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Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with
viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly se-
quenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States,
Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene
deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phe-
notypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence
identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of
selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting
that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clus-
tered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to
changing environments and will aid in the selection of vaccine antigens that are invariant worldwide.

Herpes simplex virus 1 (HSV-1; species Human herpesvirus 1, ge-
nus Simplexvirus, subfamily Alphaherpesvirinae, family Herpes-

viridae, order Herpesvirales) is among the most successful human
pathogens in terms of its global distribution, longevity in the host,
and mild symptoms among the great majority of those exposed (1–
4). HSV-1 is a large, enveloped DNA virus that infects lytically at
epithelial surfaces and establishes a lifelong, latent infection in sen-
sory neurons. HSV-1 infection produces a wide range of symptoms,
ranging from few or none in many seropositive individuals to peri-
odic lesions on epithelial surfaces in a significant proportion of people
and to lethal encephalitis as an extreme manifestation in a few. There
is no vaccine at present (5, 6). Studies in animal models have charac-
terized the ways in which genetic variation between viral strains can
influence the symptoms of pathology, including lesion severity and
rates of reactivation from latency. The most recent phase III vaccine
trial for HSV failed to provide protection from infection (7, 8), and
one contributing factor to this failure may well be variation among
HSV isolates found in the field.

Based on early restriction fragment length polymorphism (RFLP)
analyses, HSV-1 has been described as more diverse than HSV-2 (9–
11). In contrast to both HSV-1 and HSV-2, the related human alpha-
herpesvirus, varicella-zoster virus (VZV), has relatively low inter-
strain diversity (12–15). Decades of research comparing RFLP bands,
polypeptide size, and PCR-based sequence analysis have revealed that
HSV-1 strains vary between individuals, over sequential isolates from
the same individual, and by geographic region (10, 16–28). However,
these approaches have limitations. RFLP analysis can be applied on a
genome-wide basis to collections of strains but only reveals major
differences in fragment size. More sensitive techniques, such as PCR
and polypeptide analysis, provide greater detail about individual
genes and proteins but are not practical for whole genomes or large
strain collections. However, the application of high-throughput se-
quencing can rapidly increase our knowledge of sequence diversity
among HSV-1 strains.

An analysis of genome-wide variation in two sequenced HSV-1
strains (F and H129) (29) in comparison to the reference strain 17
revealed much greater coding diversity in the 152-kb genome than
had been found for VZV (14, 15). However, the small number of
strains analyzed (n � 3) was limiting. Although research on the ge-
nomes of two slightly larger collections (n � 7 [30] and n � 9 [13])
has since been published, the sequences are either incomplete in a
substantial number of coding sequences or are not available publicly.
Without further data, we have been unable to answer questions raised
about the amount of diversity among strains, the frequency of recom-
bination, and the potential for rapid evolution in key targets of the
immune system. Further knowledge of these areas will aid the devel-
opment of a broadly effective vaccine and may also lead to improved
treatments to control HSV infection.

To address these questions, we have determined the genome
sequences of 20 HSV-1 strains, which, together with published
data, create a sizeable collection of sequences (n � 26) and provide
a global view of circulating strains. We observed large deletions
and frameshifts that are deleterious for growth in vivo, suggesting in
vitro expansion of these mutations. Various mechanisms of natural
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variation were evident, including single nucleotide polymorphisms
(SNPs) and small insertions and deletions due to length variation in
short sequence repeats (SSRs). The least divergent open reading
frames (ORFs) tended to be those that are conserved among herpes-
viruses and are involved in basic aspects of replication. Within indi-
vidual proteins, a small number of amino acid residues exhibited
signs of positive selection. These data create a framework for future
analyses of clinical HSV-1 isolates and provide a context for the de-
velopment of intervention strategies and vaccine candidates that em-
brace the breadth of circulating viral diversity.

MATERIALS AND METHODS
Viruses and sequencing. Following the standard nomenclature of micro-
biology, we refer to the viruses used as strains, because these have been
isolated, grown as pure cultures in vitro, and characterized to the point of
genome sequencing (31). Twenty passaged HSV-1 strains were provided
by Hiroshi Sakaoka, as DNA isolated from infected cell lysates. In all cases,
the isolates were selected from epidemiologically unrelated cases, from
patients who were ethnically native to each country. Sakaoka and col-
leagues cultured isolates on Vero cells at a low multiplicity of infection
(MOI), without plaque purification, and isolated viral DNA from high-
titer stocks. These approaches are described similarly in all of Sakaoka’s
multiple publications about these strain collections (10, 18, 20, 32–34),
but the procedures are particularly clearly delineated in several papers (21,
35, 36). Since Sakaoka and colleagues performed multiple analyses using
overlapping sets of strains, we list here the first publication that described
each set of sequenced strains. The Chinese strain (CR38) was part of a
collection of strains isolated in Shenyang between 1980 and 1988 (20). The
Japanese strains were isolated in Sapporo (on Hokkaido Island) between
1980 and 1983 (36). The Kenyan strains were isolated in Nairobi from
1981 to 1984 (32).The South Korean strains were isolated in Seoul be-
tween 1980 and 1988 (20).

Details on sequencing the strains are summarized in Table 1. Eight

strains (CR38, E03, E14, E19, S23, S25, R11, and R62) were recovered
from the original DNA stocks by transfection of baby hamster kidney
clone 21 (BHK-21) cells, and fresh DNA stocks were prepared from puri-
fied virions, without plaque purification and with the minimum expan-
sion required to prepare virions. Six of these recovered strains (CR38, E03,
E14, E19, S23, and S25) were sequenced by using the Sanger approach, via
random DNA plasmid clones. The other two recovered strains (R11 and
R62) were sequenced by using an Illumina GAIIx instrument, via direct
sonication of viral DNA. The remaining 14 strains (Table 1) were also
sequenced by using an Illumina GAIIx instrument, using the original
DNA stocks received from Hiroshi Sakaoka. Data on read length, total
number of reads, proportion of reads matching virus versus host, and
average coverage of the finished sequence are listed in Table S1 in the
supplemental material.

Assembly and annotation of genome sequences. Sanger sequence
reads were assembled and edited by using the Staden software (37). Illu-
mina sequence reads were assembled de novo by using Velvet (38) as
described previously (39). The resulting contigs were oriented and assem-
bled by alignment against the genome sequence of HSV-1 reference strain
17, producing a draft genome sequence. The reads were aligned against this
draft by using Maq (40), and the output was quality checked by visualizing the
alignment in Tablet (41). Improvements to the sequence were made by iter-
ative alignment and visualization. In addition to providing the final se-
quences, this approach was capable of revealing major deleted or defective
DNA populations, which were evident from regions of unusually high- or
low-read coverage in the high-throughput sequencing data.

