasidiomycetes Erythrobasidiales 1 3 3
Mixiomycetes Mixiales 1 1 1
Wallemiomycetes Wallemiales 1 1 1

Blastocladiomycota Blastocladiomycetes Blastocladiales 2 5 22
Chytridiomycota Chytridiomycetes Chytridiales 5 11 15

Cladochytriales 1 2 2
Spizellomycetales 4 10 24
Rhizophydiales 3 3 11
Lobulomycetales 1 1 1
Chytridiomycetes incertae

sedis[O]
1 1 1

Chytridiomycota Monoblepharidomycetes Monoblepharidales 2 2 3
Fungi incertae sedis[P] Fungi incertae sedis[C] Entomophthorales 3 5 26

Mucorales 8 12 52
Harpellales 1 3 18
Mortierellales 1 2 38
Zoopagales 1 2 2

Glomeromycota Glomeromycetes Diversisporales 2 2 2
Glomerales 1 1 3
Paraglomerales 1 1 3

(Continued on following page)
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with 89% accuracy at the genus level and 93% at the family level.
The naive Bayesian classifier showed higher accuracy for ITS1 in
comparison with BLASTN, with 91% accuracy at the genus level
and 96% accuracy at the family level.

When full-length sequence regions were compared, the LSU
region slightly outperformed the individual ITS1 and ITS2 regions
but not the entire ITS region (Fig. 2). With the naive Bayesian
classifier, the average accuracies for the ITS1, ITS2, entire ITS, and
LSU regions at the genus level were 90.81% (ITS1), 93.18%
(ITS2), 94.60% (entire ITS), and 94.60% (LSU). With BLASTN,
the average accuracies at the genus level were about 88.72%
(ITS1), 93.09% (ITS2), 94.79% (entire ITS), and 93.16% (LSU).
The modest improvement in accuracy observed for the LSU re-
gion versus ITS1 or ITS2 is likely due to its length advantage, since
the average length of LSU for this data set was 626 bp, versus 208
bp and 309 bp for the ITS1 and ITS2 regions, respectively (Fig. 1).
The accuracy of the LSU region was very similar in comparison
with that of the entire ITS region (ITS1 plus 5.8S rRNA plus ITS2)
(599 bp), and the entire ITS had a higher accuracy than the indi-
vidual ITS1 or ITS2 sections (Fig. 2). This observation suggests
that longer sequences provide a higher discriminatory power than

shorter sequences, for either the ITS or LSU region, regardless of
the classification method.

These results were confirmed using Matthew’s correlation co-
efficient (MCC) as a statistical measure of the quality of the clas-
sification using different regions or fragment sizes (see Table S2 in
the supplemental material). A higher number of consistent posi-
tives was observed for longer sequences. For example, for the LSU
we obtained 91% of consistent positive assignments, versus 87.2%
for ITS1 and 90.33% for ITS2 (see Table S2 in the supplemental
material). The MCC values between BLASTN and naive Bayesian
classifier results were 51%, 36%, and 46% for LSU, ITS1, and
ITS2, respectively.

To correct for a possible bias due to sequence length, we con-
ducted a comparison using three sequence length ranges for the
ITS and LSU regions. We also evaluated the effect of bootstrap
support at a 50% cutoff. The accuracy of BLASTN and the naive
Bayesian classification varied by only 1% to 2% for three mini-
mum-length cutoffs that were obtained using the primer-an-
chored method (50 to 200 bp, 100 to 200 bp, and 150 to 200 bp)
(data not shown). Therefore, we applied a global cutoff of 50- to
200-bp fragments (1,054 nonsingleton sequences out of 1,089 se-

TABLE 1 (Continued)

Kingdom
(n � 1)

Domain
(n � 4) Phylum (n � 12) Class (n � 36) Order (n � 118)

No. of:

Families
(n � 332)

Genera
(n � 1,110)

Sequences
(n � 8,967)

Neocallimastigomycota Neocallimastigomycetes Neocallimastigales 1 4 14
Zygomycota Zygomycota incertae sedis Dimargaritales 1 1 1

Endogonales 1 1 1
Kickxellales 1 2 3

Protozoa Protozoa incertae sedis Ichthyosporea Ichthyophonida 1 1 1
Viridiplantae Streptophyta Streptophyta incertae sedis Asterales 1 1 1
Stramenopiles Xanthophyceae Xanthophyceae incertae sedis Vaucheriales 1 1 1

FIG 2 Classification accuracy at each taxonomic level using different rRNA gene regions for LOOCV testing with the naive Bayesian classifier (NBC) and
BLASTN approaches. Numbers are percentages of correctly classified query sequences from the ITS-LSU database. The naive Bayesian classifier was trained by
full-length sequences without a bootstrap cutoff.
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quences longer than 50 bp) (see Fig. S1 in the supplemental ma-
terial). The classification accuracies for the naive Bayesian classi-
fier and BLASTN were very similar, with a slightly better
performance for BLASTN (by 1 to 2%). The major effect was
observed when a bootstrap cutoff was used for the naive Bayesian
classifier. For all cases, the use of a 50% bootstrap cutoff improved
the classification accuracy in comparison with BLASTN (1 to 2%)
(see Fig. S1 in the supplemental material).

