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In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at
present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since
neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human popula-
tion, there is interest in identifying other correlates of protection, such as cross-reactive CD8� T cells (cytotoxic T lymphocytes
[CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8� T cells are known to recognize conserved
internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerg-
ing H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-spe-
cific polyclonal CD8� T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8�

T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma in-
terferon (IFN-�) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes,
CD8� T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these
cross-reactive CD8� T cells may afford some protection against infection with the new virus.

Influenza viruses are an important cause of respiratory tract in-
fections. Occasionally, animal influenza viruses cross the species

barrier and infect humans after zoonotic transmission. In the past
2 decades, several avian influenza A viruses, like those of the H9N2
subtype (1), the H7N7 subtype (2, 3), and the H5N1 subtype (4–
9), have infected humans. In 2009, H1N1 influenza A viruses of
swine origin (H1N1pdm09) caused a pandemic outbreak, and
these viruses continue to circulate in the human population (10).

In February 2013, the first human cases of infection with a
novel avian influenza A virus of the H7N9 subtype were reported
in China. As of September 2013, 135 laboratory-confirmed cases
had been reported, 44 of which had a fatal outcome (11). Older
male individuals especially seem to be at risk for developing severe
disease upon infection (12–15). Most hospitalized patients devel-
oped severe viral pneumonia and acute respiratory distress syn-
drome (ARDS) (16–19).

Influenza A viruses with hemagglutinin (HA) and neuramini-
dase (NA) of subtypes H7 and N9, respectively, circulate in wild
bird species (20, 21). The newly emerged H7N9 virus is most likely
the result of multiple reassortment events of at least three avian
viruses (17, 22, 23). Although the H7N9 virus has been classified as
a low-pathogenic virus based on the intravenous pathogenicity
index (IVPI) in chickens and the absence of a multibasic cleavage
site in the HA, it is quite pathogenic in humans (17). The virus also
replicates efficiently in the airways of other mammalian species,
including mice, ferrets, and cynomolgus macaques (24, 25). It is
more pathogenic than seasonal influenza A H3N2 (sH3N2) vi-
ruses or pandemic 2009 H1N1 (pH1N1) viruses and after intra-
tracheal inoculation causes fatal disease in ferrets (26). The high
pathogenicity in mammals correlates with the presence of known
pathogenicity markers. Several human isolates of the H7N9 virus
contain the E627K substitution in PB2, which allows avian influ-
enza viruses to replicate at lower temperatures (27). A deletion of
5 amino acids in the NA of H7N9 virus is associated with en-
hanced virus replication (17). The presence of the Q226L substi-

tution in the HA (17, 28) is associated with binding to alpha(2,6)-
linked sialic acids found in the human upper respiratory tract (24)
and has been associated with airborne transmission of avian
H5N1 virus in ferrets (29). In the case of the novel H7N9 virus,
only limited transmission between ferrets was observed (24, 25,
30, 31). Acquisition of gene segments from human influenza A
viruses by the avian influenza H7N9 virus through genetic reas-
sortment may lead to further adaptation to humans (10, 32–37).
The detection of an H7N9 patient who was coinfected with an
sH3N2 virus underscores this possible scenario (38). Although at
present no sustained human-to-human transmission of the H7N9
virus has been reported (39), the pandemic potential of H7N9
virus should be considered seriously, especially since virus-
neutralizing antibodies directed to the HA globular head do-
main of the virus are virtually absent in the human population
(18), though low concentrations of stalk region-specific anti-
bodies might be present (40, 41).