A DNA sequence alignment containing the 20 genome sequences
along with those of the six previously analyzed genomes was created by
using Gap4 (37) and manually curated to improve the alignment around
sequence gaps. As described in Results and Discussion below, the align-
ment consisted of trimmed versions of the genome (lacking terminal re-
peat long [TRL] and terminal repeat short [TRS] regions). Annotations
from reference strain 17 were transferred to the other strains on the basis
of the alignment, which was used as the input for dendrogram generation

TABLE 1 Sources of HSV-1 strains, sequencing methods used, and accession numbers

Strain Country (city), time (yr) of strain collection/isolation (reference[s]) Sequencing method (reference[s]) Accession no.

17 UK (Glasgow), 1973 (51) Prior (44, 45) JN555585, NC_001806
CR38a China (Shenyang), 1980-1988 (20) Sanger HM585508
E03a Kenya (Nairobi), 1981-1984 (32) Sanger HM585509
E06 Kenya (Nairobi), 1981-1984 (32) Illumina HM585496
E07 Kenya (Nairobi), 1981-1984 (32) Illumina HM585497
E08 Kenya (Nairobi), 1981-1984 (32) Illumina HM585498
E10 Kenya (Nairobi), 1981-1984 (32) Illumina HM585499
E11 Kenya (Nairobi), 1981-1984 (32) Illumina HM585500
E12 Kenya (Nairobi), 1981-1984 (32) Illumina HM585501
E13 Kenya (Nairobi), 1981-1984 (32) Illumina HM585502
E14a Kenya (Nairobi), 1981-1984 (32) Sanger HM585510
E15 Kenya (Nairobi), 1981-1984 (32) Illumina HM585503
E19a Kenya (Nairobi), 1981-1984 (32) Sanger HM585511
E22 Kenya (Nairobi), 1981-1984 (32) Illumina HM585504
E23 Kenya (Nairobi), 1981-1984 (32) Illumina HM585505
E25 Kenya (Nairobi), 1981-1984 (32) Illumina HM585506
E35 Kenya (Nairobi), 1981-1984 (32) Illumina HM585507
R11a South Korea (Seoul), 1980-1988 (20) Illumina HM585514
R62a South Korea (Seoul), 1980-1988 (20) Illumina HM585515
S23a Japan (Sapporo), 1980-1983 (36) Sanger HM585512
S25a Japan (Sapporo), 1980-1983 (36) Sanger HM585513
F USA (Chicago), 1968 (52) Prior (29) GU734771
H129 USA (San Francisco), 1983 (53) Prior (29) GU734772
McKrae USA (Gainesville), 1965 (55) Prior (49) JQ730035, JX142173
KOS USA (Houston), 1964 (54) Prior (48) JQ673480, JQ780693
HF10 USA (New York),b 1925 (56, 57) Prior (47) DQ889502
a Virus was regenerated by transfecting the original DNA sample.
b HF10 is an in vitro derivative of the U.S. strain HF (56, 57). See Materials and Methods for details.
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and analyses of positive selection. The alignment is available at http:
//szparalab.psu.edu/hsv-diversity/. After annotation, full-length versions
of each genome were created by placing inverted copies of internal repeat
long (IRL) and internal repeat short (IRS) regions at the appropriate ter-
mini. The GenBank record for each strain (Table 1) presents this full-
length genome version; the trimmed-format genome is available under
the Revision History for each record (42). Both genome formats are avail-
able at the URL mentioned above.

The finished and annotated data for the new strains are listed in
GenBank as partial genome sequences (Table 1), since all contain gaps at
several major SSRs or reiterations. Table S1 in the supplemental material
lists which strains have indeterminate SSR lengths at these locations.
These are marked as gaps of 100 (N100) in the finished GenBank se-
quences. The indeterminate SSRs are listed here with the designations
used herein and their locations in the full genome of reference strain 17
(JN555585): SSRUL (positions 71604 to 71814), SSRRL1 (9033 to 9213 and
117160 to 117341), SSRRL4 (5732 to 5878 and 120496 to 120642), SSRRL6

(988 to 1040 and 125334 to 125386), SSRa’ (1 to 399, 125975 to 126373,
and 151824 to 152222), SSRRS1 (126573 to 126712 and 151486 to 151624),
SSRRS2 (126813 to 127145 and 151052 to 151384), SSRRS3 (132391 to
132516 and 145681 to 145806), SSRUS1 (143716 to 143868), and SSRUS2

(144787 to 145003). These SSRs affect three protein-coding sequences,
where they form repeating amino acid tracts. The length of the repeating
amino acid tract is not known for a majority of the newly sequenced
strains or for several published strains (see Table S1; see also the GenBank
records). VP1-2 (UL36) contains SSRUL and is indeterminate in 17 ge-
nomes from the 26-strain collection. ICP34.5 (RL1) contains SSRRL6 and
is indeterminate in 10 genomes. gI (US7) contains SSRUS1 and is indeter-
minate in 14 genomes. One strain, S23, has a sequencing gap in ICP4
(RS1); this is noted in the GenBank record and in Table S1.

Previously sequenced genomes. Six previously sequenced HSV-1
strains were included in the analysis, with data derived from each strain’s
GenBank record and associated publication(s). The publications describ-
ing these sequenced genomes are as follows, and the accession numbers
for each sequence are listed in Table 1: 17 (43–46), HF10 (47), F (29),
H129 (29), KOS (48), and McKrae (49, 50). Since the geographic origin of
HSV-1 strains is considered in our analyses, the publications describing
the first isolation and geographic origin of each strain are as follows: 17
(51), F (52), H129 (53), KOS (54), and McKrae (55). Strain HF10 was
isolated by a laboratory in Japan (56) as a spontaneous in vitro derivative
of the U.S. strain HF (57), and therefore, we list the country of this strain’s
origin as the United States. Four additional representatives of the wider
herpesvirus family were included for comparison of G�C content and
prevalence of tandem repeats. Data for these were drawn from the respec-
tive RefSeq records: VZV strain Dumas (NC_001348), human cytomeg-
alovirus (HCMV) Merlin (NC_006273), Epstein-Barr virus (EBV) Raji
(NC_007605), and Kaposi’s sarcoma-associated herpesvirus (KSHV)
GK18 (NC_009333).

