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Evidence from clinical trials of malaria vaccine candidates suggests that both cell-mediated and humoral immunity to pre-eryth-
rocytic parasite stages can provide protection against infection. Novel pre-erythrocytic antibody (Ab) targets could be key to im-
proving vaccine formulations, which are currently based on targeting antigens such as the circumsporozoite protein (CSP).
However, methods to assess the effects of sporozoite-specific Abs on pre-erythrocytic infection in vivo remain underdeveloped.
Here, we combined passive transfer of monoclonal Abs (MAbs) or immune serum with a luciferase-expressing Plasmodium
yoelii sporozoite challenge to assess Ab-mediated inhibition of liver infection in mice. Passive transfer of a P. yoelii CSP MAb
showed inhibition of liver infection when mice were challenged with sporozoites either intravenously or by infectious mosquito
bite. However, inhibition was most potent for the mosquito bite challenge, leading to a more significant reduction of liver-stage
burden and even a lack of progression to blood-stage parasitemia. This suggests that Abs provide effective protection against a
natural infection. Inhibition of liver infection was also achieved by passive transfer of immune serum from whole-parasite-im-
munized mice. Furthermore, we demonstrated that passive transfer of a MAb against P. falciparum CSP inhibited liver-stage
infection in a humanized mouse/P. falciparum challenge model. Together, these models constitute unique and sensitive in vivo
methods to assess serum-transferable protection against Plasmodium sporozoite challenge.

Malaria is a mosquito-borne disease caused by Plasmodium
parasites, estimated to infect up to 289 million people annu-

ally, with nearly 1 million of those, mostly children, succumbing
to death from the disease (43). The parasite life cycle progresses
from sporozoite inoculation at the site of mosquito bite in the skin
through the circulation to the liver, where each parasite multiplies
as a liver stage within a single hepatocyte. Following liver-stage
development, the parasite progresses to the blood-stage infection,
which is the cause of all malaria-associated morbidity and mortal-
ity. Unfortunately, immunity that develops in response to natural
parasite exposure is nonsterile and no fully protective malaria vac-
cine is currently available. Only one vaccine candidate to date,
RTS,S, has progressed to phase III clinical trials. RTS,S is a subunit
vaccine targeting the pre-erythrocytic antigen circumsporozoite
protein (CSP) and showed promising preclinical and early clinical
results (1). However, data from trials in areas of malaria endemic-
ity show variable and short-lived vaccine efficacy depending on
age group and transmission intensity (2, 3). Individuals that were
protected showed higher levels of anti-CSP IgG and CD4� T cell
responses, indicating a role for both humoral and cell-mediated
immunity in this vaccination model (3, 4).

In contrast, the only experimental vaccination to provide com-
plete protection in humans to date has been via mosquito bite
administration of radiation-attenuated sporozoites (RAS) (5)
and, more recently, by intravenous (i.v.) administration of cryo-
preserved RAS (6) as well as infectious mosquito bite under anti-
malarial drug cover (7, 8). RAS infect the liver, suffer growth ar-
rest, and fail to progress to blood-stage infection—allowing
recognition of the pre-erythrocytic parasite by the immune system

while avoiding clinical infection (9). High levels of protection can
also be achieved experimentally in mice using genetically attenu-
ated parasites (GAP) that can progress further through liver-stage
development than RAS but also fail to develop to the blood stage
(10, 11). While whole-sporozoite immunization strategies face
manufacturing and delivery challenges, they constitute extremely
useful models to elucidate mechanisms of pre-erythrocytic immu-
nity and to identify parasite antigen targets for protection.

Cell-mediated immunity has been thought of as essential and
even as the sole arm of the immune system necessary for protec-
tion against pre-erythrocytic infection via whole-sporozoite im-
munization. These conclusions arose from numerous studies in
rodent models using immunization with RAS, where depletion of
CD8� T cells completely ablated protection from infectious
sporozoite challenge in contrast to the maintenance of protection
in animals lacking Abs or CD4� T cells (12–15). However, those
studies all utilized challenge by i.v. injection of sporozoites, which
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might not lend itself to observation of Ab function against sporo-
zoite infection by the natural route (16).

Following mosquito bite, the sporozoite first migrates in the
dermal tissue and then enters the circulation by traversing the
endothelium of skin capillaries (17). Once it arrives in the liver,
the sporozoite crosses the sinusoidal cell lining, completing its
path to the liver (18, 19). Thus, an i.v. sporozoite challenge model
does not assess Ab activity against the skin traversal phase. Anti-
bodies have been shown to immobilize sporozoites in the dermis
and even at the mosquito proboscis— both limiting the chances of
a sporozoite successfully reaching the liver (20, 21). Recent data
from clinical trials investigating immunization with novel DNA/
adenoviral vaccine constructs, RTS,S, and RAS all support the idea
of a critical role for these Ab-mediated mechanisms, as protection
often correlates with humoral immunity, despite the generation of
robust cell-mediated immune responses (4, 22–25).