On the other hand, virus-specific CD8� T cells (cytotoxic T
lymphocytes [CTLs]), induced after infection with seasonal influ-
enza A viruses, are mainly directed to the conserved internal pro-
teins of influenza A viruses (33, 42–51). The presence of these
cross-reactive CD8� T cells may afford a certain degree of hetero-
subtypic immunity against infection with novel H7N9 viruses.
Using various combinations of influenza A virus subtypes for pri-
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mary and secondary infection, this type of immunity and the con-
tribution of virus-specific CD8� T cells were demonstrated in
various animal models (52–57). Evidence for heterosubtypic im-
munity and the role of CD8� T cells in humans is limited (58–61),
though the presence of CD8� T cells cross-reactive with avian
H5N1 and swine origin triple-reassortant A H3N2 (vH3N2) vi-
ruses has been demonstrated (49–51, 62). It is unknown to what
extent CD8� T cells elicited by a seasonal or 2009 pH1N1 influ-
enza A virus infection cross-react with the novel H7N9 virus.
Here, we show that polyclonal CD8� T cell populations specific
for seasonal H1N1 (sH1N1), sH3N2, or pH1N1 virus cross-react
with the H7N9 virus by determining their gamma interferon
(IFN-�) response upon in vitro stimulation with the novel H7N9
virus and their lytic activity toward H7N9 virus-infected human
leukocyte antigen (HLA)-matched target cells. The preexisting
cross-reactive CD8� T cells may afford some level of protection
and may reduce morbidity and mortality caused by infections
with the novel H7N9 virus.

MATERIALS AND METHODS
Cells. Peripheral blood mononuclear cells (PBMCs) were obtained from 6
HLA-typed healthy blood donors (35 to 50 years of age) between 2008 and
2013 (Sanquin Bloodbank, Rotterdam, The Netherlands). Lymphoprep
(Axis-Shield PoC, Oslo, Norway) gradient centrifugation was used to iso-
late PBMCs, which were subsequently cryopreserved at �135°C. Donors
were selected based on their HLA class I alleles for which functionally
confirmed influenza A virus HLA class I epitopes have been identified and
had the following HLA haplotypes: subjects 1 and 2, HLA-A*0101,
-A*0201, -B*0801, and -B*3501; subjects 3 and 4, HLA-A*0101, -A*0201,

-B*0801, -B*2705; and subjects 5 and 6, HLA-A*0101, -A*0301, -B*0801,
and -B*3501. The use of PBMCs for scientific research was approved by
the Sanquin Bloodbank after informed consent was obtained from the
blood donors.

Peptides. The amino acid sequences of confirmed influenza A virus HLA
class I epitopes were aligned with their H7N9 analogues from human isolates
between February 2013 and 22 April 2013 (Table 1). Sequences were obtained
from the influenza virus resource database (http://www.ncbi.nlm.nih.gov
/genomes/FLU/Database/nph-select.cgi?go�database). In addition, conser-
vation of these epitope sequences in the prototype viruses used in the present
study, sH3N2 (A/Netherlands/348/07), sH1N1 (A/Netherlands/26/07), and
pH1N1 (A/Netherlands/602/09), was determined (Table 1). The H7N9 vari-
ant epitopes for which the HLA restriction was compatible with the HLA type
of the study subjects were ordered as synthetic immunograde peptides
(�85% purity) (Eurogentec, Seraing, Belgium).

Viruses. Influenza virus A/Anhui/1/2013 (H7N9) was isolated from a
fatal human case (Anhui Province, People’s Republic of China) and was
kindly provided through the WHO Pandemic Influenza Preparedness
(PIP) framework and subsequently passaged once in Madin Darby Canine
Kidney (MDCK) cells. Prototypic seasonal influenza A viruses A/Nether-
lands/348/07 (sH3N2), A/Netherlands/26/07 (sH1N1), and A/Nether-
lands/602/09 (pH1N1) were propagated in MDCK cells. Culture super-
natants were clarified by low-speed centrifugation and subsequently
purified by ultracentrifugation through a sucrose gradient. Their infec-
tious-virus titers were determined as described previously (63).