We updated the genome sequence of reference strain 17 (GenBank
accession number NC_001806) on the basis of data from a whole-genome
clone (GenBank accession number FJ593289) and a transcriptomic study
(A. Davison, unpublished data), depositing the annotation under GenBank
accession number JN555585. This corrected known errors in the reference
genome (NC_001806), such as minor double frameshifts in UL2 and
UL17. We reassembled the high-throughput read data for strains F
and H129, to validate the prior assembly and replace with N100 the eight
indeterminate SSRs whose sequences had originally been copied from
reference strain 17 (see Results; see also Table S1 in the supplemental
material) (29). We did not have access to sequence read data for strains
HF10, KOS, and McKrae, and we used these genome sequences as re-
corded in GenBank. Both records for KOS are listed in Table 1; we used
the record published under accession number JQ673480 for the genome-
wide alignment (48). For McKrae, we used the genome sequence from the
record published under accession number JQ730035 (49). Three coding
frameshifts deleterious for growth in vivo (in UL36, UL56, and US10) were

found in the record under accession number JQ730035 for McKrae but
not the alternate record under accession number JX142173; we used the
latter amino acid sequence in these cases (49, 50). Seven substantially
incomplete genomes (of U.S. origin) were not included in the compari-
sons because of a large number of gaps in both coding and noncoding
regions (30). Partial genome sequences for nine strains (of U.S. and Swed-
ish origin) were also not included, because the data are not publicly avail-
able and intergenic regions were not completed (13).

DNA variation analysis. The transition/transversion ratio was calcu-
lated for the 26-genome alignment, using the MEGA software package
(58). The transition/transversion ratio calculation used the formula R �
[(A · G · k1) � (T · C · k2)]/[(A � G) · (T � C)], where k1 and k2 are
transition/transversion ratios for purines (k1 � 3.53) and pyrimidines
(k2 � 3.845), respectively. The number of nucleotide polymorphisms was
measured using the Jukes-Cantor model in MEGA (59, 60). Variation in
nucleotide polymorphisms across the alignment was plotted using
DNAsp (61), with a sliding window of 500 bp (nongapped positions).
These windows on the strain 17 genome are displayed to show the local-
ization of DNA polymorphisms relative to HSV-1 coding sequences. Be-
cause each window represents 500 bp of ungapped residues, regions with
large numbers of gapped positions in the multiple-genome alignment
show a single window stretching over an area of �500 bp (e.g., see Fig. 3,
kb 107 to 111). Mean pairwise identity was calculated using Geneious
(version 6.1.6; Biomatters), which examines all pairs of bases in a column,
assigning a score of 100% if identical, and then computes the mean of all
pairs across all columns.

SSRs. SSRs in the reference strain 17 genome were mapped by using
MsatFinder and Tandem Repeat Finder (TRF) (62, 63), employing the
approach described previously (64–66). First, MsatFinder was used to
detect perfect repeats with units of 1 to 6 bp. To be counted by Msat-
Finder, homopolymer repeats (i.e., a repeating unit of 1 bp) were required
to be �5 bp, and all other small repeats were required to be �9 bp (e.g.,
�4 copies of a dinucleotide repeat, �3 copies of a trinucleotide repeat,
etc.). Next, TRF was used to locate larger or imperfect repeats (specifically,
TRF version 4.04 with parameters as follows: match, 2; mismatch, 5; delta,
5; PM, 80; PI, 10; minScore, 40; and maxPeriod, 500). An alignment score
of �39 was required for the TRF output, in order to reduce the chances of
counting nonrepeats (65, 66). Finally, the MsatFinder and TRF results
were combined, and overlapping repeats were removed, retaining the SSR
with the higher alignment score in each case. Three microsatellites were
detected by both TRF and MsatFinder; the duplicates were removed be-
fore calculating the overall SSR counts.

Orthologous SSRs were mapped in the genome sequence collection as
described previously (65, 66), utilizing the multiple-genome alignment.
This alignment was screened for SSRs comparable to those found in ref-
erence strain 17. The copy numbers of orthologous SSRs were recorded
for all 26 strains, along with their locations in coding, promoter (�500 bp
upstream from a coding sequence), or other intergenic regions. This list is
available at http://szparalab.psu.edu/hsv-diversity/. Any SSR that was not
present in more than half of the strains was excluded from further analy-
sis; these occurred at the indeterminate SSRs described above. SSRs were
then scored as conserved if more than half of the collection had an SSR
that matched that of the reference strain 17 in both position and length
(i.e., matched the sequence and copy number of the repeating unit).

Amino acid sequence alignments. Corresponding amino acid se-
quences for each strain were grouped into multiline fasta files and aligned
using T-Coffee (67). Individual alignments for each HSV-1 protein are avail-
able in text and color-coded format (as in Fig. 5) at http://szparalab.psu.edu
/hsv-diversity/. Graphical presentations of these alignments were colored us-
ing Geneious. To extend the useful lifetime of these amino acid alignments, a
working set of HSV-1 amino acid alignments, which will be updated regularly
with new strain data (69), has been created on the Virus Pathogen Resource
(ViPR) website at http://www.viprbrc.org/brc/workbench_landing.do
?decorator�herpes&method�WorkbenchDetail&public�true. The ViPR
amino acid alignments also include additional data available on a per-protein
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basis in GenBank, e.g., thymidine kinase has been sequenced from hundreds
of strains.

Indeterminate SSRs occur in three protein-coding sequences (see “As-
sembly and annotation of genome sequences” above). The indeterminate
SSR regions of these amino acid sequences were excised computationally
before calculating protein divergence; the number of columns excised for
each protein is listed in Table S3 in the supplemental material. For each
protein alignment, the Henikoff and Henikoff algorithm was used to cal-
culate weights for each sequence in the alignment, to reduce redundancy
and emphasize diversity (70). A consensus sequence was built by choosing
the amino acid with the largest sum of weights per column of the align-
ment. Insert columns were identified as those with gaps in a majority of
strains by weight, e.g., the tail end of the US8A alignment exists only to
accommodate a C-terminal extension unique to the KOS strain. The in-
sert columns were excised and are listed in Table S3.

The remaining columns were used for calculations of diversity. To
discriminate among the most highly conserved proteins, we counted all
mutations in the amino acid alignment. Because this measure of perfect
identity will flag as divergent all alignment columns that follow a frame-
shift or deletion in just one strain, it overlooks conservation among other
strains in these regions. Therefore, we used another metric to assess the
most divergent proteins, based on the median divergence from the amino
acid consensus. We computed a weighted median divergence for each
protein (71) by determining the median divergence per strain versus the
consensus and then taking the median across weighted strains. To test
whether the weighted median was performing the desired goal of reducing
the impact of outliers, we repeated the above-described computation us-
ing the mean value instead of the median. We computed a weighted av-
erage divergence for each protein by the same approach, where we deter-
mined the average (mean) divergence per sequence versus the consensus
and then averaged across sequences using their weights. Only proteins
with known frameshift and deletion issues that occur misalignment (US9,
UL55, and PK [UL13]) have mean and median divergences that differ by
more than 1% (see Table S3 in the supplemental material).