Classification accuracy for ITS1, ITS2, and LSU varied between
91 to 92% without the use of a bootstrap cutoff. The ITS1 and ITS2

sections had 1 to 2% higher accuracy at the genus level (94 to 95%)
with respect to LSU (93%) when a 50% bootstrap cutoff was used
with the naive Bayesian classifier (Fig. 3). With the use of a 50%
bootstrap cutoff, the classification accuracy improved for all three
sections tested, and ITS1 showed the highest improvement. The
ITS1 section improved from 91% to 95% at the genus level and
from 96% to 99% at the family level for each of the fragment sizes
(Fig. 3). The classification accuracy using the ITS2 region im-
proved from 92% to 94%, and the accuracy for the LSU fragments
improved from 91% to 93%. The minimum-length cutoff effect

FIG 3 Classification accuracy comparison for the ITS1, ITS2, and LSU regions using the naive Bayesian classifier without a bootstrap or with a 50% bootstrap
cutoff. The y axis shows the percentages of LOOCV sequences that were accurately classified. (A) ITS1 region; (B) ITS2 region; (C) LSU region. Query sequences
of three lengths were extracted using the primer-anchored method.
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was not obvious, although slightly different numbers of sequences
(1,054, 1,043, and 910, respectively) were retained after applying
50- to 200-bp, 100- to 200-bp, and 150- to 200-bp cutoffs (Fig. 3).

The impact of using a bootstrap cutoff on sequence retention
was also evaluated. About 5.5%, 2.8%, and 2.4% of the sequences
in our training set were not retained at genus level assignment for
the ITS1, ITS2, and LSU regions, respectively (Fig. 4), and smaller
fragments were eliminated at a higher percentage for all the re-
gions when a bootstrap cutoff was applied (Fig. 4). ITS1 showed
the lowest sequence retention regardless of minimum-length cut-
off. Considering the trade-off between higher accuracy but re-
duced number of reliable sequences remaining in the training set
and the variable MCC results obtained for ITS1 and ITS2 depend-
ing of the fragment size (see Table S2 in the supplemental mate-
rial), the performance of ITS1 against ITS2 did not differ when the
ITS-LSU training data set was used.

Comparisons between the ITS1 and ITS2 sections using the
large ITS training set. A larger, more comprehensive fungal
sequence training data set was created to test differences in
performance between the ITS1 and ITS2 sections. The larger
data set consisted of 8,966 sequences (8,494 nonsingletons),
representing 1,110 genera, 335 families, and 118 orders of fungi
(Table 1). In general, the accuracy achieved using the classifier
was 4 to 11% lower with this large training set than with the
smaller, less comprehensive ITS-LSU training set used to com-
pare the ITS and LSU regions (see Table S3 in the supplemental
material). These results were expected because the smaller
training set contained only ITS and LSU highly curated bar-
code sequences, and this larger training set is likely to contain
more taxonomy conflicts due to the diversity of the resources
that were used to create the training data set.

BLASTN showed higher accuracy than the naive Bayesian clas-
sifier without the use of a bootstrap cutoff. At the genus level, ITS1
and ITS2 had the same accuracy (84%), with an improvement of

1% when the entire ITS region was evaluated (Fig. 5). For the naive
Bayesian classifier, ITS1 showed the lowest accuracy (80% accu-
racy) without the use of bootstrap, and the entire ITS had the
highest level of accuracy (83%). The family-level accuracy of full-
length sequences ranged from 90 to 95% accuracy. We observed a
slightly better performance of the naive Bayesian classifier than of
BLASTN with the use of a 50% bootstrap cutoff on full-length
ITS1 or ITS2 sequences (Fig. 5). The entire ITS (average length,
588 bp), ITS1 (211 bp), and ITS2 (298 bp) had the same level of
accuracy with the classifier when the 50% bootstrap cutoff was
used, with 87% accuracy at the genus level. The corresponding
accuracy using BLASTN for the different regions was 84 to 85%.

To eliminate any sequence length bias, the ITS1 and ITS2 sec-
tions were also tested using specific fragment sizes of 100 bp, 150
bp, and 200 bp with and without a 50% bootstrap cutoff. ITS1 and
ITS2 showed very similar performance with the 200-bp and
150-bp fragments (Fig. 6). Classification accuracy at the genus
level was 91 to 92% for ITS1 and ITS2 for the 200-bp and 150-bp
fragments with the 50% bootstrap cutoff. Classification accuracy
was higher for the ITS1 section than for the ITS2 section when a
shorter (100-bp) sequence was used as long as a 50% bootstrap
cutoff was employed. Classification accuracy at the family and
order levels ranged from 92 to 98% for the different fragment
sizes. In general, 10 to 20% of the sequences were removed from
the analysis with the use of a 50% bootstrap cutoff at the genus
level.