Future vaccines will need to incorporate a strategy to evoke
long-lasting Ab responses as well as T cell-mediated cellular im-
munity. To date, only a few sporozoite Ab targets have been in-
vestigated and identification of new target antigens should be a key
priority in the near term (26). For example, recent work has iden-
tified a number of putative surface-exposed proteins on the sporo-
zoite (27), posing the possibility of novel potential target antigens
to block sporozoite infection via Abs. Passive immunization with
Abs allows analysis of Ab efficacy without the effects of cell-medi-
ated immunity. In mice, P. yoelii has served as one of the standard
rodent malaria models in which to study both subunit vaccines
and whole-sporozoite immunizations as well as passive transfer of
Abs for protection against pre-erythrocytic malaria (15, 28–31).
However, the tools with which to quantitatively assess the effects
of these Abs have remained limited and relatively unchanged in
recent decades.

Here, we set out to determine if bioluminescent imaging of
liver-stage burden could be used to evaluate humoral immunity
by passive transfer of MAbs or serum from GAP-immunized mice
and under what conditions this assay is most sensitive. By using a
new MAb against the P. yoelii CSP repeat region, we found that
passive transfer of the MAb was effective at reducing liver infec-
tion after sporozoite challenge as measured by both quantitative
PCR (qPCR) and bioluminescent imaging. Sporozoite challenge
by mosquito bite was found to be more sensitive to MAb blocking
than i.v. challenge, especially when passive transfer was performed
24 h prior to challenge, and ultimately was able to confer sterile
protection (absence of blood-stage parasitemia). Passive transfer
of serum from animals immunized with either early- or late-liver-
stage-arresting GAPs (32, 33) was also effective at reducing liver
infection as measured by bioluminescent imaging.

Finally, utilizing a recently developed, robust human liver-chi-
meric mouse model that supports infection with luciferase-ex-
pressing P. falciparum sporozoites (34, 35), we demonstrate Ab-
mediated inhibition of P. falciparum liver infection.

MATERIALS AND METHODS
Mice. Female Swiss Webster (SW) mice were purchased from Harlan
Laboratories. Female C57BL/6 and BALB/cJ mice, 6 to 8 weeks of age,
were purchased from Jackson Laboratories. FRG huHep mice were pur-
chased from the Yecuris Corporation. All studies were performed according
to the regulations of the Institutional Animal Care and Use Committee (IA-
CUC). Approval was obtained from the Seattle BioMed Experimental Animal
Ethical Committee (OLAW assurance no. A3640-01).

Parasite growth and sporozoite isolation. Six-to-eight-week-old fe-
male SW mice were injected with blood from P. yoelii green fluorescent
protein-luc (GFP-luc) or P. yoelii 17XNL wild-type (WT)-infected mice
to begin the growth cycle. The infected mice were used to feed female
Anopheles stephensi mosquitoes after gametocyte exflagellation was ob-
served. P. falciparum GFP-luc parasites were maintained as previously
described (34). Briefly, in vitro P. falciparum NF54HT–GFP-luc blood-
stage cultures were maintained in RPMI 1640 (25 mM HEPES, 2 mM
L-glutamine) supplemented with 50 �M hypoxanthine and 10% A� hu-
man serum in an atmosphere of 5% CO2, 5% O2, and 90% N2. Gameto-
cyte cultures were initiated at 5% hematocrit and 0.8 to 1% parasitemia
(mixed stages) and maintained for up to 17 days with daily medium
changes. Non-blood-fed adult female mosquitoes at 3 to 7 days postemer-
gence were fed on gametocyte cultures. For both P. yoelii and P. falciparum
parasites, 10 days after the blood meal, 15 to 20 mosquitoes were dissected
to evaluate midgut oocyst formation. On days 14 through 17 post-infec-
tious-blood meal, salivary gland sporozoites were isolated from the mos-
quitoes for experimentation.

MAbs to P. yoelii CSP. A mouse was immunized with 100,000 P. yoelii
RAS and boosted twice at 30-day intervals. Four days after the last boost,
the mouse was sacrificed, the spleen was removed and dissociated, and a
fusion to SP-2 cells was performed following standard protocols (44).
Production of Abs specific for P. yoelii sporozoites by individual hybrid-
oma cultures was assessed by immunofluorescence using air-dried sporo-
zoites and enzyme-linked immunosorbent assays (ELISAs) using peptides
from different regions of the circumsporozoite protein. Hybridoma 2F6
produced an Ab that was specific for the QQPP repeat region of P. yoelii
CSP. Hybridoma clone 2A10 specific for P. falciparum CSP was obtained
from MR4. ProMab Biotechnologies, Inc., performed antibody produc-
tion and purification from each hybridoma.