For each divergence metric, we computed statistical significance as
follows. The median value of the divergence was selected across all align-
ments, and this value was taken as the expected rate of divergence (pdiv),
which we assume to be the same as the null model for all proteins. For each
protein alignment, we counted the number of conserved columns (N) and
the number of mutations observed (n, rounded to the nearest integer for
the weighted median and mean metrics). We then computed the two-
tailed P value of n using the Poisson distribution with the parameter N ·
pdiv (the expected number of mutations from the consensus). If the P
value was smaller than 0.01 and n was greater than N · pdiv, we considered
the protein to have larger than expected divergence. Likewise, if the P
value was smaller than 0.01 and n was less than N · pdiv, we considered the
protein to have a smaller than expected divergence (see Table S3 in the
supplemental material).

Positive selection. Table S4 in the supplemental material gives a sum-
mary of the positive-selection analysis on a gene-by-gene basis. For this
analysis, amino acid alignments containing all 26 strains were curated to
infer ancestral sequences for those with frameshifts and/or missing stop
codons. This preserved the largest possible number of sequences (n) for
calculation of positive selection. No sequence could be inferred for deleted
regions, and trailing codons were removed. As in the calculations of
amino acid identity, indeterminate SSR regions of the proteins VP1-2
(UL36), ICP34.5 (RL1), and gI (US7) were removed from the alignments
due to a lack of data for more than half of the strain collection (see “As-
sembly and annotation of genome sequences” above).

A combination of published software and in-house scripts were used
to analyze the protein collection for evidence of positive selection. Addi-
tional details on these methods are included at http://szparalab.psu.edu
/hsv-diversity/. The multiple genome alignment described above was
sliced based on annotated coding regions from the HSV-1 reference strain
17 genome. EMBASSY fdnadist, PHYLIP neighbor, and Codeml (part of

the Parsimony Analysis by Maximum Likelihood [PAML] software pack-
age) were used to produce input and tree files and then to perform
pairwise dN/dS ratio (ratio of nonsynonymous to synonymous evolution-
ary substitutions) analysis (72–74; PHYLIP version 3.52c; J. Felsen-
stein, University of Washington, Seattle, WA [http://evolution.genetics
.Washington.edu/phylip.html]). Table S4 in the supplemental material
lists the maximum, minimum, mean, and median values for both pairwise
dN and pairwise dS for each alignment. The same files were used for
positive-selection analysis, assuming either the M0 model (single value of
� [dN/dS]) or M8 model (multiple values of �) for each alignment (106,
107). This gave an overall value for � and kappa (�, transition/transver-
sion bias) across the alignment and flagged sites detected as being under
statistically significant positive selection. We also used the alternative site-
wise likelihood ratio (Slr) (76) model to test for positive selection per
protein and per amino acid residue. The outputs of all analyses are avail-
able at http://szparalab.psu.edu/hsv-diversity/.

The Protein Database (PDB) was interrogated using Molecular Oper-
ating Environment (MOE; Chemical Computing Group, Inc), employing
amino acid sequences from reference strain 17 as input. Where protein
matches were found, these were classified as “exact” if the input sequence
matched a solved structure of an HSV-1 protein and as “model” if there
was no exact match but another solved structure was sufficiently close to
the HSV-1 protein to allow a homology model to be constructed. Homol-
ogy modeling of HSV-1 gH (UL22) was carried out on the solved structure
of the HSV-2 gH ectodomain (PDB ID 3M1C) (77) using MOE. Protein
structures were visualized in MOE. Additional details on modeling are
included at http://szparalab.psu.edu/hsv-diversity/.

Dendrograms and recombination analysis. Tree diagrams of the ge-
netic distances between HSV-1 strains were constructed using the multi-
ple genome alignment. We calculated genetic distance by using the un-
weighted-pair group method using average linkages (UPGMA) method in
MEGA (59, 78), with 1,000 bootstrap replicates (79), and we used the
maximum composite likelihood method (80) for distance estimation.
Bootscan analysis from the SimPlot (similarity plot) package (81) was
used to test for similarity of DNA sequence between a test genome (e.g.,
reference strain 17) and other related genomes (e.g., other members of the
26-strain collection).

Nucleotide sequence accession numbers. The newly determined se-
quences were submitted to GenBank under the accession numbers listed
in Table 1.

RESULTS AND DISCUSSION
Determining genome sequences. To understand the range of ge-
nome diversity among circulating HSV-1 strains, the sequences of
20 strains from various parts of the world were determined (Table
1). The strains chosen originated from China, Japan, Kenya, and
South Korea. These strains were part of a much larger collection
isolated by Sakaoka and colleagues, which were described in a
series of RFLP-based studies on genome diversity (10, 18, 20, 32–
34). Sakaoka and colleagues repeatedly found greater within-
country diversity among Kenyan strains than in any other country
under study, using RFLP pattern analysis (10, 20, 32), estimations
of nucleotide diversity (20), and Sanger sequence comparisons
(33). For this reason, a greater number of strains from Kenya than
from other countries was included for sequencing. To augment
the global diversity in our analyses, these 20 genomes were sup-
plemented by six previously published sequences from the United
States and United Kingdom (Table 1) (29, 43, 45, 47–50).

All strains used in these studies originated from patients who
were ethnically native to their respective countries. Sakaoka and
colleagues reported minimal passage of these strains (10, 18, 20,
32–34). The new genome sequences were determined from puri-
fied, randomly fragmented viral DNA by either the Illumina high-
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throughput sequencing approach or the Sanger method (Table 1).
Coverage was 516 to 1,591 reads per nucleotide for the former
method and 8 to 13 reads per nucleotide for the latter (see Table S1
in the supplemental material). The sequence read data were as-
sembled de novo, and the resulting contigs were then ordered by
alignment to the sequence of the HSV-1 reference strain 17.

The HSV-1 genome consists of two unique regions (unique
long [UL], 108 kb, and unique short [US], 13 kb), each flanked by
large inverted repeats (TRL/IRL, 9.2 kb, and TRS/IRS, 6.6 kb) (Fig.
1A). Protein-coding genes are named with a prefix that indicates
the region in which they are located, followed by a number (e.g.,
UL1, RL1, RS1, and US1); some proteins also have common
names, e.g., UL1 is also known as glycoprotein L (gL). Since se-
quence reads from one copy of an inverted repeat could not gen-
erally be distinguished from those from the other copy, the data
were assembled into a trimmed version of the genome, which
contained only one copy of each inverted repeat (IRL and IRS)
(Fig. 1B). These genome sequences begin at the left end of UL,
proceed through IRL�IRS, and finish at the right-hand end of US.
A full-length genome was also generated for each strain by creat-
ing terminal copies of IRL and IRS; these were deposited in
GenBank. For the analyses described here, we used the trimmed
version of all genomes (Fig. 1B) to avoid double contributions
from the G�C content, SSRs, and genes contained in the internal
and terminal repeats. The nucleotide composition of the HSV-1
reference strain 17 (67.5% G�C) is mirrored in the newly se-
quenced strains (67.3 to 67.5%). As noted previously (44), the
distribution of G�C residues is biased, with overall higher values
in IRL�IRS (74.7% in strain 17) than UL (66.9%) or US (64.3%)
(Fig. 2A). This is a feature of all sequenced HSV-1 strains (see Fig.
S1 in the supplemental material; also data not shown). Enrich-
ment of G�C residues in repeat regions is a general characteristic
of alpha-, beta-, and gammaherpesvirus genomes, and it occurs
even in the overall A�T-rich genome of VZV (Fig. 2B to E).