DISCUSSION

A number of factors that can influence classification accuracy of
the fungal rRNA operon sequences were evaluated in this study.
These included two databases with different compositions and
sequence numbers for the ITS region, the use of a naive Bayesian
classifier and BLASTN approaches for classification, the use of
three ITS sections (full ITS, ITS1, and ITS2) in comparison with a

FIG 4 Percentage of sequences removed from the ITS-LSU training set after applying a 50% bootstrap cutoff with the naive Bayesian classifier. The y axis shows
the percentage of sequence removed. Query sequences of three sizes were extracted using the primer-anchored method.
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5= region of the LSU gene, different sequence lengths likely
achieved by current sequencing technologies, and the impact of
employing a bootstrap cutoff calculation to improve classification
accuracy. Overall, we found that the underlying database had the
highest impact on classification accuracy using a LOOCV analysis,
followed by the use of a bootstrap cutoff that increased accuracy at
the expense of removing unreliable sequences. All of the gene
regions provided excellent classification at higher taxonomic in-
tervals, and differences at the genus level were small (1 to 2%)
across the regions used (ITS1, ITS2, entire ITS, and LSU) or across
sequence lengths from 100 to 200 bp. The choice of gene region
and classification approach/stringency can be optimized within
the framework of information provided here, as needed for differ-
ent studies that may focus on different fungal clades or data sets.
Clearly, improvements in the taxonomic scope and depth of pub-
licly available databases will increase classification accuracy for all
applications (17, 27, 37).

Through our comparisons, we provide two publicly available
databases upon which the scientific community may build: an
8,967-member, hand-curated ITS database and an ITS-LSU train-
ing set modified from that described in reference 12. First, by
focusing on a parallel ITS-LSU training set, where each taxon was
represented by the ITS and LSU regions, we were able to provide
direct comparisons of rRNA gene regions. Second, the larger ITS
database was created to broadly survey sequences to represent all
major phyla as much as possible instead of focusing deeply on
particular families, genera, and species. For environmental survey
applications, a broad database with good representation at higher-
level taxa is most important because many environmental se-
quences are not closely related to known genera or families (e.g., in
recent soil surveys [6, 38–40]). Future efforts will require incor-
poration of taxa represented only by environmental sequences
from NCBI and the incorporation of databases that incorporated
community curation efforts by experts in the field such as those
conducted by UNITE and the Fungal Consortium for the Barcode
of Life (12, 21, 22, 27).

Database composition. Our study and prior studies have
shown that the quality and success of automated fungal classifica-
tion were greatly influenced by reliable reference sequences, se-

quence length, and the algorithms used in the analysis (19, 25, 41).
The two databases used in this study provided different levels of
classification accuracy, with the ITS-LSU training achieving 4 to
11% higher accuracy in LOOCV comparisons than the large ITS
training set (see Table S3 in the supplemental material). The large
ITS training set is more comprehensive but has lower coverage in
many less-characterized lineages. Many environmental surveys
show a high percentage of “novel” or inadequately classified taxa,
so it is important to create the mechanisms to include novel clades
in curated databases. This result underscores the importance of
generating and maintaining accurate and comprehensive data-
bases for use by the scientific community. Common problems that
impact the quality of fungal classification include the presence of
misclassified sequences (approximately 20% of the sequences in
NCBI) (37), the high number of polyphyletic groups common in
fungal taxonomy, reflecting the need for more phylogenetic stud-
ies, and sequences with uncertain or unknown taxonomic place-
ment (incertae sedis) at all taxonomic levels, such as those fre-
quently found in common mitosporic Ascomycota.

Potential reasons why the accuracy dropped when the larger
training data set was applied included the presence of many
less-well-studied fungal sequences in the larger ITS data set,
including taxa with unknown taxonomic placement at differ-
ent classification levels. Another likely reason could be due to
the biased data set itself. If a reference data set contains many
sequences derived from some environments and few associated
with others, these could lead to a substantial variation in clas-
sification quality. In addition, the use of LOOCV at the se-
quence level (31, 36, 42–45) where a single sequence with a
known annotation is held out from a reference database and
classified using the remainder might not be perfect. Although
not reported yet from fungal community study, it is known
that natural environments contain “microdiverse” clusters of
closely related bacterial strains (44). If the distribution from
the fungal community had a similar pattern, then it would lead
to a biased training set with a greater extent of diversity within
certain phyla only. Therefore, it is essential to continue efforts
to enlarge curated and more diverged fungal databases to cover
a greater number of taxonomic classes.