Infection assays. BALB/cJ and C57BL/6 mice were infected with P.
yoelii GFP-luc or WT P. yoelii salivary gland sporozoites either by i.v. tail
vein injection or by infectious mosquito bite. For i.v. injections, salivary
gland sporozoites were enumerated and resuspended in 200 �l RPMI
medium prior to injection of the indicated number of sporozoites per
mouse as described in the figure legends. For mosquito bite infections,
animals were anesthetized with a mixture of ketamine and xylazine and
placed on a feeding cage containing 15 infected mosquitoes. Mosquitoes
were allowed to feed on the mice for 10 min. Mice were lifted every minute
and rotated among feeding cages every 2 min to ensure that all mice were
equally exposed to infected mosquito bites. A sample of at least 20 mos-
quitoes from each feed was dissected, and salivary gland average sporozo-
ite counts, with a lower cutoff value of an average of 10,000 sporozoites per
mosquito for a mosquito feed, were assessed to ensure sufficient mosquito
infection.

Real-time in vivo imaging of liver-stage development in whole bod-
ies of live mice. Luciferase activity in mice was visualized through imaging
of whole bodies using an in vivo imaging system (IVIS) (Caliper Life
Sciences) according to the specifications previously described (36). For
C57BL/6 and FRG huHep mice, their abdomens were shaved prior to
imaging to minimize the absorption of light by the pigmented fur. Mice
were intraperitoneally injected with 100 �l of RediJect D-luciferin
(PerkinElmer) prior to being anesthetized using isoflurane anesthesia
(XGI-8; Caliper Life Sciences). Animals were kept anesthetized during
bioluminescent imaging, which was performed within 5 to 10 min after
the injection of D-luciferin. Imaging was acquired with a 10-cm-diameter
field of view (FOV), a medium binning factor, and an exposure time of 2
min. Quantitative analysis of bioluminescence was performed by measur-
ing the luminescence signal intensity utilizing the region of interest (ROI)
settings of Living Image 3.0 software (XGI-8; Caliper Life Sciences). Cop-
ies of ROIs were placed around the abdominal area at the location of the
liver for each mouse, and ROI measurements were expressed as total flux
values (in photons/second [p/s]). Background flux was determined by
placing ROIs over the pelvis of each mouse where luminescence should be
absent at 48 h postinfection.

Passive Antibody Transfer and Plasmodium Liver Burden

February 2014 Volume 82 Number 2 iai.asm.org 809

http://iai.asm.org


Passive Ab transfer. BALB/cJ mice were injected i.v. with MAb to P.
yoelii CSP (clone 2F6), FRG huHep mice were injected i.v. with MAb to P.
falciparum CSP (clone 2A10), and both strains of mice were injected with
control mouse IgG (mIgG) (Sigma) as specified in the figure legends.
Thirty minutes or 24 h following injection of MAb, mice were infected
with GFP-luc-expressing sporozoites by i.v. injection or by the bites of 15
infected mosquitoes as described above. Bioluminescence was measured
48 h following infection for P. yoelii and 6 days following infection for P.
falciparum.

qPCR. Total RNA was extracted from P. yoelii GFP-luc-infected livers
using TRIzol reagent (Invitrogen) and treated with Turbo DNase (Am-
bion). Synthesis of cDNA was performed using a SuperScript III Platinum
two-step quantitative reverse transcription-PCR (qRT-PCR) kit accord-
ing to the instructions of the manufacturer (Invitrogen). Primers used for
amplification of 18S from cDNA were 18S-fwd (GGGGATTGGTTTTGA
CGTTTTTGCG) and 18S-rev (AAGCATTAAATAAAGCGAATACATC
CTTAT). Murine GAPDH (glyceraldehyde-3-phosphate dehydrogenase)
was amplified from cDNA using the gapdh-fwd (CCTCAACTACATGG
TTTACAT) and gapdh-rev (GCTCCTGGAAGATGGTGATG) primers.
All PCR amplification cycles were performed at 95°C for 30 s for DNA
denaturation and at 60°C for 4 min for primer annealing and DNA strand
extension. For semiquantitative PCR (semi-qPCR), a standard curve was
generated using 1:4 dilutions of a reference cDNA sample for PCR ampli-
fication of all target PCR products. Experimental samples were compared
to this standard curve to give relative abundances of transcript. All signals
were normalized to the average abundance of transcript from a reference
sample as designated in the figure legends.