Amino acid sequence identity. The amino acid sequence identity of
the viral proteins of influenza viruses A/Anhui/1/2013 (H7N9) and the
prototype sH3N2, sH1N1, and pH1N1 was determined using BLAST
analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Table 2). The consen-
sus sequence of A/Anhui/1/2013 was obtained from the GISAID database
(http://platform.gisaid.org), and the consensus sequence of the influenza

TABLE 1 Variant amino acid sequences of known CD8� T cell epitopes in the influenza A H7N9 virusa

HLA restriction Epitope

Amino acid sequenceb

ReferenceInfluenza A virus sH3N2 sH1N1 pH1N1 H7N9

HLA-A*3 M1 13-21 SIIPSGPLK --V------ --V------ --------- --------- 85
M1 27-35 RLEDVFAGK --------- ---S----- --------- --------- 86

HLA-A*0201 M1 58-66 GILGFVFTL --------- --------- --------- --------- 44, 87
M1 59-68 ILGFVFTLTV ---------- ---------- ---------- ---------- 87

HLA-B*35 M1 128-135 ASCMGLIY -------- -------- -------- -------- 88
HLA-B*44 M2 7-15 VETPIRNEW --------- --------- ----T-S-- ----T-TG- 46
HLA-A*0201 NA 213-221 CVNGSCFTV INGTCTVVM --------I --------- VCPVVFTDG 89
HLA-A*01 NP 44-52 CTELKLSDY --------H ------N-- --------- --------N 90
HLA-A*6801 NP 91-99 KTGGPIYKR -------R- --------- -------R- -------R- 91
HLA-B*1402 NP 146-154 TTYQRTRAL A-------- --------- A-------- A-------- 92
HLA-B*2705 NP 174-184 RRSGAAGAAVK ----------- ----------- ----------- ----------- 62
HLA-A*3 NP 188-198 TMVMELVRMIK ------I--V- ---L--I---- -IA---I---- ------I---- 85
HLA-A*03 NP 265-273 ILRGSVAHK --------- --------- --------- --------- 90
HLA-B*44 NP 338-346 FEDLRVLSF -----L--- ------S-- ------S-- ------S-- 93
HLA-B*3701 NP 339-347 EDLRVLSFI ----L---- -----S--- -----S--- -----S--- 94, 95
HLA-B*44 NP 379-387 LELRSRYWA -----G--- --------- --------- --------- 93
HLA-B*0801 NP 380-388 ELRSRYWAI ----G---- --------- --------- --------- 96
HLA-B*2702 NP 381-388 LRSRYWAI ---G---- -------- -------- -------- 97
HLA-B*2705 NP 383-391 SRYWAIRTR -G------- --------- --------- --------- 98
HLA-B*35 NP418-426 LPFEKSTVM -------I- ---D-A-I- ----RA--- ----RA-I- 99
HLA-A*0201 NS1 122-130 AIMDKNIIL ---E---M- --------- ---E---V- --V----T- 100

NS1 123-132 IMDKNIILKA --E---M--- ---------- --E---V--- -V----T--- 100
HLA-B*44 NS1 158-166 GEISPLPSL --------F --------F --------- --------- 93
HLA-A*01 PB1 591-599 VSDGGPNLY --------- --------- --------- --------- 90
a The A/Anhui/1/13 (H7N9) sequence was unavailable at the time of ordering the peptides. All epitopes, except LPFEKSTVM (H7N9 LPFERARIM), were conserved between the
H7N9 viruses present in the database at April 22th and the A/Anhui/1/13 virus used in this study.
b Peptides used in the present study are shaded and were selected based on variation in the H7N9 sequence and correspondence to the HLA alleles of the study subjects. Synthetic
immunograde peptides were ordered with �85% purity. The dashes indicate identity with the amino acids in the influenza A virus sequence.

Human Cytotoxic T Cells to A/H7N9 Influenza Virus

February 2014 Volume 88 Number 3 jvi.asm.org 1685

http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://platform.gisaid.org
http://jvi.asm.org


virus A/Anhui/1/2013 preparation used in the present study was con-
firmed by sequence analysis (30).

In vitro expansion of influenza A virus-specific CD8� T cells.
PBMCs obtained from HLA-typed study subjects were stimulated with
sH3N2, sH1N1, and pH1N1 viruses at a multiplicity of infection (MOI) of
3, as described previously (64). Eight days after stimulation, polyclonal
CD8� T cells were isolated from the expanded PBMC cultures by means
of CD8� magnetically activated cell sorting (MACS) bead sorting accord-
ing to the manufacturer’s recommendations (Miltenyi Biotec, Bergisch
Gladbach, Germany) and subsequently used as effector cells in IFN-�
enzyme-linked immunosorbent spot (ELISpot) and lytic assays (see be-
low).

