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Outer Membrane Protein P5 Is Required for Resistance of
Nontypeable Haemophilus influenzae to Both the Classical and

Alternative Complement Pathways

Charles V. Rosadini,” Sanjay Ram,® Brian J. Akerley®*

Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA?; Department of Medicine, Division
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The complement system is an important first line of defense against the human pathogen Haemophilus influenzae. To survive
and propagate in vivo, H. influenzae has evolved mechanisms for subverting this host defense, most of which have been shown
to involve outer surface structures, including lipooligosaccharide glycans and outer surface proteins. Bacterial defense against
complement acts at multiple steps in the pathway by mechanisms that are not fully understood. Here we identify outer mem-
brane protein P5 as an essential factor in serum resistance of both H. influenzae strain Rd and nontypeable H. influenzae (NTHi)
clinical isolate NT127. P5 was essential for resistance of Rd and NT127 to complement in pooled human serum. Further investi-
gation determined that P5 expression decreased cell surface binding of IgM, a potent activator of the classical pathway of com-
plement, to both Rd and NT127. Additionally, P5 expression was required for NT127 to bind factor H (fH), an important inhibi-
tor of alternative pathway (AP) activation. Collectively, the results obtained in this work highlight the ability of H. influenzae to
utilize a single protein to perform multiple protective functions for evading host immunity.

Haemophilus influenzae is a pathogenic Gram-negative bacte-
rium that colonizes the human nasopharynx and can invade
the mucosal epithelium or disseminate to other sites, causing otitis
media, upper and lower respiratory tract infections, and menin-
gitis. A vaccine targeting the polyribosylribitol phosphate capsule
of the most invasive serotype, H. influenzae type b (Hib), was
introduced in the early 1990s, effectively reducing the incidence of
Hib disease (1), although it remains significant in countries
lacking vaccine coverage. Nontypeable Haemophilus influenzae
(NTHIi) strains lack an outer surface capsule and are therefore
unaffected by the Hib vaccine (2). NTHi strains are important
causes of sinusitis, conjunctivitis, and pneumonia (3, 4) and are
the second most common cause of bacterial otitis media behind
Streptococcus pneumoniae (3). NTHI strains are also among the
most prevalent organisms found in the lungs of patients with ex-
acerbations of chronic obstructive pulmonary disease (COPD)
(5-8) and cystic fibrosis (CF) (9-11). Although N'THi strains are
infrequently associated with invasive disease, and most instances
of bacteremia occur in children with underlying medical issues (3,
12), emerging evidence suggests that healthy individuals are also at
risk of invasive NTHi infection (13-17).

To survive in the host and cause disease, NTHi must defend
itself against immune mechanisms. The complement system is an
important first line of defense against invading pathogens that
mediates lysis of Gram-negative bacteria through terminal com-
plement, targets microbes for phagocytosis by opsonization, and
stimulates the inflammatory response (18). Invasive NTHi strains
are likely to encounter complement in blood, whereas in nonin-
vasive infections, they are likely to be exposed to complement in
the middle ear exudates during otitis media (19, 20), the nasopha-
ryngeal mucosa during inflammation (21, 22), and the lungs dur-
ing exacerbation of COPD and asthma (23). Moreover, recent
evidence indicates that the ability of NTHi strains to resist killing
by complement correlates with the severity of pulmonary and in-
vasive disease (24). Thus, bacterial defense against complement
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appears to be an important feature of both invasive and noninva-
sive NTHi infections.

Complement activation on a pathogen may proceed through
one or more of three pathways: the classical pathway, the man-
nose-binding lectin (MBL) pathway, or the alternative pathway
(AP). All three pathways lead to the deposition of complement
protein C3 on the microbial surface and subsequent clearance
through phagocytosis of pathogens opsonized with C3 or lytic
pathway activation (18). Classical pathway activation is initiated
by immunoglobulin (select IgG subclasses or IgM) or C-reactive
protein (CRP), bound to the surface of a pathogen (18, 25),
whereas the lectin pathway is activated through binding of MBL or
ficolins to select surface carbohydrates on microbes. Both path-
ways lead to the assembly of the classical C3 convertase C4bC2a,
which cleaves C3 and promotes downstream activation of the lytic
pathway. The AP is activated by the cleavage of C3, which can be
initiated through the action of the classical and lectin C3 conver-
tases or by spontaneous hydrolysis of C3 (26). The C3b fragment
released from the cleavage of C3 associates with a cleavage product
of factor B, Bb, generating the AP C3 convertase. C3b generated by
the C3 convertases can stimulate the production of more C3 con-
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vertases, effectively amplifying the pathway. Much like the classi-
cal and MBL pathways, AP activation results in downstream lytic
pathway effects and clearance of pathogens (18).

The mechanisms by which NTHi defends itself against host
complement are not fully understood; however, current evidence
implicates multiple cell surface structures. Lipooligosaccharide
(LOS) glycans are essential for mediating this function, as muta-
tions that truncate the LOS lead to severe defects in complement
resistance and virulence in animal models (27-30). Surface pro-
teins have also been shown to be involved, including P6, via an
unknown mechanism, and proteins E and F, which were shown to
bind the host complement regulator vitronectin (31, 32). Impor-
tantly, other complement regulators, such as factor H (fH), factor
HL-1, and C4-binding protein (C4BP), are also bound by NTHi as
mechanisms of complement defense (31); however, the specific
surface structures that mediate these interactions have not been
elucidated (31).