In addition to the large inverted repeats, the HSV-1 genome
contains a large number of SSRs, also known as variable number
tandem repeats (VNTRs) or reiterations (82–86). We previously
analyzed all classes of SSR in the HSV-1 reference strain 17, which
in the trimmed format contains 87 minisatellites (�10-nucleotide

repeating unit), 60 microsatellites (2- to 10-nucleotide repeating
unit), and 499 homopolymers (�6 nucleotides long) (Fig. 3D)
(64). These SSRs are not distributed evenly throughout the ge-
nome. Thus, although 84% of the HSV-1 genome consists of pro-
tein-coding regions, only about 60% of SSR loci are located
therein (Fig. 4A). In contrast, although the inverted repeats
(IRL�IRS) occupy only 11% of the trimmed genome sequence,
they contain �50% of all SSR loci (Fig. 4B).

A few of the SSRs in the HSV-1 genome can reach several hun-
dred base pairs in length (Fig. 2, orange arrows) and have previ-
ously been shown to vary in length within a virus strain popula-
tion, as well as among strains (64, 85–89). This makes determining
their sizes a challenge, since a population of viral DNA used for
sequencing may contain genomes with different lengths of a given
SSR and high-throughput sequencing reads rarely span the full
length of the larger SSRs. Originally, the lengths of these SSRs were
determined in the HSV-1 reference genome by Sanger sequencing
of cloned genome fragments that spanned each SSR (44, 45); all
high-throughput-sequenced genomes since then have left one or
more of these SSRs indeterminate (13, 29, 30, 48–50). In the newly
sequenced genomes, we marked the subset of these SSRs that can-
not be determined by high-throughput sequencing as gaps (Fig.
3D, gray arrowheads; see also Table S1 in the supplemental mate-
rial, where they are listed per strain) and excluded from amino
acid variation analysis any sites affected by these gaps (see Mate-
rials and Methods for details).

Characterizing DNA variation. To compare differences
among the newly sequenced strains, we aligned the finished ge-
nome sequences with those of the six strains sequenced previously
(Table 1). This alignment is available at http://szparalab.psu.edu
/hsv-diversity/. We used this alignment to assess variation at the
DNA level across the genome collection, as well as to map coding
and noncoding regions of the DNA (Fig. 3A to C). First, we exam-
ined the frequency of nucleotide polymorphisms in nongapped
bases across the genome. As noted previously (90) and now re-
vealed in greater detail, the occurrence of SNPs is higher in US
than UL (Fig. 3A and B). Of 138,334 columns in the alignment,
5,239 columns contain single-nucleotide variations (3.8%), with
approximately half of these columns (1.7%) showing variation in

A

B UL IRL IRS US

a’

Trimmed format of HSV-1 genomes 

UL = Unique long
US = Unique short   

Legend
TRL / IRL = Terminal / internal repeat of the long region
TRS / IRS = Terminal / internal repeat of the short region
a / a’  = Terminal / inverted “a” repeat

UL
108 kb

TRL IRL IRS US TRS

a aa’9.2 kb 6.6 kb

13 kb

FIG 1 The complete HSV-1 genome includes two unique regions and two sets of large inverted repeats. (A) The full structure of the HSV-1 genome includes a
unique long region (UL) and a unique short region (US), each of which is flanked by inverted copies of large repeats known as the terminal and internal repeats
of the long region (TRL and IRL) and the short region (TRS and IRS). The gene content of each region (UL, US, TRL/IRL, and TRS/IRS) is distinct, as shown in
Fig. 3. The length of each region is marked; the regions are drawn approximately to scale. A short cleavage and packaging sequence called a is located as a direct
repeat at both genome termini (in TRL and TRS) and as an inverted repeat (a’) where IRS and IRL overlap. (B) Since sequences originating from one copy of an
inverted repeat could not be distinguished from sequences originating from the other copy, the data were assembled into a trimmed form lacking the terminal
repeats TRL and TRS. The GenBank records contain both a full-length and a trimmed version for each genome (see Materials and Methods for details).
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only one strain. The mean pairwise identity between strains is
96.8%. The ratio of transitions to transversions is 1.62 (see Mate-
rials and Methods for details).

In addition to polymorphisms, the 26-genome alignment con-

tains many small gaps due to variations in length at SSRs (i.e.,
differences in copy number of the repeating unit). We character-
ized SSR-based variation in the DNA by mapping homologous
SSRs among strains and then characterizing each SSR as being
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FIG 2 Nucleotide compositional bias toward G�C residues in repeat regions of herpesvirus genomes. (A) A line graph overlay of G�C versus A�T distribution
in the HSV-1 genome (JN555585; human herpesvirus 1 [HHV-1]). A diagram beneath the line graph depicts the locations of UL and US (gray), as well as TRL/IRL
and TRS/IRS (orange). SSRs are also marked in orange. (B) Another human alphaherpesvirus, VZV, is A�T rich in the UL and US regions (56%) but G�C rich
in the inverted repeat regions (59% G�C). (C to E) Similar plots depict nucleotide distribution in unique versus repeated regions of human beta- (human
cytomegalovirus [HCMV]) and gammaherpesviruses (Epstein-Barr virus [EBV] and Kaposi’s sarcoma-associated herpesvirus [KSHV]). Note that each genome
is drawn to an individual scale, as marked below each line graph. The KSHV genome has 35 to 45 copies of a terminal repeat (TR) on its termini; we show 40 here.
The genome diagram follows the NCBI Refseq annotation in displaying the EBV and KSHV TRs only on the right-hand side. These TRs join together in
circularized genomes. Nucleotide sequences and annotations of unique and repeated regions are derived from NCBI RefSeq records as follows: VZV strain
Dumas (accession number NC_001348), HCMV strain Merlin (NC_006273), EBV strain B95-8 (NC_007605), and KSHV strain GK18 (NC_009333).
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variable or conserved in length. Variation in SSR length has been
shown to generate phenotypic diversity for organisms from bac-
teria to yeast and humans (91–94). Of the SSRs in the trimmed
version of the HSV-1 reference strain 17 genome, 90% (584 of

646) occur in equivalent positions in a majority of other strains;
we classified these as conserved if they had the same length in a
majority of strains. Using this criterion, there were five times as
many conserved as nonconserved SSRs (487 versus 97), indicating

Variability and conservation in the HSV-1 genome
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genome of HSV-1 reference strain 17 (TRL and TRS are omitted). (B) Graph plotting the number of DNA polymorphisms per 500 bp (nongapped columns) in
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selection or preservation of genetic stability (Fig. 4C). In noncod-
ing regions, the ratio of conserved versus nonconserved SSRs was
almost equal; in contrast, in coding regions, the conserved SSRs
greatly outnumbered the nonconserved ones (Fig. 4C). Thus, al-
though SSRs occur frequently in the HSV-1 genome, their length
is conserved in a majority of strains.