FIG 5 Comparison of the full lengths of ITS1, ITS2, and entire ITS sections using the naive Bayesian classifier (NBC) or BLASTN. The classifier was used with
and without a 50% bootstrap cutoff.
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Naive Bayesian classifier versus BLASTN and effect of boot-
strap cutoff. At higher taxonomic levels (phylum, class, and or-
der), the classification accuracies of the naive Bayesian classifier
and BLASTN were quite similar. Porter and Golding (25) com-
pared different classification methods and showed that BLASTN
was consistently better than MEGAN (29) and SAP (Statistical
Assignment Program) (46) for the entire ITS and partial ITS se-
quences. In the current study with the use of a 50% bootstrap
cutoff, the naive Bayesian classifier showed the highest classifica-
tion accuracy at the genus level, with 1 to 5% higher accuracy than
BLASTN. This was especially true for the ITS1 region, with an
improvement of up to 5% in classification accuracy. The naive
Bayesian classifier provided multiple other advantages over
BLASTN, including an alignment-independent algorithm, the
availability of classification accuracy values as a measure of cer-

tainty, and computational speed. The higher speed of the naive
Bayesian classifier than of GreenGenes, BLAST, MEGAN, and
other classification tools is well documented (17, 25, 30, 43). The
naive Bayesian classifier is therefore ideal for regions such as the
ITS that cannot be aligned with confidence and are commonly use
in environmental studies.

LSU versus ITS. In addition to the generation of a high-quality
ITS reference database, our analyses showed that a fragment
length of more than 300 bp could influence the quality of sequence
classification. The longer queries for the LSU region and the
entire ITS outperformed the individual ITS1 and ITS2 sections at
the genus level (Fig. 2), showing that sequence length needs to be
taken into consideration when selecting genetic markers and se-
quencing platforms (25, 26). However, short sequences from 50 to
200 bp can still yield high-accuracy classification for both the ITS

FIG 6 Accuracy comparison using the ITS1 and ITS2 sections with the naive Bayesian classifier at its default setting and a 50% bootstrap cutoff for exact-length
sequences of 100 bp (A), 150 bp (B), and 200 bp (C). The y axes show percentages of accuracy (lines) and of sequences removed (bars).
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and LSU regions, especially if a bootstrap cutoff is used with the
naive Bayesian classifier as described by Liu et al. (17) and in this
study. At higher taxonomic levels, the performances of the LSU
and ITS regions were very similar. At lower levels (genus), the
individual ITS1 and ITS2 showed 2 to 3% higher accuracy using
the naive Bayesian classifier with a 50% bootstrap cutoff than the
LSU region. Sequence length affected classification accuracy with
each rRNA region. With identical sequence lengths, accuracy us-
ing ITS1, ITS2, or the LSU region was within 0 to 1%, illustrating
that the database and the use of a bootstrap cutoff have greater
influence on classification accuracy than the choice of rRNA gene
region. Even if smaller fragments have lower resolution for fungal
phylogenetics (47), they still provide a very valuable resource for
taxonomic identification if reliable database sequences are avail-
able.

ITS1 versus ITS2. Using 50- to 200-bp sequence lengths, the
performances of ITS1 and ITS2 were very similar (�1% differ-
ence) with either the ITS-LSU training set or the large ITS training
set. Several studies have shown little difference between ITS1 and
ITS2 when the regions are used to determine community compo-
sition, but in general ITS1 seems to show higher variability (20,
48). ITS2 might have better overall performance if we considered
that with the ITS-LSU training set more sequences were retained
after applying a 50% bootstrap cutoff and similar numbers were
retained for the 150-bp and 200-bp fragments for the larger train-
ing database. In addition, IT2 could be more variable than ITS1
for some taxa (49) and has a secondary structure signal that could
be used for fungal phylogenetics (50, 51). The availability of mul-
tiple universal primers in the 5.8S rRNA gene provides additional
advantages for the ITS2 region. The longer fragments lengths now
available with the different NGS platforms will also target part of
the LSU region, and this region can be aligned for more detailed
phylogenetic analysis of novel fungal taxa (12).

With new sequencing technologies, the largest portion of the
diversity of fungi will soon be represented by sequence data, bring-
ing new challenges to automated fungal classification (21, 52). To
effectively classify sequences obtained from PCR primer-based
environmental and metagenomic studies, new guidelines and
methods to annotate and name operational taxonomic units
(OTUs) that are represented only by sequenced data need to be
defined (22). In addition, curation of available sequences for spec-
imens deposited in collections will require organization of the
community to improve collaborations among taxonomists, sys-
tematists, ecologists, and bioinformatics specialists (19, 52).

ACKNOWLEDGMENTS

We thank Rebecca Mueller, Cedar N. Hesse, and the reviewers for their
valuable suggestions on the manuscript and Zachary Gossage, Katrina
Sandona, and Terri Tobias for their assistance with the development of the
training data set.

This study was supported by the U.S. Department of Energy, Office of
Biological and Environmental Research, through a Science Focus Area
grant (2009LANLF260) (C.R.K., A.P.-A., and K.-L.L.). Additional sup-
port was provided by the NSF (grant 0919510) (A.P.-A.), Western Illinois
University, and the National Science Council in Taiwan (NSC97-2917-I-
006-111) (K.-L.L.).