Target cells. HLA-matched B lymphoblastoid cell lines (BLCLs) were
prepared as described previously (65). The cells (106) were incubated with
or without 100 �M peptide for 16 h at 37°C and subsequently washed and
resuspended in RPMI 1640 medium (Lonza, Basel, Switzerland) contain-
ing antibiotics and 10% fetal bovine serum (Sigma-Aldrich, Zwijndrecht,
The Netherlands) (R10F medium). Virus-infected target cells were pre-
pared by inoculating BLCLs at an MOI of 3 with sH3N2, sH1N1, pH1N1,
or H7N9 virus. After 1 h, the cells were washed and resuspended in R10F
medium and cultured for 16 to 18 h at 37°C before being used for the
stimulation of T cells or as target cells.

IFN-� ELISpot assay. The IFN-� responses of in vitro-expanded poly-
clonal CD8� T cells were determined by ELISpot assays, which were per-
formed according to the manufacturer’s instructions (Mabtech, Nacka
Strand, Sweden). In brief, 10,000 or 5,000 in vitro-expanded polyclonal
CD8� T cells were used as effector cells and incubated for 16 to 18 h with
30,000 peptide-loaded, virus-infected, or untreated HLA class I-matched
target cells, in triplicate. The average number of spots was determined
using an ELISpot reader and image analysis software (Aelvis, Sanquin
Reagents, Amsterdam, The Netherlands).

CTL assay. The lytic capacity of the in vitro-expanded polyclonal
CD8� T cells was determined using a CTL assay with carboxyfluorescein
succinimidyl ester (CFSE)-labeled target cells. In brief, 5 � 106 cells of
HLA class I-matched BLCLs were incubated with 50 �M CFSE (Sigma-
Aldrich, Zwijndrecht, The Netherlands) for 5 min at 37°C. Subsequently,
these cells were inoculated with sH3N2, sH1N1, pH1N1, or H7N9 virus at
an MOI of 3 for 16 to 18 h. The infected and CFSE-labeled BLCL target
cells were cocultured with the in vitro-expanded polyclonal CD8� effector
T cells in effector-to-target cell (E:T) ratios of 5, 2.5, and 1.25. After a 3-h
incubation period, the cells were fixed using Cytofix/Cytoperm (BD Bio-
sciences, Breda, The Netherlands), and lysis in the target cell population
was determined by flow cytometry using BD FACSDiva software (Becton,
Dickinson B.V., Breda, The Netherlands). Experiments were performed
in triplicate.

Statistical analysis. The data were analyzed using an independent t
test, and differences were considered significant at a P value of 	0.05.

RESULTS
Comparison of amino acid sequences of CD8� T cell epitopes.
The amino acid sequences of 24 confirmed influenza A virus HLA
class I epitopes were compared with their influenza A H7N9 virus
analogues. As shown in Table 1, most epitopes (�50%) were fully
conserved in H7N9 viruses. Based on these results, four variant
H7N9 epitopes that were conserved in our prototypic sH3N2,
sH1N1, and/or pH1N1 viruses (Table 1) and were compatible
with the HLA type of the study subjects under investigation were
further tested for cross-recognition in the ELISpot assay. All
epitopes except NP418-426 were conserved among H7N9 viruses
available in the influenza virus resource database (22 April 2013)
and the A/Anhui/1/13 (H7N9) virus used in this study.

Cross-recognition of influenza A (H7N9) analogues of known
influenza A HLA class I epitopes. In vitro-expanded CD8� T cell
preparations specific for sH3N2, sH1N1, and pH1N1 influenza
viruses were tested for their cross-reactivity with the selected
H7N9 variant epitopes listed in Table 1 using peptide-loaded
HLA-matched BLCLs.