We recently identified a role for the periplasmic disulfide oxi-
doreductase DsbA, an enzyme critical for maturation and stability
of proteins exported to the cell surface containing disulfide bonds
(33), in the resistance of H. influenzae to complement in human
serum (34). Bioinformatic identification of putative DsbA sub-
strates revealed a subset with potential roles in complement resis-
tance (35); the outer membrane protein P5 was selected from this
list as a candidate because it is ~50% identical to Escherichia coli
outer membrane protein A (OmpA) (36), a factor previously
shown to be important for complement resistance in E. coli (37—
39). NTHi P5, a B-barrel protein with eight predicted transmem-
brane spans, four outer surface loops (40), and a predicted disul-
fide between C323 and C335, was shown to be required for
virulence in a chinchilla ear infection model (41) and has also been
implicated in adhesion of H. influenzae to various mucosal surface
structures (42—46). However, a role for P5 in complement resis-
tance has not been previously reported. In this study, we elucidate
the mechanism of NTHi complement resistance mediated by P5.

MATERIALS AND METHODS

Strains and culture conditions. H. influenzae RAAW (referred to here as
Rd) (GenBank accession no. NZ_ACSMO00000000), a capsule-deficient
serotype d derivative (47), and nontypeable H. influenzae strain NT127
(GenBank accession no. NZ_ACSL01000014.1), originally isolated from
the blood of a child with meningitis (27, 48, 49), were grown in brain heart
infusion (BHI) broth supplemented with 10 pg/ml hemin and 10 pwg/ml
NAD (sBHI) or on sBHI agar plates at 35°C. Development of competence
for transformation of H. influenzae was accomplished as previously de-
scribed (50). For selection of Rd- and NTHi-derived strains, the following
antibiotics were used: 8 pg/ml tetracycline (Tc), 20 pg/ml kanamycin
(Km), and 10 pg/ml gentamicin (Gm). For strain generation, plasmids
and PCR products were constructed by using standard molecular biology
techniques (51). For complementation of mutants, DNA fragments were
amplified by PCR, cloned between adjacent Sapl restriction sites of the
chromosomal delivery vector pXT10, linearized, and used to transform H.
influenzae strains, as previously described (47).

P5 mutant strain construction. P5 mutant strains RP5G and NTP5V
were constructed by replacement of the coding sequences of P5 (HI1164
in Rd and HIAG_00526 in NT127, respectively) with the gentamicin re-
sistance gene from the aacCI Gm resistance cassette via PCR “stitching.”
First, three overlapping fragments were generated, representing the
1,008-bp region immediately 5’ of the P5 translational start codon (prim-
ers 5ompl [5'-TGCTACTCTCACTTAATTCAAGCGCAT-3'] and
3ompl [5'-TGCTGCTGCGTAACATTTTGATGTCCTCTATTTAGTG
ATCGAATAGT-3']), the 537-bp coding region of the gentamicin resis-
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tance gene (primers 5gent2 [5'-ATGTTACGCAGCAGCAACGATGTT-
3'] and 3gent2 [5'-TTAGGTGGCGGTACTTGGGTCGAT-3']), and a
1,477-bp region immediately 3’ of the P5 translational termination codon
(primers 5omp2 [5'-AAGTACCGCCACCTAATTTTAGTATTTGTTTA
ACGAAAGATTAAATACAGCA-3'] and 3omp2 [5-TTAGATAAACTA
ACTCGTTATCCAGATGCGA-3']). Subsequently, these fragments were
assembled by using overlap extension PCR with primers 5ompl and
3omp2. The resulting 2,990-bp exchange fragment was transformed into
competent cells of strain RAAW or strain NTV (a version of NT127 car-
rying a modified xylose locus for efficient recombination with plasmid
pXT10 and its derivatives [48]) and selected on medium containing Gm
to create strains RP5G and NTP5V, respectively.