Serum passive transfer. For serum passive transfer, groups of 10
C57BL/6 mice were immunized i.v. with 5 � 104 P. yoelii fabb/f� or P.
yoelii sap1� (32, 33) salivary gland sporozoites twice at 4-week intervals.
Two weeks after the second immunization, mice were bled via the retro-
orbital plexus and blood was collected into BD Microtainer serum sepa-
ration tubes and allowed to clot at room temperature for 30 min before
being subjected to spinning at 10,000 � g in a tabletop centrifuge for 90 s
to separate the serum. All samples from the same experimental group of
mice were pooled, and 300-�l volumes of serum from immunized mice or
serum from naive C57BL/6 mice were injected i.v. 24 h prior to subse-
quent sporozoite challenge.

Statistical analysis. Analysis of differences between treatment groups
was performed using one-way analysis of variance (ANOVA) and Dun-
nett’s posttest, where relevant comparisons were made between the
groups of control (mIgG-treated) mice and experimental (MAb-treated)
mice. Tukey’s posttest was used for multiple comparisons where indi-
cated, and Student’s t test was used for comparisons between two groups
as indicated in the figure legends. All analyses were carried out using
GraphPad Prism software. Statistical significance is indicated in the fig-
ures as follows: *, 0.05 � P � 0.01; **, 0.01 � P � 0.001; ***, 0.001 � P �
0.0001; ****, P � 0.0001; NS, nonsignificant (P � 0.05).

RESULTS
Passive transfer of a P. yoelii CSP MAb reduces P. yoelii liver
infection in mice following i.v. sporozoite and mosquito bite
challenge. The novel 2F6 MAb against the P. yoelii CSP QQPP
repeats blocked sporozoite host cell invasion and traversal in vitro
(see Fig. S1 in the supplemental material). We thus determined if
Ab-mediated reduction of liver infection could be demonstrated
in vivo by passive transfer of MAb. The P. yoelii GFP-luc parasite
expresses luciferase throughout the life cycle, allows noninvasive
quantification of parasite burden in the liver using bioluminescent
imaging (36–38), and was used for these studies. To test if block-
ing of infection by MAb can be detected in this manner, we first
passively transferred either 250 �g or 150 �g of 2F6 MAb (or
mIgG as a control) into BALB/cJ mice via i.v. injection 30 min
prior to i.v. challenge with 20,000 P. yoelii GFP-luc sporozoites. At

48 h after challenge, when liver-stage development is almost com-
plete, mice were injected with luciferin substrate and biolumines-
cent imaging was used for assessing liver-stage burden. Both doses
of MAb significantly reduced liver-stage burden in challenged
mice, and there was no statistically significant difference between
the results seen with the 250-�g (7-fold) and 150-�g (4-fold)
doses, suggesting saturation at both doses (Fig. 1A and B). This
effect was confirmed by qPCR, which was used to measure para-
site rRNA in whole infected livers of a subset of mice immediately
after bioluminescent imaging (Fig. 1C). Although passive transfer
of the 2F6 MAb achieved a significant reduction of liver-stage
burden, all mice went on to develop blood-stage parasitemia (data
not shown).

To determine assay sensitivity and Ab efficacy in the more bi-
ologically relevant mosquito bite challenge model, BALB/cJ mice
were i.v. injected with 250 �g or 150 �g of 2F6 MAb 30 min prior
to challenge by the bites of 15 P. yoelii GFP-luc-infected mosqui-
toes. Liver-stage burden was determined by bioluminescent im-
aging 48 h later. Both the dose of 250 �g and the dose of 150 �g
significantly reduced liver-stage burden as measured by biolumi-
nescence and qPCR (Fig. 2A to C). Interestingly, passive transfer
of 250 �g of MAb completely protected all mice, as indicated by
the absence of blood-stage parasitemia after mosquito bite chal-
lenge (Fig. 2D). This stands out in contrast to passive transfer and
i.v. sporozoite challenge, in which all mice became blood-stage
patent. Thus, bioluminescent imaging is able to detect a reduction
in liver-stage infection following passive transfer of Abs and sub-
sequent i.v. sporozoite challenge or mosquito bite challenge.