Virus-specific CD8� T cells obtained from study subjects 1
and 2 (HLA-A*0101, -A*0201, -B*0801, and -B*3501) dis-
played strong reactivity with the homologous epitopes, except for
epitope NS123-132 (IMDKNIILKA) (Fig. 1A and B). The H7N9
variant of the NP418-426 (LPFERATIM) epitope was recognized by
sH3N2-specific CD8� T cells derived from subject 1, although the
IFN-� response was lower than the response to the homologous
epitope (LPFEKSTIM) (Fig. 1A). None of the other H7N9 variant
epitopes were recognized by virus-specific CD8� T cells of these
HLA-A*0101, -A*0201, -B*0801, and -B*3501 study subjects.

Virus-specific CD8� T cells obtained from study subjects 3 and
4 (HLA-A*0101, -A*0201, -B*0801, and -B*2705) displayed a mi-
nor response to homologous epitopes NS122-130 and NS123-132

(Fig. 1C and D). This is in agreement with the subdominant na-
ture of the responses to these epitopes in these subjects (data not
shown). CD8� T cells from both subjects did not display any
response to the H7N9 variant of the NS122-130 and NS123-132

epitopes (Fig. 1C and D). Although CD8� T cells of the two sub-
jects displayed reactivity with the homologous NP44-52 epitope,
they did not respond to the H7N9 variant of the epitope (CTELK
LSDN).

Virus-specific CD8� T cells from study subjects 5 and 6 (HLA-
A*0101, -A*0301, -B*0801, and -B*3501) displayed a strong re-
sponse to the homologous sH3N2 variant of the NP418-426 epitope
(Fig. 1E and F). Some minor cross-reactivity with the H7N9 vari-
ant (LPFERATIM) was observed with CD8� T cells derived from
subject 5 (Fig. 1E). As for the other subjects, no cross-reactivity
was observed with the H7N9 variant of the NP44-52 (CTELKL
SDN) epitope with CD8� T cells obtained from subject 5.

Overall, the extent of cross-reactivity of influenza virus-spe-
cific CD8� T cells against individual H7N9 variant epitopes was
low and dependent on the study subjects and peptides tested.

CD8� T cells cross-react with influenza A H7N9 virus-in-
fected cells. Since more than 50% of previously identified influ-
enza virus HLA class I epitopes were present in the H7N9 virus, we
wished to compare the overall amino acid sequence identities be-
tween the H7N9 virus and the prototypic sH3N2, sH1N1, and
pH1N1 viruses used in the present study. BLAST analysis revealed
that the sequence identity of most viral proteins was high (�76%),
except for hemagglutinin and neuraminidase (Table 2).

TABLE 2 Percent amino acid sequence identity with A/Anhui/1/2013
(H7N9)

Gene segment

% Identity

sH3N2 sH1N1 pH1N1

PB2 94 94 97
PB1 97 95 96
PA 94 95 96
HA 47 41 41
NP 91 92 93
NA 45 43 45
M1 91 91 92
M2 82 78 89
NS1 76 80 78
NS2 93 90 88
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Since the sequence identity between seasonal influenza viruses
used in this study and H7N9 virus is high, we wished to determine
the cross-reactivity of polyclonal CD8� T cells specific for sH3N2,
sH1N1, or pH1N1 viruses with H7N9 virus. To this end, in vitro-
expanded seasonal influenza virus-specific polyclonal CD8� T
cells were stimulated with HLA class I-matched BLCLs infected
with the homologous seasonal influenza A virus or H7N9 virus
(A/Anhui/1/2013). The number of IFN-�-producing cells per
5,000 CD8� T cells was determined in an IFN-� ELISpot assay
(Fig. 2).

Study subject 1 showed a high response to homologous seasonal
influenza viruses (sH3N2, sH1N1, and pH1N1), but also after stim-
ulation with H7N9 virus-infected cells (Fig. 2A, B, and C). Although
the frequency of seasonal influenza virus-specific CD8� T cells de-
rived from subject 2 was lower than that of cells derived from subject
1, these T cells also cross-reacted with H7N9 virus-infected cells (Fig.
2D, E, and F). Subjects 3 and 4 responded to both the homologous
viruses and H7N9 virus (Fig. 2G, H, I, J, K, and L). Subjects 5 and 6
(who lack the HLA-A*0201 allele) showed the lowest response to
stimulation with homologous viruses. However, the virus-specific
CD8� T cells of these two subjects also displayed cross-reactivity with
H7N9 virus (Fig. 2M, N, O, P, and Q).