Complementation of the mutations in RP5G and NTP5V was per-
formed by generating a 1,503-bp fragment containing the Rd P5 coding
region and 441 bp of sequence immediately upstream of the P5 transla-
tional start site using primers 5pOmpAHA (5'-AAAGCTCTTCAATGA
AAAAAACTGCAATCGCATTAGTAGT-3") and 30mpAS (5'-TTTGC
TCTTCTTTATTTAGTACCGTTTACCGCGATTTCTACA-3"), which
introduce Sapl sites in the termini of the fragments. The resulting
1,458-bp fragment was digested with Sapl and ligated between Sapl re-
striction sites of the chromosomal delivery vector pXT10, which does not
replicate in H. influenzae (47). Ligated products were used to amplify
1,373-bp fragments including 932 bp of the 5’ xylA-flanking sequence
fused to the 441-bp putative promoter region of P5 (primers PXT10thyAF
[5"-AGGGCTTGAATCGCACCTCCA-3'] and 3P51 [5'-TTTGATGTCC
TCTATTTAGTGATCGAATAGT-3']). Next, PCR stitching (primers
pXT10thyAF and 3revRfaD1 [5'-AACAGGCTACGATAAACCATTCAA
AACAGT-3']) was used to join the 1,373-bp fragments with 1,063-bp
fragments containing the P5 coding sequence amplified from either Rd or
NT127 (primers p5switch [5'-ACTATTCGATCACTAAATAGAGGACA
TCAAAATGAAAAAAACTGCAATCGCATTAGTAGT-3'] and 3omp-
kan1 [5-CATCAGAGATTTTGAGACACGGGCCTCTTATTTAGTACC
GTTTACCGCGATTTCTACA-3']) and a 2,716-bp PCR product
containing the Km resistance (Km") gene and homology to xy/B amplified
from a kanamycin-marked derivative of pXT10 (primers 5pkanl [5'-GA
GGCCCGTGTCTCAAAATCTCTGATG-3'] and 3revRfaD1). The re-
sulting 5,072-bp fragments were introduced into strain RP5G (Rd P5-
containing fragment) or NTP5V (NT127 P5-containing fragment), and
transformants were selected on Km, generating strains RP5X and NTP5X,
respectively.

Growth analysis. Strains were cultured in triplicate in sBHI broth at
35°C for 16 h (starting inoculum of an optical density at 600 nm [OD ]
of 0.01) in a Versa,,,, microplate reader (Molecular Devices, Sunnyvale,
CA) set to read the absorbance at 600 nm every 10 min. Growth yields
were obtained by calculating the averages and standard deviations of the
final readings of each triplicate set of wells. Doubling times were deter-
mined by using nonlinear regression analysis with an R* value of >0.995
(Prism 5.03; GraphPad Software, La Jolla, CA) and are reported as the
averages and standard deviations of each triplicate set of wells.

Serum bactericidal assay. The sensitivity of P5 mutants to serum was
determined as previously described (52). Briefly, strains from log-phase
cultures were diluted in Hanks’ balanced salt solution (HBSS) with 0.15
mM calcium and 1 mM magnesium (HBSS™ ) to 1.3 X 10* CFU/ml and
incubated at 37°C for 30 min with or without pooled normal human
serum (NHS) from healthy anonymous donors aged 18 to 65 years (final
concentrations are specified in the figures) (Innovative Research, Novi,
MI) and plated onto sBHI agar for CFU enumeration. The reaction was
also performed in the presence or absence of 10 mM Mg>* EGTA to block
the classical and lectin pathways and selectively activate the alternative
pathway. Heat-inactivated serum used in this assay was generated by in-
cubation of NHS at 56°C for 30 min. C1q-depleted sera and purified Clq
were obtained from Complement Technologies, Inc. (Tyler, TX). Results
of the serum bactericidal assay are reported as percent survival, which was
calculated by dividing the CFU recovered from serum-treated samples by
the CFU recovered from the sample that lacked serum. Statistical analyses
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TABLE 1 Strains used in this study

TABLE 2 Growth phenotypes of P5 mutants

Strain Genotype, description, and/or relevant feature(s) Reference
NT127 Nontypeable H. influenzae clinical isolate 48
NTV NTI127 xylAA,_go4::tetAR; tetAR sequence from 48
pXT10 replaces xylA
NTP5V  NTI127 AP5::aacCl xylAA,_g,::tetAR; P5 deletion  This study
mutant with tetAR Tet" cassette replacing xylA
NTP5X  NT127 AP5::aacCI xylAA,_g4::P5; P5 deletion This study
mutant complemented with P5 expressed via
the P5 promoter in place of xylA
Rd RAAW; wild type; H. influenzae capsule-deficient 77
type d
RP5G Rd AP5::aacC1; P5 deletion mutant This study
RP5X Rd AP5::aacCI xyIAA,_go,4::P5; P5 deletion This study

mutant complemented with Rd P5 expressed
via the Rd P5 promoter in place of xylA

were performed by using one-way analysis of variance (ANOVA) with
Tukey’s multiple-comparison test (Prism 5.03; GraphPad Software, La
Jolla, CA).

SDS and polymyxin B assays. Sensitivity to SDS was determined by
plating 1:10 serial dilutions (five total) of triplicate log-phase cultures of
each strain onto sBHI agar containing 20, 50, 75, or 100 pg/ml of SDS.
After a 24-h incubation at 35°C, growth was evaluated by comparing
colony formation of strains grown on sBHI agar with that of strains grown
on sBHI agar supplemented with SDS. Equivalent CFU numbers between
normal sBHI agar and SDS-containing agar were scored as “normal
growth,” whereas reduced CFU numbers (sensitivity of detection was 1
colony) on SDS-containing agar compared with those on sBHI agar were
scored as “minimal growth.” An absence of CFU on SDS plates was scored
as “growth inhibited.” For evaluating sensitivity to polymyxin B, strains
were inoculated into sBHI broth containing polymyxin B at final concen-
trations of 100, 200, 300, 400, 500, and 600 nM or with sBHI alone. Cul-
tures were incubated at 35°C for 16 h in a Versa,,, microplate reader
(Molecular Devices, Sunnyvale, CA) set to read the absorbance at 600 nm
at the end of the incubation period. Sensitivity was scored as a relative
growth yield, as assessed by ODy, values.