During inspection of the genome sequence alignment, we
noted that certain SNPs were clustered at the tips of potential
hairpin-forming sequences, which consist of a short sequence
flanked by an inverted repeat (see Table S2 in the supplemental
material). The SNP-hairpin association was observed in both non-
coding and coding sequences and led to minor coding variations.
These hairpins may have occurred via inversions prompted by errors
in DNA replication or recombination. The association of DNA hair-
pins with variation has been previously reported in eukaryotic cells
but not, to our knowledge, in herpesvirus genomes (94).

Large deletions and insertions. Substantial mutations have
been reported previously in several HSV-1 strains propagated in
vitro, specifically, in the right-hand side of UL, containing UL55
and UL56 (Fig. 3C). These genes are not required for growth in
vitro, but UL56 appears to be important for virulence and the
establishment of latency in vivo (95–99). Deletions in one or both
of these genes have been noted in two attenuated strains, namely,
HF10, which harbors a deletion in UL56 and a homopolymer-based
frameshift in UL55 (47), and HFEM, where restoration of the UL56
gene restored virulence in vivo (97, 99). Moreover, HSV-1 strains can
harbor mixed populations of mutations in this region, as demon-
strated by the isolation of single-plaque variants of HSV-1 strains 17
and K52 that harbor deletions of different sizes (96, 101).

Large deletions in the UL55-UL56 region were apparent in sev-
eral of the newly sequenced strains (E10, E13, E23, and E35), as
detected by a severe underrepresentation in sequence read cover-

age in this region (see Fig. S2 and Table S1 in the supplemental
material). For three of these strains (E10, E13, and E23), sufficient
nondeleted genomes were present to make it possible to deter-
mine the sequence of the affected region. However, this was not
possible for E35, in which a very low proportion of nondeleted
genomes was present. Also, in place of a deletion in the UL55-
UL56 locus, two strains (E23 and E35) appear to have insertions
from the left end of UL, as evidenced by an overrepresentation in
sequence read coverage in this region (see Fig. S2 and Table S1).
This type of insertion, from the left side of UL into the UL56 locus,
has also been reported in single-plaque isolates of strain 17 (96).

Finally, three strains (E12, E13, and E15) contain an overrep-
resentation of sequence reads mapping to an origin of DNA rep-
lication, DNA packaging signals, and other small regions of the
genome (shown in Fig. S2 in the supplemental material; data are
listed in Table S1). Previous work has shown that HSV strains
grown in vitro can form defective interfering particles (DIPs),
which consist of an origin of DNA replication, a packaging signal
for encapsidation, and frequently, fragments of variable length
from the US region of the genome (102–104). This naturally oc-
curring genome fragmentation has served as the basis for widely
used HSV amplicon vectors (104, 105). Although the regions of
disproportionately high coverage are not definitive proof of DIPs
in these stocks, the data suggest this as a likely possibility. High-
throughput sequencing reveals the nonhomogeneity of HSV-1
stocks more easily than techniques such as RFLP analysis, which
suggests that routine sequencing may be a useful way to screen
stocks for future studies.

Frameshifts at homopolymer tracts. Several HSV strains have
been reported to contain homopolymer-based frameshift muta-
tions (HFMs), which occur as a result of variation in the length of
homopolymeric tracts. HFMs have been observed in HSV-1
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strains HF10, MP, and KOS321, HSV-2 strain HG52, and sub-
populations or clones of HSV-1 strains 17, F, and KOS (29, 47,
106–109). The affected ORFs, listed with the protein name fol-
lowed by the genetic locus, include protein kinase (PK; UL13),
VP1-2 (UL36), virion host shutoff (vhs; UL41), glycoprotein C
(gC; UL44), VP11-12 (UL46), VP22 (UL49), UL55, ICP34.5
(RL1), and glycoprotein I (gI; US7). HFMs are major contributors
to the development of viral resistance to acyclovir, where they
cause loss of function in thymidine kinase (TK; UL23), which
normally activates acyclovir by phosphorylation (110–114).
HFMs in the major secreted glycoprotein G (gG; US4) of HSV-1
and HSV-2 allow antibody escape, facilitating viral evasion of the
host immune response (115, 116). Of the 20 newly sequenced
genomes, seven contain HFM variations (Table 1).

The affected ORFs in the new strain collection encode the teg-
ument protein UL11 (UL11), a protein kinase (PK; UL13), and
glycoprotein H (gH; UL22). Details and the effects of these muta-
tions are discussed below. We noticed that, whereas the mutations
in UL13 would severely truncate PK and are likely to ablate func-
tion, those in UL11 and UL22 affect only a few codons near the 3=
end of the ORF (see below). Since the polyadenylation sites for
UL11 and UL22 are located close to the stop codon, the predicted
outcome of these HFMs is a transcript of normal length lacking a
stop codon. In eukaryotic cells, nonstop mRNAs such as these lead
to ribosome stalling, poor translation, and non-stop-mediated
mRNA decay (117, 118). Recently, ribosomal frameshifting has
been shown to allow the recovery of a low level of protein product
from TK (UL23) transcripts that lack a stop codon due to HFM
(119). The discovery of these HFMs in UL11 and UL22 will allow
broader exploration of the role of ribosomal frameshifting in HSV
biology. If confirmed, the combination of HFMs, nonstop mRNA
decay, and ribosomal frameshifting will greatly increase the num-
ber of ways that HSV-1 can vary its protein sequences and levels of
protein production. This likewise may provide greater diversity
for the virus to adapt to new cells and new hosts.

HSV encodes three kinases, with PK (UL13) being the only one
found across alpha-, beta-, and gammaherpesviruses (120). This dis-
tinction earned it the alternative name of conserved herpesvirus-en-
coded protein kinase (CHPK). Loss of PK function attenuates viral
growth in vitro and is deleterious for spread in vivo (121–127). The
UL13 frameshift mutations in strains E06 and E25 are identical to
each other and to one described previously in a subpopulation of
HSV-1 strain F (29). This C6-to-C5 homopolymer mutation creates a
frameshift at codon 118, terminating the protein at 166 residues in-
stead of the usual 518 and removing the entirety of the kinase domain
(128). Strain E11 contains an alternate A4-to-A3 mutation in UL13,
which creates a frameshift within codon 319 and spares a portion of
the kinase domain. Loss of PK due to a homopolymer-based frame-
shift in UL13 has also been observed in a bacterial artificial chromo-
some (BAC) clone of the fowl alphaherpesvirus Marek’s disease virus
(MDV) (125, 126). Remarkably, the truncation of PK in MDV (at
residue 176 of 513) occurs at a site similar to the truncation site in
strains E06 and E25, again removing the kinase domain. This trunca-
tion allows growth in culture but limits MDV transmission in vivo
(125, 126), suggesting that these PK truncations are selected for or
amplified during passage in vitro.