Thus, although the frequency of virus-specific IFN-�-produc-
ing T cells varied between the study subjects, the cells cross-re-
acted with the H7N9 virus. This was independent of the sH3N2,
sH1N1, or pH1N1 virus used for the in vitro expansion of the
polyclonal CD8� T cells (Fig. 2). The average number of spots
tended to be higher after restimulation with H7N9 virus than after
restimulation with the homologous viruses, although the differ-
ence was not statistically significant (Fig. 2R, S, and T).

Cross-recognition of CD8� T cells with influenza A H7N9
virus assessed by lytic activity. Based on the IFN-� ELISpot re-
sults, we selected high-responding study subjects from each HLA
group to test the lytic capacity of the CD8� T cells against HLA
class I-matched BLCLs infected with the homologous or H7N9
virus. To this end, polyclonal CD8� T cells derived from sH3N2,
sH1N1, or pH1N1 virus-stimulated PBMC cultures from study
subjects 1, 3, and 5 were incubated with CFSE-labeled BLCLs in-
fected with the sH3N2, sH1N1, pH1N1, or H7N9 virus.

CD8� T cells from subject 1 obtained after sH3N2, sH1N1, and
pH1N1 virus stimulation not only displayed lytic activity to the
respective homologous viruses, but also displayed similar or even
stronger lytic activity to H7N9 virus-infected cells, as was ob-
served for sH1N1 virus-specific CD8� T cells (Fig. 3A, B, and C).

FIG 1 Epitope-specific IFN-� production by seasonal influenza virus-specific CD8� T cells after stimulation with peptide-loaded BLCLs. Polyclonal CD8� T
cells were isolated from PBMCs in vitro stimulated with sH3N2, sH1N1, or pH1N1, as indicated. No pH1N1 in vitro stimulation was performed for subject 6,
since those PBMCs were isolated in 2008, prior to the 2009 pandemic outbreak. The polyclonal CD8� T cells were subsequently stimulated with peptide-loaded
and untreated HLA class I-matched BLCLs. Stimulation with homologous peptides is indicated by black bars, stimulation with H7N9 variant peptides is indicated
by gray bars, and control cells without peptide are indicated by white bars. The number of IFN-�-producing cells per 10,000 polyclonal CD8� T cells was
determined by ELISpot assay. The results represent the averages of triplicate wells. Peptides were selected based on the variation in the H7N9 sequence and their
compatibility with the HLA haplotypes of our study subjects. The error bars indicate standard deviations of results from the triplicate wells.
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A similar trend was observed for virus-specific CD8� T cells ob-
tained from subject 3. Again, the lytic activity to H7N9 virus-
infected cells exceeded that to cells infected with the homologous
viruses to various extents (Fig. 3D, E, and F). Virus-specific CD8� T
cells of subject 5 displayed minor lytic activity to target cells infected
with the respective homologous viruses. Again, the lytic activity to
target cells infected with H7N9 virus exceeded that to cells infected
with the homologous viruses and uninfected control cells (Fig. 3G, H,
and I). The background lytic activity of T cells derived from subjects 1
and 5 was high, which may be related to bystander proliferation of
Epstein-Barr virus (EBV)-specific T cells.

DISCUSSION

Here, we assessed the cross-reactivity of seasonal influenza A vi-
rus-specific CD8� T cells with the newly emerging H7N9 virus.
This study showed that a significant proportion of the polyclonal
CD8� T cells specific for sH3N2 (A/Netherlands/384/07), sH1N1

(A/Netherlands/26/07), and pH1N1 (A/Netherlands/602/09)
cross-react with the novel H7N9 virus (A/Anhui/1/2013).