Complement binding. Western blotting for assessment of binding of
C4 and iC3b was performed as previously described (30, 53). Purified
iC3b was purchased from Complement Technologies (Tyler, TX). Briefly,
log-phase cultures of each strain were washed and suspended in HBSS™ "
(final reaction mixture volume, 0.5 ml). NHS was added to a final con-
centration of 10% and incubated for 30 min at 37°C. Bacteria were lysed in
1X SDS-PAGE sample buffer, and lysates were separated on 4 to 12%
SDS-PAGE gels for immunoblotting with primary antibodies (Abs) to
human iC3b (monoclonal Ab [MAb] G-3E, a kind gift of Kyoko lida [54])
and C4 (sheep polyclonal anti-human C4; Biodesign/Meridian Life Sci-
ence, Inc., Memphis, TN) and alkaline phosphatase-conjugated second-
ary antibodies, as described previously (53, 55). Band densities were cal-
culated by densitometry using Image] (National Institutes of Health,
Bethesda, MD).

Flow cytometry. Measurement of complement component C4, fH,
IgG, or IgM binding was performed as described previously (56). Briefly,
log-phase bacteria were washed and suspended in HBSS™ ™ to a density of
10® CFU/ml. The bacteria were then incubated with 5% NHS for 30 min at
37°C. Bacterium-bound C4 fragments and human Abs were detected with
anti-human C4 (Biodesign/Meridian), IgM (Sigma), and IgG (Sigma)
fluorescein isothiocyanate (FITC)-conjugated polyclonal antibodies
(Sigma). fH was detected by using an anti-fH MADb (MAb 90X, catalog no.
A254; Quidel Corporation) followed by anti-mouse IgG FITC (Sigma).

RESULTS

Construction and characterization of P5 mutants. P5 mutants
were constructed by replacing their entire protein-coding regions
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Mean growth rate Mean growth yield
Strain (min) £ SD (ODgq) = SD
Rd 433+ 2.0 0.63 = 0.05
RP5G 474+ 1.0 0.60 * 0.02
RP5X 46.4 = 0.3 0.69 = 0.03
NTV 394+ 13 0.78 = 0.03
NTP5V 62.1 + 3.5° 0.61 = 0.03"
NTP5X 412 *0.4 0.83 = 0.01

“ Statistical comparison determined by using the Kruskal-Wallis test (P = 0.0273) with
Dunn’s posttest (P < 0.05) (significant between NTV and NTP5V for growth rate and
between NTP5V and NTP5X for yield).

with the protein-coding region of aacCI, encoding gentamicin
resistance, to generate nonpolar deletions in Rd and in NT127, a
clinical NTHi strain isolated from the cerebrospinal fluid of a
patient with meningitis (48). The amino acid sequence of P5 varies
between strains (see Fig. S1 in the supplemental material). There-
fore, complementation was achieved by expressing each strain’s
respective P5 allele at the xylose locus, as previously described
(47). The set of isogenic strains comprised the parent strain (Rd),
an Rd P5 mutant (RP5G), a complemented Rd P5 mutant (RP5X),
the NT127 parent strain carrying the “empty vector” (NTV), an
NT127 P5 mutant carrying the empty vector (NTP5V), and a
complemented NT127 P5 mutant (NTP5X) (Table 1).

The strains were evaluated for in vitro growth in rich media. Rd
P5 mutant strain RP5G exhibited generation times and growth
yields similar to those of parent strain Rd or complemented strain
RP5X (Table 2). However, NT127 P5 mutant strain NTP5V ex-
hibited 57% and 50% increases in generation time and 21% and
26% decreases in growth yield compared with parent strain NTV
and complemented strain NTP5X, respectively (Table 2). These
data suggest that P5 is important for optimal growth of NTHi
strains but not for growth of Rd.

In considering P5 as a candidate mediator of complement re-
sistance, it was important to evaluate potential indirect effects on
cell surface composition and stability. The outer surface LOS
structures are critical mediators of serum resistance of H. influen-
zae that could potentially be altered by P5 (27, 28, 57, 58). By silver
staining of SDS-PAGE gels, the LOS bands were found to have
similar mobility between Rd, RP5G, and RP5X or between NTV
and NTP5V (see Fig. S2 in the supplemental material), suggesting
that P5 does not mediate structural changes in the LOS. To eval-
uate potential effects of P5 on membrane stability, we examined
whether the loss of P5 resulted in enhanced sensitivity to deter-
gents. H. influenzae strains exposed to a range of SDS concentra-
tions exhibited similar sensitivities at all doses (see Table S1 in the
supplemental material). Similarly, no differences were detected in
sensitivity to polymyxin B between strains Rd and RP5G (data not
shown). Thus, P5 mutants resist membrane disruption by both a
negatively and a positively charged detergent to the same extent as
their wild-type counterparts, suggesting that P5 mutants are not
defective for outer membrane stability.