UL11 is conserved across alpha-, beta-, and gammaherpesvi-
ruses and plays an essential role in virion envelopment and egress
(129–132). The C terminus of UL11 normally interacts with gly-
coprotein E (gE; US8) (133, 134). Strains S23 and S25 harbor a

C-terminal C6-to-C8 mutation in UL11, which causes a frameshift
and ablates the normal stop codon. Transcription of an extended
ORF is likely blocked by the nearby polyadenylation site, resulting
in an mRNA lacking a stop codon, with an alternate C terminus
(MSDSE* to PCPIANK, where the asterisk indicates a stop codon).
Despite the presence of other C homopolymers in UL11, the same
C-terminal site is affected in strain R62, albeit with a longer extension
of the homopolymer (C6 to C10, resulting in MSDSE* to PHVR).
Further work will be needed to determine whether the mutant UL11
transcripts are subject to nonstop mRNA decay or are rescued by
ribosomal frameshifting (117–119). If UL11 is translated in these
strains, it will be relevant to explore whether the altered C terminus
affects UL11-gE protein interactions.

gH (UL22) is also conserved across alpha-, beta-, and gamma-
herpesviruses, and it interacts with glycoproteins B (gB, UL27), D
(gD, US6), and L (gL, UL1) to drive viral fusion with host mem-
branes. Strain E07 harbors a T7-to-T8 mutation in the sequence
encoding the C-terminal end of gH that causes a frameshift and
ablates the stop codon. As with UL11, the close proximity of the
polyadenylation site minimizes the effects of the frameshift,
changing only the final few residues (WRRE* to LETRIK). The
lack of a stop codon creates a potential target for nonstop mRNA
decay or ribosomal frameshifting (117–119). The fusion machin-
ery of gH lies in its extensive N-terminal ectodomain (800 amino
acid residues), whereas the observed mutation is present in the
short internal tail of 14 amino acid residues (77). The effects of this
mutation are unknown, although the sequence of the internal tail
is completely conserved in all other strains in the collection and is
well conserved between HSV-1 and HSV-2. These homopoly-
meric repeats, in addition to those described above, add diversity
to the HSV-1 coding potential.

All HSV-1 strains sequenced to date have been passaged in cell
culture, including the 20 newly sequenced ones in the present
study. Their passage histories are obscure and likely include a va-
riety of opportunities for viral strains to evolve or expand muta-
tions, including multiple passages in vitro, potential plaque puri-
fications, and shifts in the host species or type of cell used for
culture. Culturing a virus necessarily removes a variety of selection
pressures and bottlenecks present in vivo and introduces new se-
lection pressures unique to cell growth in vitro. The HFMs and
deletions described above are very likely to be deleterious for virus
spread in humans (95–99, 121–127). This is likewise true for
frameshifts and deletions recognized in previously sequenced
strains (e.g., US9 in KOS or glycoprotein N [UL49.5] and UL56 in
HF10) (47, 135). Without access to uncultured material from the
original human hosts, it is not possible to determine whether these
mutations were present as minority populations in vivo or arose
later during culture. Regardless of their starting point, we surmise
that these mutations probably expanded during passage in vitro.
Further investigation of the attenuating mutations in UL55, UL56,
UL11, PK (UL13), and gH (UL22) is warranted to deduce how
prevalent these deletions and HFMs are in vivo and what role they
play in HSV-1 spread in humans.

Diversity of protein-coding sequences. To estimate the global
diversity of the HSV-1 proteome, we used conceptually translated
proteins and generated amino acid sequence alignments for all 74
canonical proteins encoded by the HSV-1 genome (13, 25, 30, 34,
107, 136). All alignments are provided at http://szparalab.psu.edu
/hsv-diversity/ and are mirrored with additional HSV strain data on
the Virus Pathogen Resource website at http://www.viprbrc.org/
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(see Materials and Methods for details) (69). We used a variety of
measures to assess protein conservation, identity, and mutations
across the 26-strain collection. Because these strains are not evenly
distributed in geographic origin, we weighted the sequences to
reduce redundancy and emphasize diversity (70). We examined
protein-coding diversity relative to a consensus built for each pro-
tein (see Materials and Methods for details). Columns containing
sequencing gaps or small insertions/deletions (indels) in a major-
ity of strains were excluded from further analysis (1% of total
alignment columns) (see Table S3 in the supplemental material).
We found that, on average, 94% of the columns in these amino
acid alignments agreed perfectly with the consensus and an aver-
age of 5.4% contained differences. The exact proportions varied
on a per-protein basis (listed in full in Table S3).

The 15 most conserved HSV-1 proteins by percent identity are
those involved in essential aspects of herpesvirus reproduction,
including DNA replication, capsid formation, and nuclear egress
(Table 2). Eleven of these proteins are conserved among alpha-,
beta-, and gammaherpesviruses, and nine of these are absolutely
required for viral growth in cell culture (Table 2) (137). Four
proteins unique to alphaherpesviruses are also highly conserved
(UL20, UL45, VP13-14 [UL47], and gK [UL53]). The functions of
two of these, UL20 and UL45, are not well known, and their con-
servation indicates that further investigation of their function is
warranted (138–142). A third protein, VP13-14 (UL47) modu-
lates transactivator VP16 (UL48) to induce high levels of immedi-
ate early gene expression (143, 144). The proteins UL20, UL45,
and gK have been proposed to interact with each other and with
the herpesvirus fusion machinery (138–142).

Since percent identity is highly sensitive to outliers, such as
frameshifts and deletions, we used a median divergence metric to
identify proteins with the greatest overall amino acid diversity
across all strains. Table 3 lists the most divergent proteins in the

26-strain collection, although it should be noted that these
values underestimate diversity in the proteins discussed above
that contain deletions, frameshifts, and indeterminate SSRs (e.g.,
PK [UL13], UL56, and ICP34.5 [RL1]). The 15 most divergent
proteins include many that are unique to alphaherpesviruses
(ICP0 [RL2], ICP4 [RS1], gI [US7], US9, US10, and UL43) or are
present only in a subset of alphaherpesviruses (ICP34.5 [RL1],
ICP22 [US1], gG [US4], gJ [US5], ICP47 [US12], US8A, US11,
and UL55) (137, 145). One-third of these are found on both the
virion envelope and the surface of infected cells; their divergence
could result from selection to evade host immune surveillance.
Several additional proteins function in transcriptional regulation
(ICP4 [RS1], ICP22 [UL54], and VP11/12 [UL46]) or blockade of
the host immune response (ICP0 [RL2], US11, and ICP34.5
[RL1]). Using a Poisson model that takes protein length into ac-
count, we found that gL (UL1), gG (US4), and ICP34.5 (RL1) all
have significantly more divergent columns than expected for their
length (P � 0.01) (see Materials and Methods for details; see also
Table S3 in the supplemental material).