REFERENCES
1. Blackwell M. 2011. The fungi: 1, 2, 3. 5.1 million species? Am. J. Bot.

98:426 – 438. http://dx.doi.org/10.3732/ajb.1000298.
2. O’Brien H, Parrent J, Jackson J, Moncalvo J-M, Vilgalys R. 2005. Fungal

community analysis by large-scale sequencing of environmental samples.
Appl. Environ. Microbiol. 71:5544 –5550. http://dx.doi.org/10.1128/AEM
.71.9.5544-5550.2005.

3. Jumpponen A, Jones K. 2009. Massively parallel 454 sequencing indicates
hyperdiverse fungal communities in temperate Quercus macrocarpa
phyllosphere. New Phytol. 184:438 – 448. http://dx.doi.org/10.1111/j
.1469-8137.2009.02990.x.

4. Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G,
Kauserud H. 2012. Changes in the root-associated fungal communities
along a primary succession gradient analysed by 454 pyrosequencing.
Mol. Ecol. 21:1897–1908. http://dx.doi.org/10.1111/j.1365-294X.2011
.05214.x.

5. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I,
Bahram M, Bechem E, Chuyong G, Kõljalg U. 2010. 454 Pyrosequencing
and Sanger sequencing of tropical mycorrhizal fungi provide similar re-
sults but reveal substantial methodological biases. New Phytol. 188:291–
301. http://dx.doi.org/10.1111/j.1469-8137.2010.03373.x.

6. Weber CF, Vilgalys R, Kuske CR. 2013. Changes in fungal community
composition in response to elevated atmospheric CO2 and nitrogen fer-
tilization varies with soil horizon. Front. Microbiol. 4:78. http://dx.doi.org
/10.3389/fmicb.2013.00078.

7. Hibbett DS, Ohman A, Kirk PM. 2009. Fungal ecology catches fire. New
Phytol. 184:279–282. http://dx.doi.org/10.1111/j.1469-8137.2009.03042.x.

8. Aime MC, Brearley FQ. 2012. Tropical fungal diversity: closing the gap
between species estimates and species discovery. Biodivers. Conserv. 21:
2177–2180. http://dx.doi.org/10.1007/s10531-012-0338-7.

9. Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J,
Yahr R. 2011. DNA barcoding of lichenized fungi demonstrates high
identification success in a floristic context. New Phytol. 191:288 –300.
http://dx.doi.org/10.1111/j.1469-8137.2011.03677.x.

10. Wang Z, Nilsson RH, Lopez-Giraldez F, Zhuang W, Dai Y, Johnston
PR, Townsend JP. 2011. Tasting soil fungal diversity with earth tongues:
phylogenetic test of SATé alignments for environmental ITS data. PLoS
One 6:e19039. http://dx.doi.org/10.1371/journal.pone.0019039.

11. Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars
K, Smit E. 2003. Molecular identification of ectomycorrhizal mycelium in
soil horizons. Appl. Environ. Microbiol. 69:327–333. http://dx.doi.org/10
.1128/AEM.69.1.327-333.2003.

12. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA,
Chen W. 2012. Nuclear ribosomal internal transcribed spacer (ITS) re-
gion as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci.
U. S. A. 109:6241– 6246. http://dx.doi.org/10.1073/pnas.1117018109.

13. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A,
Hofstetter V, Kauff F, Lutzoni F. 2009. A phylogenetic estimation of
trophic transition networks for ascomycetous fungi: are lichens cradles of
symbiotrophic fungal diversification? Syst. Biol. 58:283–297. http://dx.doi
.org/10.1093/sysbio/syp001.

14. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D,
Powell MJ, Griffith GW, Vilgalys R. 2006. A molecular phylogeny of the
flagellated fungi (Chytridiomycota) and description of a new phylum
(Blastocladiomycota). Mycologia 98:860 – 871. http://dx.doi.org/10.3852
/mycologia.98.6.860.

15. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ,
Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A,
Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G-H,
Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC,
Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-
Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM,
Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Ross-
man AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S,
Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, et al.
2006. Reconstructing the early evolution of Fungi using a six-gene phy-
logeny. Nature 443:818 – 822. http://dx.doi.org/10.1038/nature05110.

16. Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud
WA, Sørensen SJ, Rosendahl S. 2012. 454-sequencing reveals stochastic
local reassembly and high disturbance tolerance within arbuscular mycor-
rhizal fungal communities. J. Ecol. 100:151–160. http://dx.doi.org/10
.1111/j.1365-2745.2011.01894.x.

17. Liu K-L, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G. 2012. Accurate, rapid
taxonomic classification of fungal large-subunit rRNA genes. Appl. Environ. Mi-
crobiol. 78:1523–1533. http://dx.doi.org/10.1128/AEM.06826-11.