P5 mutants exhibit increased sensitivity to killing by human
serum. To investigate a potential role of P5 in complement resis-
tance of H. influenzae, strains were assayed for survival in the
presence of normal human serum (NHS). To exclude potential
effects of variable growth rates between strains, serum bactericidal
assays were performed with bacteria resuspended in HBSS™ ™,
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FIG 1 Effect of the P5 mutation on resistance of H. influenzae to human
serum. Strains were treated with NHS for 30 min at 37°C and plated for sur-
vivors. (A) Parent strain Rd, Rd P5 mutant strain RP5G, complemented Rd P5
mutant strain RP5X, and the Rd AgalU mutant were treated with 1% NHS. The
lower limit of detection (LLD) was 1.5%. (B) NTHi parent strain NTV, P5
mutant strain NTP5V, and complemented P5 mutant strain NTP5X were
treated with 1%, 2%, or 3% NHS. The LLD was 0.05%. Columns represent the
mean percent survival (CFU of treated samples/CFU of untreated samples) of
3 replicates, and error bars indicate standard deviations. Statistical compari-
sons between parent strains and mutants were done by ANOVA (P = 0.0002
for panel A and P < 0.0001 for panel B) with Tukey’s multiple-comparison test
(*, P <0.01; **, P < 0.001). (Survival of Rd after exposure to 2% or 3% NHS
was below the LLD [not shown].)

which prevents replication, and viability of all strains was unaf-
fected by incubation in HBSS™ ™ alone (data not shown). A range
of serum concentrations was established for wild-type strains Rd
and NTV. The average percent survival of Rd was 92.8% = 21.0%
in 1% NHS across 3 independent experiments, including the bio-
logical replicates shown in Fig. 1A as well as data from two other
experiments (not shown) (n = 9), with an interquartile range of
72.6% to 114.3%. Rd yielded no colonies after incubation in se-
rum at concentrations of 2% or higher. The average percent sur-
vival of parent strain NTV was 18.3% * 8.1% in 3% NHS across 3
independent experiments, including the biological replicates
shown in Fig. 1B as well as data from two other experiments (not
shown) (n = 9), with an interquartile range of 12.0% to 26.3%.

P5 mutant strains were then evaluated for survival in the serum
concentrations described above. When incubated in 1% NHS,
survival of Rd P5 mutant strain RP5G was reduced to levels below
the lower limit of detection (LLD) of the assay, whereas survival of
parent strain RDV and complemented strain RP5X was unaffected
(Fig. 1A). For comparison, the viability of an H. influenzae Rd
mutant carrying a disruption mutation in the coding region of
galU (59), which encodes UDP-glucose pyrophosphorylase, an
enzyme essential for bacteria to synthesize the LOS outer core
(60), was significantly reduced in this assay (survival, 3.5% =+
1.9%). Heat inactivation abrogated the bactericidal effect of se-
rum on the P5 and galU mutants, consistent with an essential role
for complement in killing of bacteria in this assay (data not
shown).

NTHi parent strain NTV was more serum resistant than Rd, as
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NTYV could partially resist 2% and 3% serum (with survival rates
of 61.0% * 6.0% and 14.6% = 4.7%, respectively) (Fig. 1B),
whereas no colonies were recovered for Rd at the latter two serum
concentrations (data not shown). In the presence of 1% serum,
survival of NT127 P5 mutant strain NTP5V was reduced by ~70%
compared with parent strain NTV or complemented P5 mutant
strain NTP5X, which were unaffected (Fig. 1B). Treatment with
2% NHS reduced survival of NTP5V by ~99% compared with
that of the parent and complemented strains, which were both
reduced by ~40%. Incubation with 3% NHS reduced the survival
of the P5 mutant to less than the LLD of 0.25%, which was an
average of 584-fold lower than that of the parent strain and 272-
fold lower than that of the complemented strain at this concen-
tration. Again, heat inactivation eliminated the bactericidal activ-
ity of NHS on all NTHi strains (data not shown). Together, these
results indicate that P5 is required for complement resistance of
both Rd and an NTHi clinical isolate.

C3 and C4 deposition on P5 mutants. The strains were next
evaluated for complement C3 fragment deposition. Activation of
C3 results in covalent binding of C3b to bacterial targets; C3b is
then converted to iC3b by the actions of factor H and factor I. The
amount of iC3b covalently bound to bacteria was measured by
incubating strains in 5% NHS and performing Western blotting
with a monoclonal antibody directed against a neoepitope on the
o, chain of iC3Db, a cleavage product of C3b (54, 55). Detection of
the a;" chain of iC3b covalently bound to bacterial targets (the
68-kDa ;' chain of iC3b migrates as a covalently linked complex
with its target) by Western blotting permitted us to determine
whether targets for C3b/iC3b deposition were altered by the loss of
P5. The amount of C3 deposition on each mutant relative to that
on the wild-type strain was evaluated by determining the total
amount of iC3b bound by using densitometric analysis of visible
bands in each lane. As expected, nonopsonized strain Rd or strain
NTV controls did not produce detectable iC3b signals on Western
blots (Fig. 2A). Deposition of iC3b on RP5G was increased by
1.5-fold compared to that on parent strain Rd and by 3-fold rela-
tive to that on complemented P5 mutant strain RP5X (Fig. 2A). It
is not clear why complementation reduced iC3b binding to a level
somewhat below that of the wild type; however, insertion of the
gene encoding P5 (HI1164) at the xyl locus may lead to increased
expression as a result of the change in genomic location. Similar to
data obtained for Rd strains, iC3b deposition on NTP5V was in-
creased 2.1-fold compared to that on its parent strain, NTV, and
was increased 6.8-fold compared to that on complemented strain
NTP5X (Fig. 2A). The targets for C3 fragments on the P5 knock-
out mutants were similar to those on the wild-type and comple-
mented strains.