Mosquito bite sporozoite challenge is more susceptible to
MAb-mediated inhibition of infection. Future screening of
MAbs in this system will require the ability to distinguish between
Abs with a range of efficacies in blocking sporozoite infection.
Therefore, we determined the lower Ab dose limits of our protocol
and determined the optimal passive transfer/challenge method to
most sensitively detect inhibition of sporozoite infection. BALB/cJ
mice were passively immunized with 150 �g, 50 �g, 10 �g, or 1 �g
of 2F6 or 150 �g of mIgG as a control 30 min prior to challenge
either with 3,000 P. yoelii GFP-luc sporozoites injected i.v. or by
the bites of 15 P. yoelii GFP-luc-infected mosquitoes. The reduced
sporozoite dose was chosen as it results in a consistent i.v. sporo-
zoite challenge with less than a 2-fold difference in liver-stage
burden compared to challenge by bites of 15 mosquitoes (see Fig.
S2 in the supplemental material). This more equivalent infection
rate allowed us to make direct comparisons between mosquito
bite and i.v. challenge (36, 39). Passive transfer of 2F6 MAb sig-
nificantly reduced liver infection at 150 �g and 50 �g per mouse
3.2- and 3.9-fold compared to mIgG, respectively, for the i.v. chal-
lenge, but the results were not significantly different from each
other (Fig. 3A and B). However, immunization with 10 �g and 1
�g per mouse did not affect liver infection levels as measured by
bioluminescent imaging (Fig. 3A and B). Yet administration of the
same Ab doses prior to mosquito bite challenge showed a much
higher level of inhibition than i.v. challenge, with 27-, 17-, and
6-fold decreases in liver-stage burden at 150 �g, 50 �g, and 10 �g,
respectively (Fig. 3A and C). Furthermore, passive transfer of 150
�g and 50 �g of MAb was able to prevent the onset of blood-stage
parasitemia in some mosquito bite-infected mice, whereas none
of the doses administered prior to i.v. challenge prevented onset of
blood-stage parasitemia in any mice (Fig. 3B and C). Based on
these experiments, we conclude that bioluminescence imaging is

Sack et al.

810 iai.asm.org Infection and Immunity

http://iai.asm.org


able to quantitatively assess inhibition of liver infection mediated
by administration of decreasing MAb doses. Furthermore, sporo-
zoite challenge via mosquito bite is more sensitive to MAb inhibi-
tion than i.v. sporozoite challenge at a given dose of MAb.

We next wanted to determine if the timing of MAb passive
transfer could also impact Ab efficacy. For this, we compared the
abilities of the anti-CSP MAb to inhibit liver infection when trans-
ferred at 30 min and at 24 h prior to sporozoite challenge by i.v.
and mosquito bite. A dose that rendered minimal inhibition (25
�g/mouse for i.v. challenge or 5 �g/mouse for mosquito bite chal-
lenge) was used so that we might discriminate between doses that
would result in low/no inhibition when administered at one time
point and improved inhibition when administered at another.
When mice were i.v. challenged with 3,000 P. yoelii GFP-luc
sporozoites, administration of 25 �g MAb 2F6 was approximately
2.3-fold more effective when transferred at 30 min prior to chal-
lenge than it was when transferred at 24 h prior to challenge (Fig.
3D), a time point at which the regimen was virtually ineffective
compared to the results seen with control (mIgG-injected) mice.
Contrasting results were observed for a mosquito bite challenge.
Administration of 5 �g of MAb 2F6 per mouse 24 h prior to a bite
challenge with 15 mosquitoes significantly reduced liver-stage
burden by 6.7-fold whereas administration 30 min prior to chal-
lenge resulted in a nonsignificant reduction of only 1.7-fold (Fig.
3E). Therefore, optimal Ab-mediated blocking of sporozoite in-

fection requires Ab administration shortly before an i.v. challenge,
whereas longer incubation times produce greater protection in a
mosquito bite challenge model.

Passive transfer of immune serum before sporozoite chal-
lenge reduces P. yoelii liver infection. As an alternative to MAb
passive transfer, we wanted to determine if this assay could be used
to measure inhibition of liver infection by passive transfer of se-
rum from mice immunized with GAPs. This could prove useful
for the comparison of humoral responses between multiple-anti-
gen subunit vaccines as well as whole-parasite vaccine candidates.
Therefore, we collected serum from C57BL/6 mice that were im-
munized twice with GAPs deficient in either FabB/F (late-liver-
stage arresting, P. yoelii fabb/f�) or SAP1 (early-liver-stage arrest-
ing, P. yoelii sap1�) genes (32, 33) at a dose of 50,000 sporozoites
4 weeks apart. Levels of serum IgG against CSP, as measured by
ELISA, were similar for these two groups, while serum IgG levels
against whole-sporozoite lysate were greater in P. yoelii fabb/f�-
immunized mice (see Fig. S3 in the supplemental material). Naive
C57BL/6 mice were injected i.v. with 300 �l of pooled serum from
one of these immunization groups or 300 �l of pooled serum from
naive C57BL/6 mice 24 h prior to a mosquito bite challenge per-
formed using 15 P. yoelii GFP-luc-infected mosquitoes. Biolumi-
nescent imaging of mice 48 h later was used to measure liver-stage
burden. Passive transfer utilizing the sera from GAP-immunized
mice significantly reduced liver infection by 4.2- and 3-fold with