18. Vrålstad T. 2011. ITS, OTUs and beyond—fungal hyperdiversity calls for

ITS and LSU Fungal Classifier

February 2014 Volume 80 Number 3 aem.asm.org 839

http://dx.doi.org/10.3732/ajb.1000298
http://dx.doi.org/10.1128/AEM.71.9.5544-5550.2005
http://dx.doi.org/10.1128/AEM.71.9.5544-5550.2005
http://dx.doi.org/10.1111/j.1469-8137.2009.02990.x
http://dx.doi.org/10.1111/j.1469-8137.2009.02990.x
http://dx.doi.org/10.1111/j.1365-294X.2011.05214.x
http://dx.doi.org/10.1111/j.1365-294X.2011.05214.x
http://dx.doi.org/10.1111/j.1469-8137.2010.03373.x
http://dx.doi.org/10.3389/fmicb.2013.00078
http://dx.doi.org/10.3389/fmicb.2013.00078
http://dx.doi.org/10.1111/j.1469-8137.2009.03042.x
http://dx.doi.org/10.1007/s10531-012-0338-7
http://dx.doi.org/10.1111/j.1469-8137.2011.03677.x
http://dx.doi.org/10.1371/journal.pone.0019039
http://dx.doi.org/10.1128/AEM.69.1.327-333.2003
http://dx.doi.org/10.1128/AEM.69.1.327-333.2003
http://dx.doi.org/10.1073/pnas.1117018109
http://dx.doi.org/10.1093/sysbio/syp001
http://dx.doi.org/10.1093/sysbio/syp001
http://dx.doi.org/10.3852/mycologia.98.6.860
http://dx.doi.org/10.3852/mycologia.98.6.860
http://dx.doi.org/10.1038/nature05110
http://dx.doi.org/10.1111/j.1365-2745.2011.01894.x
http://dx.doi.org/10.1111/j.1365-2745.2011.01894.x
http://dx.doi.org/10.1128/AEM.06826-11
http://aem.asm.org


supplementary solutions. Mol. Ecol. 20:2873–2875. http://dx.doi.org/10
.1111/j.1365-294X.2011.05149.x.

19. Begerow D, Nilsson H, Unterseher M, Maier W. 2010. Current state and
perspectives of fungal DNA barcoding and rapid identification proce-
dures. Appl. Microbiol. Biotechnol. 87:99 –108. http://dx.doi.org/10.1007
/s00253-010-2585-4.

20. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H.
2013. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour.
13:218 –224. http://dx.doi.org/10.1111/1755-0998.12065.

21. Bates ST, Ahrendt S, Bik HM, Bruns TD, Caporaso JG, Cole J, Dwan M,
Fierer N, Gu D, Houston S, Knight R, Leff J, Lewis C, Maestre JP,
McDonald D, Nilsson RH, Porras-Alfaro A, Robert V, Schoch C, Scott
J, Taylor DL, Parfrey LW, Stajich JE. 2013. Meeting report: Fungal ITS
Workshop (October 2012). Stand. Genomic Sci. 8:118 –123. http://dx.doi
.org/10.4056/sigs.3737409.

22. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram
M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B,
Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hart-
mann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R,
Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG,
Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott
JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M,
Larsson K-H. 2013. Towards a unified paradigm for sequence-based iden-
tification of fungi. Mol. Ecol. 22:5271–5277. http://dx.doi.org/10.1111
/mec.12481.

23. Gazis R, Rehner S, Chaverri P. 2011. Species delimitation in fungal
endophyte diversity studies and its implications in ecological and biogeo-
graphic inferences. Mol. Ecol. 20:3001–3013. http://dx.doi.org/10.1111/j
.1365-294X.2011.05110.x.

24. Lindner DL, Gargas A, Lorch JM, Banik MT, Glaeser J, Kunz TH,
Blehert DS. 2010. DNA-based detection of the fungal pathogen Geomyces
destructans in soils from bat hibernacula. Mycologia 103:241–246. http:
//dx.doi.org/10.3852/10-262.

25. Porter TM, Golding GB. 2011. Are similarity- or phylogeny-based meth-
ods more appropriate for classifying internal transcribed spacer (ITS)
metagenomic amplicons? New Phytol. 192:775–782. http://dx.doi.org/10
.1111/j.1469-8137.2011.03838.x.

26. Porter TM, Golding GB. 2012. Factors that affect large subunit ribosomal
DNA amplicon sequencing studies of fungal communities: classification
method, primer choice, and error. PLoS One 7:e35749. http://dx.doi.org
/10.1371/journal.pone.0035749.

27. Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ,
Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T,
Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM. 2005. UNITE:
a database providing web-based methods for the molecular identification
of ectomycorrhizal fungi. New Phytol. 166:1063–1068. http://dx.doi.org
/10.1111/j.1469-8137.2005.01376.x.