The classical pathway is important to initiate killing of NTHi
(61). C4b is an essential component of the classical pathway C3
convertase, and increased C4b deposition on the surface of H.
influenzae results in greater bactericidal activity (28). To deter-
mine if mutation of P5 affects C4b deposition onto H. influenzae,
strains were incubated in 5% NHS and evaluated for total C4b
deposition by Western blotting with an anti-C4 polyclonal anti-
body. NHS alone served as a positive control for the ~95-kDa and
~75-kDa o and B chains, respectively (Fig. 2B). Activation of C4
results in cleavage of its a chain to the ~87-kDa a' chain, which
binds covalently (through either ester or amide linkages) and mi-
grates as a complex with its bacterial targets. C4b binding relative
to the wild type was determined by using densitometry of visible

iai.asm.org 643


http://iai.asm.org

Rosadini et al.

A B
O x 3 % , Controls O x z B Controls
e] ﬁ E l2 & & « ke] E kel g_) E »2 & & % he] |2
KDa & X & =z z Z Q & = KDa & X ¢ z z z Z o z
200-| |1 Lad a "
150-" = 2008 =
100 b 150- — ol — =
100y s e
75- = T o W —o
- . 75| o W et e i S Iy
25-[= = 25 .
20- R = 20- 2 3
3 bound Cabound o oo o -
(relative tow)! 0 15 05 10 21 08 (relativo to W) -0 27 04 10 24 11

FIG 2 Effect of P5 mutation on binding of complement components C3 and C4. The strains listed were incubated with 5% NHS for 30 min at 37°C. Controls
are nonopsonized Rd and NTV for specificity and purified iC3b or NHS to visualize complement fragments. (A) Western blot with primary anti-human
anti-iC3b antibody and secondary anti-human alkaline phosphatase-conjugated antibody. The position of the 68-kDa «," iC3b fragment is denoted «,". (B)
Western blot with anti-human C4 polyclonal antibody and secondary anti-human alkaline phosphatase-conjugated antibody. NHS alone shows the 95-kDa a
chain (o), the 75-kDa [ chain (), and the 33-kDa 1y chain (y is not present, as the lower section of the blot was used for protein staining); higher-molecular-mass
bands in this lane represent unreduced or partially reduced precursors. The bottom portion of each gel was stained with Coomassie blue to serve as a loading

control. C3 or C4 binding relative to the wild type was determined by using densitometry of total visible bands in each lane.

bands in each lane. RP5G was found to bind 2.7-fold more C4b
than Rd and 6.75-fold more C4 than complemented strain RP5C
(Fig. 2B). Strain NTP5V bound 2.4-fold more C4b than NTV and
2.2-fold more C4b than NTP5X (Fig. 2B). As seen with iC3b,
targets for C4b on the wild type and the P5 deletion mutants were
similar. Taken together with results shown in Fig. 2A, the data
indicate that P5 plays a role in the inhibition of classical pathway
activation on the surface of H. influenzae strains. The increased C3

from increased alternative pathway activation and is examined
below.

Immunoglobulin binding to P5 mutants. Antibody binding
to the surface of a pathogen initiates complement activation via
the classical pathway. We evaluated the effects of P5 on antibody
binding to the surface of H. influenzae. Strains were incubated
with NHS, and binding of IgG and IgM was measured by flow
cytometry. Data are represented as the percentage of wild-type

levels (strain Rd or NTV). Levels of IgG binding were similar be-
tween the parent strains, P5 mutants, and complemented strains

fragment deposition that accompanies the loss of P5 may result
from increased classical pathway activation and/or independently
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FIG 3 Effect of P5 mutation on binding of serum antibodies. Parent strain Rd, P5 mutant strain RP5G, and complemented P5 mutant strain RP5X (A and B) or
NTHi parent strain NTV, NTHi P5 mutant strain NTP5V, and complemented NTHi P5 mutant strain NTP5X (C and D) were incubated with 5% NHS for 30
min at 37°C and assayed for binding of IgG or IgM by flow cytometry. Histograms are representative of flow cytometry data from one of the replicates for each
strain. On bar graphs, % WT indicates the median fluorescence of each strain relative to that of the wild type (Rd or NTV). Bars represent the means of three
independent replicates, and error bars represent standard deviations. Statistical comparisons were done by ANOVA (P = 0.0005 for panel B and P = 0.0008 for
panel D) with Tukey’s multiple-comparison test (posttest results are shown on graphs).
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FIG 4 Effect of P5 mutation on resistance of H. influenzae to alternative pathway-mediated killing. (A) Parent strain Rd, Rd P5 mutant strain RP5G, NTHi parent
strain NTV, and NTHi P5 mutant strain NTP5V were treated with NHS in the presence of 20 mM Mg** EGTA for 30 min at 37°C and plated for survivors. The
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on graphs).