FIG 1 Sporozoite-specific Ab reduces liver infection in the i.v. P. yoelii (Py) sporozoite challenge model. BALB/c mice (n � 6 to 8 total over two independent
experiments) were i.v. injected with 250 �g of mIgG (n � 7 total) or 250 �g (n � 8 total) or 150 �g (n � 6 total) of MAb 2F6 30 min prior to receiving an i.v.
challenge of 20,000 P. yoelii GFP-luc salivary gland sporozoites. At 48 h postchallenge, liver-stage parasite burden was quantified by bioluminescent imaging. (A
and B) Representative images of mice injected with 250 �g mIgG and 150 �g 2F6 MAb are shown in panel A, with quantification of total flux shown in panel B.
(C) Immediately after imaging, mice were sacrificed and liver samples were collected for qPCR quantification of liver-stage burden. Graphs show mean total flux
values � standard deviations (SD), with mean background luminescence indicated by the horizontal dotted line. Asterisks indicate a P value 	 0.05 as determined
by one-way ANOVA in panel B and Student’s t test in panel C. Degrees of significance are indicated as follows: **, 0.01 � P � 0.001; ***, 0.001 � P � 0.0001; NS,
nonsignificant (P � 0.05).
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serum from P. yoelii fabb/f�-immunized mice and P. yoelii sap1�-
immunized mice, respectively (Fig. 4A). This demonstrates that
the experimental model can be used to assess functional humoral
responses where Abs are elicited against multiple or complex an-
tigens using GAP immunization.

Passive transfer of a P. falciparum CSP MAb reduces P. fal-
ciparum liver infection in the humanized FRG huHep mouse
model. While rodent malaria infections in mice are a useful sur-
rogate model for screening parasite antigen targets, it will be im-
perative for vaccine development efforts to test Ab effectiveness
against human-infective P. falciparum sporozoites. We utilized
the human liver-chimeric FRG huHep mouse, which is suscepti-
ble to P. falciparum sporozoite infection and supports complete
liver-stage development in conjunction with a luciferase-express-
ing P. falciparum line (P. falciparum GFP-luc), to test passive-
transfer Ab inhibition of infection (34, 35). The anti-CSP MAb
2A10 was chosen for this proof-of-concept experiment because it
has been shown to reduce sporozoite motility, traversal, and inva-
sion in vitro (40). We used FRG huHep mice repopulated with
human hepatocytes from three different donors (designated do-
nors 1, 2, and 3). Two “donor 1” mice and one mouse each for
donor 2 and donor 3 received 500 �g of P. falciparum CSP MAb
(2A10) 30 min prior to i.v. injection of 2 million P. falciparum
GFP-luc sporozoites. Five mice (three donor 1 mice, one donor 2
mouse, and one donor 3 mouse) were used as mIgG-injected con-

trols. Liver burden was measured by bioluminescence imaging 6
days after sporozoite injection (at peak liver-stage luciferase activ-
ity). Susceptibility to P. falciparum infection varied by donor (see
Fig. S4 in the supplemental material); therefore, the results from
each animal that received MAb 2A10 were compared only to those
from the corresponding donor-matched mIgG control (or to the
averages of the results from the three donor 1 control mice). Pas-
sive transfer of 500 �g 2A10 MAb blocked infection by 87% to
99% compared to control (Fig. 5). Therefore, the FRG huHep
mouse model provides a promising in vivo method for assessing
Ab-mediated protection against P. falciparum sporozoite chal-
lenge.

DISCUSSION

Humoral immune responses play an important role in blocking
initial infection of the mammalian host by the malaria parasite
sporozoite, and yet tools and methods to evaluate the impact of
humoral immunity on pre-erythrocytic parasite infection have
remained insufficiently developed. In rodent malaria models, as-
sessment of blood-stage patency and qPCR measurement of liver-
stage burden after sporozoite challenge—which is most frequently
conducted following i.v. administration of sporozoites—are the
current methods used to determine vaccine-induced protection.
Patency is a stringent yet binary readout, and delay of patency
promotes inaccuracy in assessing the impact of interventions con-