28. Taylor DL, Houston S. 2011. Fungal genomics, p 141–155. In Xu J-R,
Bluhm BH (ed), Fungal genomics: methods and protocols. Humana Press,
Totowa, NJ.

29. Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of
metagenomic data. Genome Res. 17:377–386. http://dx.doi.org/10.1101
/gr.5969107.

30. Caporaso JG. 2010. QIIME allows analysis of high-throughput commu-
nity sequencing data. Nat. Methods 7:334. http://dx.doi.org/10.1038
/nmeth.f.303.

31. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxonomy.
Appl. Environ. Microbiol. 73:5261–5267. http://dx.doi.org/10.1128/AEM
.00062-07.

32. Hibbett DS, Nilsson RH, Snyder M, Fonseca M, Costanzo J, Shonfeld
M. 2005. Automated phylogenetic taxonomy: an example in the homoba-
sidiomycetes (mushroom-forming fungi). Syst. Biol. 54:660 – 668. http:
//dx.doi.org/10.1080/10635150590947104.

33. Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics 5:113. http://dx
.doi.org/10.1186/1471-2105-5-113.

34. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evo-

lutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol.
24:1596 –1599. http://dx.doi.org/10.1093/molbev/msm092.

35. Bell G, DeGennard L, Gelfand D, Bishop R, Valenzuela P, Rutter W.
1977. RNA genes of Saccharomyces cerevisiae. J. Biol. Chem. 252:8118 –
8125.

36. Baldi P, Soren B. 2001. Bioinformatics: the machine learning approach,
2nd ed. MIT Press, Cambridge, MA.

37. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H,
Kõljalg U. 2006. Taxonomic reliability of DNA sequences in public se-
quence databases: a fungal perspective. PLoS One 1:e59. http://dx.doi.org
/10.1371/journal.pone.0000059.

38. Eichorst SA, Kuske CR. 2012. Identification of cellulose-responsive bac-
terial and fungal communities in geographically and edaphically different
soils by using stable isotope probing. Appl. Environ. Microbiol. 78:2316 –
2327. http://dx.doi.org/10.1128/AEM.07313-11.

39. Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T,
Natvig DO. 2008. Novel root fungal consortium associated with a domi-
nant desert grass. Appl. Environ. Microbiol. 74:2805–2813. http://dx.doi
.org/10.1128/AEM.02769-07.

40. Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL.
2011. Diversity and distribution of soil fungal communities in a semiarid
grassland. Mycologia 103:10 –21. http://dx.doi.org/10.3852/09-297.

41. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Capo-
raso JG, Angenent LT, Knight R, Ley RE. 2012. Impact of training sets on
classification of high-throughput bacterial 16s rRNA gene surveys. ISME J.
6:94 –103. http://dx.doi.org/10.1038/ismej.2011.82.

42. Liu CH, Lee SM, Vanlare JM, Kasper DL, Mazmanian SK. 2008.
Regulation of surface architecture by symbiotic bacteria mediates host
colonization. Proc. Natl. Acad. Sci. U. S. A. 105:3951–3956. http://dx.doi
.org/10.1073/pnas.0709266105.

43. Wu D, Hartman A, Ward N, Eisen JA. 2008. An automated phylogenetic
tree-based small subunit rRNA taxonomy and alignment pipeline (STAP).
PLoS One 3:e2566. http://dx.doi.org/10.1371/journal.pone.0002566.

44. Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF.
2004.Fine-scalephylogeneticarchitectureofacomplexbacterialcommunity.Na-
ture 430:551–554. http://dx.doi.org/10.1038/nature02649.

45. Sundquist A, Bigdeli S, Jalili R, Druzin ML, Waller S, Pullen KM,
El-Sayed YY, Taslimi MM, Batzoglou S, Ronaghi M. 2007. Bacterial
flora-typing with targeted, chip-based pyrosequencing. BMC Microbiol.
7:108. http://dx.doi.org/10.1186/1471-2180-7-108.

46. Munch K, Boomsma W, Huelsenbeck JP, Willerslev E, Nielsen R. 2008.
Statistical assignment of DNA sequences using Bayesian phylogenetics.
Syst. Biol. 57:750 –757. http://dx.doi.org/10.1080/10635150802422316.

47. Min XJ, Hickey DA. 2007. Assessing the effect of varying sequence length
on DNA barcoding of fungi. Mol. Ecol. Notes 7:365–373. http://dx.doi.org
/10.1111/j.1471-8286.2007.01698.x.

48. Bazzicalup OAL, Bálint M, Schmitt I. 2013. Comparison of ITS1 and
ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fun-
gal Ecol. 6:102–109. http://dx.doi.org/10.1016/j.funeco.2012.09.003.

49. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H.
2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the
international sequence databases and its implications for molecular spe-
cies identification. Evol. Bioinform. Online 4:193–201.

50. Coleman AW. 2007. Pan-eukaryote ITS2 homologies revealed by RNA
secondary structure. Nucleic Acids Res. 35:3322–3329. http://dx.doi.org
/10.1093/nar/gkm233.