for both Rd and NT127 (Fig. 3A and C). In contrast, IgM binding
to the P5 mutant was increased by ~50% over that of the Rd and
NT127 parent and complemented strains (Fig. 3B and D), and
these differences were statistically significant. The observed in-
crease in binding of IgM to the surface of P5 mutants could con-
tribute to their enhanced killing by normal human serum.
Resistance to alternative pathway activation. The P5 mutants
were next examined for their sensitivity to the AP alone. Strains
were treated with NHS in buffer in the presence or absence of 10
mM Mg>* EGTA, which inhibits classical/ MBL pathway activa-
tion, and assayed for survival. Incubation with Mg>* EGTA-con-
taining buffer alone did not decrease the viability of any of the
strains (data not shown). When strains were incubated in 20%
NHS in the presence of Mg®> " EGTA, survival of the Rd P5 mutant
was similar to that of the parent strain (Fig. 4A). In contrast, the
NT127 P5 mutant exhibited a statistically significant 2.2-fold de-
crease in survival compared to that of the parent strain (Fig. 4A).
Strains treated with 20% Mg>* EGTA serum were next analyzed
for C3 binding by Western blotting. Consistent with the survival
data, C3 binding to the Rd P5 mutant and wild-type strain Rd were
similar, whereas the NT127 P5 mutant exhibited a 1.6-fold in-
crease in C3 binding compared to parent strain NTV (Fig. 4B).
The bactericidal results obtained with Mg>* EGTA serum were

February 2014 Volume 82 Number 2

confirmed by using 20% C1q-depleted serum; C1q is required for
classical pathway activation but does not participate in the lectin
pathway. Clq-depleted serum (final concentration of 4%) supple-
mented with Clq at a physiological concentration (70 pg/ml) was
used as a control in which all three pathways were intact. Deple-
tion of Clq did not restore survival of the NT127 P5 deletion
mutant to wild-type levels (Fig. 4C). Similar survival rates of the
NT127 P5 mutantin Mg>" EGTA serum (Fig. 4A, white bar) (only
the AP is functional) and in Clq-depleted serum (Fig. 4C, white
bar) (AP and lectin pathways are functional) suggested that the
lectin pathway did not contribute to increased killing of the P5
deletion mutant. Supplementation of Clq-depleted serum with
purified Clq restored >99% killing of both the wild type and the
P5 deletion mutant even in 4% serum, confirming that an intact
classical pathway was required for killing at low serum concentra-
tions (Fig. 4C). At higher (20%) serum concentrations, the AP
alone could compromise the survival of the P5 deletion mutant for
only NT127 and not Rd. Taken together, these data strongly sug-
gest that P5 is important for interfering with AP activity on select
strains of H. influenzae.

Inhibition of the AP mediated by NT127 P5 could be the result
of binding of AP inhibitor factor H (fH). The NT127 P5 mutant
(NTP5V) bound barely detectable amounts of purified fH in a
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flow cytometry assay compared with the parent strain (NTV) (Fig.
4D). In contrast, binding of fH to the Rd P5 mutant was equivalent
to that of the parental strain (Fig. 4E), consistent with the negligi-
ble effect of Rd P5 on survival and iC3b binding in serum possess-
ing only the AP (Fig. 4A and B). These results indicate that P5 is
required for fH binding to NT127, which constitutes a probable
mechanism by which P5 variants can contribute to NTHi AP eva-
sion.

DISCUSSION

Complement is a major effector of the innate immune response
and is present in an increased abundance at mucosal surfaces in
the context of infection and other inflammatory conditions (31).
The association between complement deficiencies and increased
susceptibility to infection has long been recognized for invasive
Haemophilus infections (62, 63). Evidence that colonization by
NTHi at the mucosal surface requires evasion of complement was
obtained in a chinchilla model of middle ear infection. Specifi-
cally, depletion of complement using cobra venom factor restored
virulence to a serum-sensitive NTHi mutant (which could not
sialylate its LOS as a result of a deletion of the siaB gene, encoding
cytidinemonophospho-N-acetylneuraminic acid synthetase) that
was otherwise avirulent in complement-sufficient animals (30).
Recently, strains isolated from pulmonary infections were shown
to exhibit higher levels of serum resistance than nasopharyngeal
isolates (64, 65). While the mechanism of complement-mediated
defense against NTHi in the lung is not fully understood, defects
in complement-mediated phagocytosis of NTHi have been iden-
tified with macrophages isolated from patients with COPD in
comparison to those of healthy nonsmokers (66), suggesting the
importance of opsonophagocytosis in controlling NTHi in pul-
monary infections. For these reasons, in this work, we sought to
elucidate new factors involved in complement evasion by NTHi.