FIG 2 Liver infection is decreased after sporozoite-specific Ab transfer prior to P. yoelii sporozoite challenge by mosquito bite. BALB/c mice (n � 8 to 9
mice/group total over 2 independent experiments) were i.v. injected with 250 �g of mIgG (n � 9 total) or 250 �g (n � 8 total) or 150 �g (n � 8 total) of MAb
2F6 30 min prior to receiving a challenge with bites from 15 P. yoelii GFP-luc-infected mosquitoes. At 48 h later, liver-stage parasite burden was assessed via
bioluminescent imaging. (A and B) Representative images of bioluminescence are shown in panel A, with quantification of total flux shown in panel B. (C)
Immediately after imaging, a subset of mice were sacrificed and liver samples were collected for qPCR quantification of liver-stage burden. (D) Mice were also
tracked for blood-stage parasitemia by Giemsa-stained thin blood smear analysis. Graphs show mean total flux � SD, with mean background luminescence
indicated by the dotted lines on the y axis. Asterisks indicate a P value 	 0.05 as determined by one-way ANOVA in panel B and Student’s t test in panel C. Degrees
of significance are indicated as follows: **, 0.01 � P � 0.001; ***, 0.001 � P � 0.0001; ****, P � 0.0001; NS, nonsignificant (P � 0.05).
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FIG 3 Passive transfer of MAb reveals distinct differences in Ab blocking between i.v. challenge and mosquito bite challenge. BALB/c mice were i.v. injected with
the indicated doses of 2F6 MAb 30 min prior to i.v. challenge with 3,000 P. yoelii GFP-luc sporozoites (A [top panel] and B; n � 7 mice/group total for 150 �g
mIgG and n � 8 total for all other groups, over two independent experiments) or challenge by the bites of 15 P. yoelii GFP-luc-infected mosquitoes (A [bottom
panel] and C; n � 6 mice/group total for 150 �g mIgG and n � 7 total for all other groups, over two independent experiments). At 48 h later, liver-stage parasite
burden was assessed via bioluminescent imaging. Representative images for each group are shown in panel A, with quantification of total flux for each group
shown in panels B and C. (B and C) The numbers above the columns indicate numbers of mice that became blood-stage patent over both experiments. (D and
E) Mice (n � 6 to 9 mice/group total over two independent experiments) were administered 2F6 Ab either 24 h or 30 min prior to P. yoelii GFP-luc challenge.
Mice were given 25 �g of MAb 2F6 (n � 8 for mIgG; n � 9 for 2F6 for 30 m; n � 8 for 2F6 for 24 h [in total for two independent experiments]) and challenged
with 3,000 P. yoelii GFP-luc sporozoites (D) or were given 5 �g of MAb 2F6 (n � 7 for mIgG; n � 6 for 2F6 for 30 min; n � 8 for 2F6 for 24 h [in total over two
independent experiments]) prior to bite challenges with 15 P. yoelii GFP-luc-infected mosquitoes (E). Graphs show mean total flux � SD, with mean background
luminescence indicated by the horizontal dotted line. Asterisks indicate a P value 	 0.05 as determined by one-way ANOVA with Dunnett’s posttest comparing
groups to the mIgG group in panel B. Comparisons shown in panels D and E were carried out by Student’s t test, with asterisks indicating a P value 	 0.05. Degrees
of significance are indicated as follows: *, 0.05 � P � 0.01; **, 0.01 � P � 0.001; ***, 0.001 � P � 0.0001; ****, P � 0.0001; NS, nonsignificant (P � 0.05).
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ferring less than complete, sterile protection. While the measure-
ment of liver-stage burden by qPCR is more precise, it requires
terminal sacrifice of the animal; thus, the same animal cannot be
assessed for the concomitant transition to blood-stage patency.
Here, we show that in vivo bioluminescence imaging can be used
in the P. yoelii rodent malaria model to assess humoral protective
immunity to pre-erythrocytic infection. Using the well-character-
ized CSP as a target, we show that this assay performs well in
determining the efficacy of a MAb in a passive-transfer model.
Bioluminescence not only affords measurements of a spectrum of
reductions in liver-stage burden following passive transfer of
MAbs or immune serum but also allows evaluation of this effect
on the onset of subsequent blood-stage infection in the same an-
imal. Given the sensitivity with respect to measurement of various
degrees of liver-stage burden, it is now possible to compare vari-
ous humoral blocking efficacies side-by-side in a manner that is
not possible by measuring time to patency and level of parasitemia
alone, with the added benefit that it does not require sacrifice of
the animal. However, as our results show, bioluminescent imag-
ing is not sensitive enough to predict sterile immunity when there
is very low liver-stage burden.