Comparison of epitope sequences revealed that the majority of
the currently known HLA class I epitopes are conserved in the
novel H7N9 viruses. Several studies have shown that the conser-
vation of these HLA class I epitopes is responsible for cross-reac-
tivity of influenza A virus-specific CD8� T cells with influenza A
viruses of another subtype (43, 45, 49–51). However, variation in
some of the known epitopes was observed. We demonstrated that
there is very little cross-reactivity of seasonal influenza A virus-
specific CD8� T cells with four individual H7N9 variant epitopes,
although CD8� T cells of subject 1 displayed some cross-reactivity
with the H7N9 NP418-426 (HLA-B*35-restricted) epitope (Fig.
1A). The magnitudes of the responses to individual peptides var-
ied between study subjects (Fig. 1). These differences may reflect
differences in HLA class I makeup (64) and/or differences in the
history of influenza A virus infections.

FIG 2 Virus-specific IFN-� production by polyclonal CD8� T cells after stimulation with BLCLs infected with homologous or H7N9 virus. (A to Q) Seasonal
influenza virus-specific polyclonal CD8� T cells were isolated from PBMCs stimulated with sH3N2 (A, D, G, J, M, and P), sH1N1 (B, E, H, K, N, and Q), or
pH1N1 (C, F, I, L, and O). PBMCs of subject 6 were not stimulated in vitro with pH1N1, since they were isolated prior to the pH1N1 outbreak. The CD8� T cells
were subsequently cocultured with BLCLs infected with homologous virus (sH3N2, sH1N1, or pH1N1) (black bars) or the heterologous novel H7N9 virus (gray
bars). The number of IFN-�-producing cells per 5,000 polyclonal CD8� T cells was determined by ELISpot assay. Uninfected BLCLs were used as negative
controls (white bars). Experiments were performed in triplicate. The error bars indicate standard deviations for the triplicates. (R, S, and T) The symbols
represent the averages of triplicate experiments for each individual subject, and the horizontal bars represent the average responses of all study subjects combined.

FIG 3 Lytic activity of virus-specific polyclonal CD8� T cells against BLCLs infected with the homologous or H7N9 virus. Seasonal influenza virus-specific
polyclonal CD8� T cells from study subjects 1, 3, and 5 were isolated after stimulation with sH3N2 (A, D, and G), sH1N1 (B, E, and H), or pH1N1 (C, F, and I)
virus, as indicated. Lytic activity against CFSE-labled BLCLs infected with the homologous virus (sH3N2, sH1N1, or pH1N1) (solid squares) or the heterologous
novel H7N9 virus (open squares) was assessed as lytic background activity against uninfected cells (open circles). Experiments were performed in triplicate. The
error bars indicate standard deviations for the triplicates.
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Although it has been suggested that the novel H7N9 virus is
poorly immunogenic based on the in silico predictions of T cell
epitopes in HA (66), we clearly demonstrate that the presence of
most conserved HLA class I epitopes in the novel H7N9 virus
contributes to the high cross-reactivity of the polyclonal CD8� T
cell populations with the H7N9 virus (Fig. 2 and 3). The low IFN-�
responses of study subjects 5 and 6 (A*0101, -A*0301, -B*0801,
and -B*3501) to stimulation with the homologous seasonal influ-
enza viruses and the H7N9 virus (Fig. 2) might be attributed to the
absence of the HLA-A*0201 allele, which is required for a domi-
nant CD8� T cell response to the conserved and M158-66 epitopes
(64). All study subjects displayed cross-reactive responses to
H7N9 virus equal to or greater than those against the homologous
viruses (Fig. 2 and 3), which could not be attributed to differences
in infection rates (data not shown). These results correspond to
previous assessments of cross-reactive CD8� T cells with avian
influenza A viruses of the H5N1 subtype (49). The strong reactiv-
ity to avian influenza A viruses might be the result of differences in
antigen processing in infected cells, allowing more peptides to be
liberated and presented from viral proteins of avian viruses than
from those of human influenza viruses. It can be hypothesized that
since these avian viruses have not circulated in the human popu-
lation extensively, they have not yet had a chance to acquire mech-
anisms to escape from human epitope processing (33, 67–72).