We previously found that H. influenzae mutants deficient in
periplasmic disulfide bond formation as a result of a mutation in
the dsbA-encoded disulfide oxidoreductase were killed more read-
ily by serum complement (34). By informatics-based approaches,
outer membrane protein P5 was identified as a candidate DsbA-
dependent protein with a potential role in this phenotype (34, 35).
In this report, we show that P5 in both Rd and an NTHi strain are
required for full serum resistance. P5 regulated the classical path-
way, and loss of P5 was associated with increased IgM binding and
C4 deposition, with no apparent change in levels of IgG binding
(Fig. 2 and 3). Although the increase in IgM binding to P5 mutants
was only 50% over the level of binding to wild-type strains, IgM is
very efficient at activating complement compared with IgG, as a
single IgM molecule is sufficient to engage the C1 complex and
initiate the classical pathway (67). Moreover, surveys of clinical
NTHi isolates have revealed a correlation between higher levels of
IgM binding and decreased serum resistance (64, 65). The epitope
targeted by serum IgM on P5 mutants is currently not known;
however, IgM that is bactericidal for NTHi in normal human se-
rum is directed primarily against the LOS (68). Thus, the loss of P5
may increase the exposure of IgM-binding epitopes on the LOS,
leading to decreased serum resistance of the strain.

It is unclear why P5 mutants bind increased amounts of IgM
while IgG levels remain equal between the mutant and wild-type
strains. However, a similar observation has been made with Hae-
mophilus ducreyi mutants deficient in an outer surface protein,
DsrA (69). dsrA mutants exhibit increased binding of IgM, which
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was found to be responsible for the increased activation of classical
pathway components on the surface of this bacterium, but levels
of bound IgG were equivalent between the mutant and wild-type
strains (69). It was suggested that DsrA may physically exclude
IgM from the surface of this bacterium or that the loss of dsrA
results in the upregulation of a novel IgM epitope-containing fac-
tor on the surface of the bacterium (69). These scenarios are also
plausible in the case of P5 mutants; however, further investigation
will be necessary to determine exactly how P5 participates in lim-
iting surface IgM deposition on H. influenzae strains. Potentially,
these examples are indicative of a general strategy by which Gram-
negative pathogens utilize outer surface proteins to exclude IgM
from their surfaces and avoid complement activation.

A protein similar to P5 in E. coli, OmpA, was implicated pre-
viously in serum resistance. OmpA has been suggested to bind
complement regulatory factor C4BP (38, 39), a host protein that
normally functions to limit inappropriate classical pathway acti-
vation. Preliminarily studies showed that P5 mutants and wild-
type strains bound similar levels of C4BP (S. Ram and C. V.
Rosadini, unpublished data). Thus, P5 is unlikely to play a role in
the binding of C4BP to our strains. However, we did find that P5
of NT127 is required for defense against alternative pathway acti-
vation via its ability to promote the binding of another comple-
ment-inhibitory molecule, fH (Fig. 4D). H. influenzae strains that
bind fH were shown previously to be more sensitive to NHS when
fH was depleted (70). Thus, the significant decrease in fH binding
to NTHi P5 mutants strongly suggests a mechanism for their loss
of resistance to the AP. Interestingly, P5 was not required for Rd
strains to bind fH (Fig. 4E), suggesting that this strain binds fH via
an alternative mechanism. Furthermore, outer surface loops of
P5, which are likely to be involved in fH binding, are different
between Rd and NT127 (see Fig. S1 in the supplemental material),
which likely accounts for the difference in function. Of note, in a
survey of the serum resistance of 18 clinical NTHi isolates, Marti-
Lliteras et al. identified a strain with a predicted truncation of P5
that exhibited a moderate level of serum resistance albeit a level
lower than that of 16 of the 17 other strains tested (71). Therefore,
it is possible that some clinical isolates may possess an alternative
fH-binding mechanism contributing resistance analogous to that
of Rd, and it will be of interest to evaluate this possibility with
isogenic mutants.

Evidence for alternative fH-binding mechanisms within the
species raises the possibility that H. influenzae strains capable of
high levels of fH binding may possess more than one binding
mechanism, a strategy common to many other organisms, includ-
ing Neisseria meningitidis (72, 73), Streptococcus pneumoniae (74),
Borrelia burgdorferi (75), and Candida albicans (76). Importantly,
Hallstrom et al. found that among clinical isolates of NTHi from
cases of sepsis, disease severity was correlated with increased se-
rum resistance and binding of complement-inhibitory proteins,
including fH (24). An understanding of how pathogenic NTHi
strains bind fH and whether differences in this ability involve the
acquisition of multiple binding mechanisms is therefore of poten-
tial clinical relevance to the severity of invasive infection.

Previously, P5 was implicated in the pathogenesis of H. influ-
enzae as an adherence factor for attachment of H. influenzae to
host mucosal structures (42—46). The work presented here de-
scribes new functional roles for this abundant outer membrane
protein, including limiting the binding of IgM to the bacterial
surface and participating in the binding of fH. Overall, P5’s role in
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resistance to both the classical and AP complement pathways
highlights the ability of H. influenzae to utilize a single protein to
perform diverse virulence-associated functions.
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