51. Krüger D, Gargas A. 2008. Secondary structure of ITS2 rRNA provides
taxonomic characters for systematic studies—a case in Lycoperdaceae
(Basidiomycota). Mycol. Res. 112:316 –330. http://dx.doi.org/10.1016/j
.mycres.2007.10.019.

52. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH. 2011.
Progress in molecular and morphological taxon discovery in Fungi and
options for formal classification of environmental sequences. Fungal Biol.
Rev. 25:38 – 47. http://dx.doi.org/10.1016/j.fbr.2011.01.001.

53. Lothamer K, Brown SP, Mattox JD, Jumpponen A. 2013. Comparison of
root-associated communities of native and non-native ectomycorrhizal
hosts in an urban landscape. Mycorrhiza. http://dx.doi.org/10.1007
/s00572-013-0539-2.

Porras-Alfaro et al.

840 aem.asm.org Applied and Environmental Microbiology

http://dx.doi.org/10.1111/j.1365-294X.2011.05149.x
http://dx.doi.org/10.1111/j.1365-294X.2011.05149.x
http://dx.doi.org/10.1007/s00253-010-2585-4
http://dx.doi.org/10.1007/s00253-010-2585-4
http://dx.doi.org/10.1111/1755-0998.12065
http://dx.doi.org/10.4056/sigs.3737409
http://dx.doi.org/10.4056/sigs.3737409
http://dx.doi.org/10.1111/mec.12481
http://dx.doi.org/10.1111/mec.12481
http://dx.doi.org/10.1111/j.1365-294X.2011.05110.x
http://dx.doi.org/10.1111/j.1365-294X.2011.05110.x
http://dx.doi.org/10.3852/10-262
http://dx.doi.org/10.3852/10-262
http://dx.doi.org/10.1111/j.1469-8137.2011.03838.x
http://dx.doi.org/10.1111/j.1469-8137.2011.03838.x
http://dx.doi.org/10.1371/journal.pone.0035749
http://dx.doi.org/10.1371/journal.pone.0035749
http://dx.doi.org/10.1111/j.1469-8137.2005.01376.x
http://dx.doi.org/10.1111/j.1469-8137.2005.01376.x
http://dx.doi.org/10.1101/gr.5969107
http://dx.doi.org/10.1101/gr.5969107
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1080/10635150590947104
http://dx.doi.org/10.1080/10635150590947104
http://dx.doi.org/10.1186/1471-2105-5-113
http://dx.doi.org/10.1186/1471-2105-5-113
http://dx.doi.org/10.1093/molbev/msm092
http://dx.doi.org/10.1371/journal.pone.0000059
http://dx.doi.org/10.1371/journal.pone.0000059
http://dx.doi.org/10.1128/AEM.07313-11
http://dx.doi.org/10.1128/AEM.02769-07
http://dx.doi.org/10.1128/AEM.02769-07
http://dx.doi.org/10.3852/09-297
http://dx.doi.org/10.1038/ismej.2011.82
http://dx.doi.org/10.1073/pnas.0709266105
http://dx.doi.org/10.1073/pnas.0709266105
http://dx.doi.org/10.1371/journal.pone.0002566
http://dx.doi.org/10.1038/nature02649
http://dx.doi.org/10.1186/1471-2180-7-108
http://dx.doi.org/10.1080/10635150802422316
http://dx.doi.org/10.1111/j.1471-8286.2007.01698.x
http://dx.doi.org/10.1111/j.1471-8286.2007.01698.x
http://dx.doi.org/10.1016/j.funeco.2012.09.003
http://dx.doi.org/10.1093/nar/gkm233
http://dx.doi.org/10.1093/nar/gkm233
http://dx.doi.org/10.1016/j.mycres.2007.10.019
http://dx.doi.org/10.1016/j.mycres.2007.10.019
http://dx.doi.org/10.1016/j.fbr.2011.01.001
http://dx.doi.org/10.1007/s00572-013-0539-2
http://dx.doi.org/10.1007/s00572-013-0539-2
http://aem.asm.org

	From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition
	MATERIALS AND METHODS
	Fungal ITS-LSU gene training set.
	Large fungal ITS gene training set.
	Genetic region representation.
	Extraction of different test fragments for comparisons of the ITS and LSU regions.
	Naive Bayesian classifier and bootstrap analysis.
	Evaluation of BLASTN classification.
	Assessment of taxonomic assignment consistency.

	RESULTS
	LSU versus ITS classification accuracy using the ITS-LSU training set.
	Comparisons between the ITS1 and ITS2 sections using the large ITS training set.

	DISCUSSION
	Database composition.
	Naive Bayesian classifier versus BLASTN and effect of bootstrap cutoff.
	LSU versus ITS.
	ITS1 versus ITS2.

	ACKNOWLEDGMENTS
	REFERENCES