Although we have studied the cross-reactivity of CD8� T cells
of study subjects with selected HLA types, it is likely that individ-
uals with other HLA types also possess cross-reactive CD8� T
cells. The conservation of HLA class I epitopes restricted by other
HLA alleles (Table 1) and the high amino acid sequence identity
between the seasonal influenza viruses and the H7N9 virus under-
scores this (Table 2).

Cross-reactive influenza A virus-specific CD8� T cells are
found in individuals who have experienced an influenza A virus
infection at least once. In contrast, a seroprevalence study indi-
cated that a large proportion of children under the age of 4 years
had not experienced an influenza A virus infection and therefore
may not have developed virus-specific T cell responses (73). This
age group may therefore be at higher risk of developing severe
disease during a pandemic outbreak than adults. This was indeed
the case during the 2009 H1N1 pandemic (74) and the localized
outbreaks of the H5N1 subtype (75) and the vH3N2 subtype (76,
77). However, in the case of the novel H7N9 virus, mainly older
(male) individuals were at risk for developing severe disease (12–
15). The reason for this discrepancy is unknown at present. It has
been suggested that differences in cell-mediated immunity be-
tween different age groups are the basis for this predilection (78).
Elderly people who had experienced an H1N1 infection before 1957
were serologically protected during the 2009 pandemic outbreak and
in the following years, whereas many unprotected individuals, in-
cluding children, suffered from a pH1N1 infection in recent years
(74, 79). Recent influenza A virus infections in children and young
adults most likely boosted their cellular immune responses, which
may afford some protection from infection with viruses of novel sub-
types, including those of the H7N9 subtype (78). Others have sug-
gested that preexisting immunity consisting of low levels of weakly
heterosubtypic antibodies may result in antibody-dependent en-
hancement (ADE) of the infection (14). Instead of neutralizing the
virus, these antibodies would enhance uptake of the virus and thus
promote its replication. The possibility that other confounding fac-
tors may have contributed to the predilection of H7N9 disease for

older individuals cannot be excluded. Elderly people are more likely
to suffer from underlying diseases (80) and are known to have altered
T cell immunity, which is likely to influence the outcome of an influ-
enza A virus infection (81, 82).

It is difficult to predict to what extent preexisting influenza A
virus-specific CD8� T cells will afford protection against novel
pandemic influenza viruses. Several animal studies have shown
that virus-specific CD8� T cells contribute to heterosubtypic im-
munity (52–57). However, evidence for heterosubtypic protection
by CD8� T cells in humans is sparse (59, 83). Epidemiologic stud-
ies showed that individuals who had experienced a seasonal H1N1
infection prior to the 1957 H2N2 pandemic were partially pro-
tected (60, 61), which could be attributed to cross-reactive T cells
and/or antibodies to, e.g., the stalk region of HA. A similar trend
was observed in isolated H5N1 infections (75). However, recent
studies performed during the 2009 H1N1 pandemic provide bet-
ter insight into the protective role of CD8� T cells during an in-
fection with an antigenically distinct influenza virus in serologi-
cally naive humans. It was shown that patients developed less
severe illness when they had a high frequency of preexisting virus-
specific CD8� T cells before the onset of the pandemic (58). An-
other study showed that infected patients developed strong and
rapid cross-reactive recall T cell responses, which in most cases
coincided with the disappearance of clinical symptoms (84).

In conclusion, we have demonstrated that CD8� T cells that
can cross-react with the newly emerging H7N9 influenza virus
and that may afford some protection in the absence of virus-neu-
tralizing antibodies are present in the human population. Cross-
reactive CD8� T cells do not establish sterile immunity; they do,
however, contribute to more rapid clearance of the H7N9 virus
infection. Immunity afforded by the presence of cross-reactive
CD8� T cells may not only reduce the severity of disease caused by
H7N9 virus infection, it may also contribute to reduction of virus
spread in the population, since infected individuals may be infec-
tious for a shorter time. Induction of cross-reactive virus-specific
T cell responses may be a promising approach for the develop-
ment of universal influenza vaccines that can elicit broadly pro-
tective immunity against influenza A viruses of various subtypes.
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