Nevertheless, we have shown that this system reveals and dis-
criminates differential levels of efficacy of Ab-mediated reduction
of sporozoite infection of the liver after mosquito bite or i.v.
sporozoite challenge. Importantly, sporozoite challenge by mos-
quito bite is much more sensitive to Ab blocking than i.v. sporo-
zoite challenge at similar levels of liver infection in control ani-
mals. This is important to consider when evaluating new targets of

humoral immunity, as an Ab response that can significantly block
sporozoite activities prior to entry into a blood vessel is not de-
tected when i.v. sporozoite challenge is used. This is particularly
important if an antibody is used at low concentrations for transfer,
if it is less efficient at blocking than anti-CSP antibodies, or if the
target is exposed to Abs only prior to sporozoite entry into a skin
capillary. The time taken for the sporozoite to traverse the dermis
affords a greater opportunity for the sporozoite to be immobilized
by Abs, subsequently preventing sporozoite entry into the blood-
stream and transport to the liver. Whether this is due to increased
preinfection contact time (21, 41), greater efficacy of opsonization
in the skin, some other skin-dependent effect on Ab-mediated
sporozoite neutralization, or a combination of these remains un-
known but is worthy of further investigation. Our data showing
that administration of Ab 24 h prior to challenge results in greater
Ab efficacy against sporozoite challenge by mosquito bite but not
i.v. challenge further highlights the likely importance of Abs local-
izing in the skin. Whereas the majority of injected Abs are in the
circulation shortly after injection, 24 h later Abs are presumably
distributed throughout the tissues—including the skin—and thus
are most effective against sporozoites delivered by mosquito bite.
These data are in agreement with a series of studies by Vanderberg
et al., which detailed sporozoite motility in the skin in the presence
or absence of anti-sporozoite Abs. These and other studies show
that sporozoite exit from the skin can take some time (21, 41) and
that sporozoites are immobilized by Abs present in the skin (20,
42). Furthermore, more-recent findings have also determined that
in the presence of anti-sporozoite Abs, fewer sporozoites are ac-

FIG 4 Passive transfer of serum from GAP-immunized mice reduces liver infection. C57BL/6 mice (n � 3 mice/group) were i.v. injected with 300 �l of serum
from mice immunized with 2 � 50,000 P. yoelii fabb/f� or P. yoelii sap1� GAP sporozoites. Twenty-four hours later, mice were challenged by mosquito bite with
15 P. yoelii GFP-luc-infected mosquitoes. Liver-stage burden was determined by bioluminescent imaging 48 h postchallenge. Images of mice are shown in panel
A, with quantification of total flux shown in panel B. The horizontal dotted line in panel B indicates mean background luminescence. Graphs show total mean
flux � SD. Asterisks indicate P value 	 0.05 as determined by one-way ANOVA and Dunnett’s posttest comparing groups to naive serum recipient mice. Degrees
of significance are indicated as follows: *, 0.05 � P � 0.01; **, 0.01 � P � 0.001.
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tually injected from infected mosquitoes due to the formation of
immune complexes at the mosquito proboscis (21). These data
and our results, taken together with the fact that mosquito bite is a
more relevant challenge model for protection against natural in-
fection, show that it is important to evaluate the role of humoral
immunity by a challenge that does not bypass the skin. Intrader-
mal injection may prove useful, as it is easier to standardize the
injection dose, but this would exclude the effect that immune
complex formation at the mosquito proboscis has on Ab-medi-
ated protection.

Finally, in vivo assessment of the effect of Abs on P. falciparum
sporozoite infection was impossible until recently. Here we have
shown that a combination of P. falciparum GFP-luc parasites (34)
and the FRG huHep liver-chimeric mouse model (35) can be used
effectively to evaluate sporozoite-blocking activities in vivo. Re-
duction of liver infection to nearly background levels was achieved
by passive transfer of anti-P. falciparum CSP MAb to FRG huHep
mice reconstituted with donor hepatocytes of both high and low
susceptibilities to infection. Given that the various infection rates
of mice repopulated with hepatocytes from different donors could
affect evaluation of antibody-mediated blocking of sporozoite in-
fection, it will be important to assess consistency of inhibition
with a given Ab both within a donor and between different do-
nors. Yet, despite differences in infection rates among mice repop-
ulated with hepatocytes from different donors, we saw a consistent
reduction of liver infection after passive transfer of 2A10 MAb
both within a single donor group of mice and between mice re-
populated from different donors. Additionally, infection rates of
mice corresponding to the same donor (donor 1) were very con-
sistent. Therefore, the use of defined hepatocyte sources that are
permissive to infection might be important for future evaluations
of novel antibodies. These results were obtained following an i.v.
challenge, and it is important to further develop this model using

P. falciparum sporozoite challenge by mosquito bite. In the future,
it is anticipated that the FRG huHep liver-chimeric mouse/P. fal-
ciparum sporozoite challenge model will allow passive transfer of
serum from immunized individuals from clinical trials to evaluate
humoral immunity to pre-erythrocytic candidate vaccines and the
assessment of MAbs to relevant sporozoite targets.
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