The amino acid diversity in US11 illustrates that seen in most
HSV-1 proteins in Table 3, which include SNPs, indels, and SSR-
based variations that are typical of those in other alignments (Fig.
5). US11 is an RNA-binding protein that resembles and can par-
tially substitute for the transactivating Rex and Rev proteins of
human T-lymphotropic virus 1 (HTLV-1) and HIV, respectively
(146, 147). During HSV-1 infection, US11 inhibits protein kinase
R (PKR) activation, preventing the defensive shutoff of host trans-

TABLE 2 The most conserved proteins encoded by 26 HSV-1 genomes

Protein (locus)
%
Identityc Function

VP26 (UL35)a 99.1 Small capsid protein
UL15a,b 98.8 DNA packaging terminase subunit 1
UL29a,b 98.7 Single-stranded DNA-binding protein
UL20 98.6 Envelope protein of unknown function
UL28a,b 98.5 DNA packaging terminase subunit 2
UL33a,b 98.5 DNA packaging protein, interacts with UL28
VP13-14 (UL47) 98.4 Tegument protein, modulates transactivating

protein VP16 (UL48)
UL45 98.3 Membrane protein of unknown function
gK (UL53) 98.2 Envelope glycoprotein involved in entry
VP5 (UL19)a,b 97.9 Major capsid protein, forms hexons and

pentons
RR2 (UL40)a 97.9 Ribonucleotide reductase subunit 2
Pol (UL30)a,b 97.9 DNA polymerase catalytic subunit
UL18a,b 97.8 Capsid triplex subunit 2, with capsid triplex

subunit 1 (UL38), connects capsid
hexons/pentons

UL25a,b 97.8 DNA packaging tegument protein, stabilizes
capsid vertices

UL31a,b 97.7 Nuclear egress lamina protein
a Protein is conserved across the family Herpesviridae.
b Protein is essential for growth in culture, as described by McGeoch et al. (137).
c Percentage of amino acid alignment columns that are identical (without mutations).
See Materials and Methods for details; see also Table S3 in the supplemental material.

TABLE 3 The most divergent proteins encoded by 26 HSV-1 genomes

Protein (locus)
Median %
divergencec Function

ICP34.5 (RL1) 2.8 Inhibits translational arrest, role in
neurovirulence

gG (US4) 2.3 Envelope glycoprotein, major antibody
target

gL (UL1)a,b 2.2 Envelope glycoprotein, complexed with
gH (UL22), role in fusion

UL11a 1.9 Egress, interaction with UL16
gJ (US5) 1.5 Envelope glycoprotein
US10 1.4 Unknown function
gC (UL44) 1.3 Envelope glycoprotein, binds heparan

sulfate for cell attachment
US11 1.2 Binds double-stranded RNA, acts as a PKR

antagonist
UL43 1.1 Envelope protein
ICP22 (US1) 1.1 Regulatory protein required for expression

of a subset of late genes
VP11/12 (UL46) 0.9 Modulates transactivating protein VP16

(UL48)
ICP4 (RS1) 0.9 Transcriptional regulator
UDG (UL2)a 0.8 Uracil-DNA glycosylase
gI (US7) 0.8 Envelope glycoprotein, complexed with gE

(US8) to form an Fc receptor
ICP0 (RL2) 0.7 Ubiquitin E3 ligase, disrupts ND10,

triggers protein degradation
a Protein is conserved across the family Herpesviridae.
b Protein is essential for growth in culture, as described by McGeoch et al. (137).
c Median percentage of amino acid alignment columns that diverge from the consensus
(number of columns with mutations divided by total number of conserved columns).
Divergence in gI (US7) and ICP34.5 (RL1) does not include indeterminate SSR regions.
See Materials and Methods for details; see also Table S3 in the supplemental material.
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lation machinery that PKR would otherwise trigger (148–152).
The C-terminal region of US11 contains a coding SSR (specifying
a repeated PRX motif), which is proposed to form a polyproline
helix that mediates RNA binding, nucleolar localization, and an-
tagonism of PKR; this SSR varies in length across strains (Fig. 5).

The US11 alignment includes strain-specific SNPs at P12S (strain
H129), V22M and P122S (strain HF10), and V66I (strain E03), as
well as variations observed in multiple strains, such as the four
amino acid variations shared by strains S23, S25, and R62.

Positive selection. We examined the ratio of nonsynonymous

AA Alignment of the divergent HSV-1 US11 protein
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FIG 5 Amino acid (AA) sequence conservation in the RNA-binding protein and PKR antagonist US11. The amino acid alignment of US11 shows it to be 89.5%
identical across the 26 strains analyzed. Gray in the bar across the top indicates identical residues in all strains; orange indicates nonidentity. The median
divergence of all strains versus the consensus (top line) is 1.2% (98.8% similarity to the consensus) (see Table 3; see also Table S3 in the supplemental material).
Green-shaded blocks above the alignment indicate known functional regions of the protein (146–152). The variations in US11 illustrate those commonly seen
among HSV-1 strains. Boxes indicate strain-specific SNPs (e.g., P12S, V22M, V66I, and P112S), variations shared by a group of strains (e.g., G13C, R40H, P45S,
and E162K), and SSR-related indels (PRX repeat beginning at residue 130).
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(dN) versus synonymous (dS) substitutions (dN/dS, or �) for
evidence of purifying, neutral, or positive selection (Fig. 6; see
Table S4 in the supplemental material for full details). Weak evo-
lutionary constraint appears to be the predominant mode of evo-
lution at the level of whole genes, based on the average � value of
0.27 (see Materials and Methods for details). Several proteins are
closer to neutral selection or drift—for example, UL11, UL14, and
US12 (� � 0.7) (Fig. 6). In contrast, five proteins have an � value
of �0.1, indicating a strong selective constraint against nonsyn-
onymous mutations (Fig. 6); these include UL15, ICP8 (UL29),
VP26 (UL35), ribonucleotide reductase (RR2 [UL40]), and
VP13-14 (UL47). These findings mirror the summary of protein
conservation and diversity shown in Tables 2 and 3.

In addition to analyzing evolutionary constraints in whole pro-
teins, we investigated whether particular amino acid residues
showed signs of positive selection. Using a conservative model for
detection of positive selection (72, 73), we identified 13 proteins with
a total of 54 positively selected residues (Table 4; see Materials and
Methods for details). Full reports of positively selected residues for
each protein, along with amino acid alignments highlighting the po-
sitions of these 54 positively selected residues, are included at http:
//szparalab.psu.edu/hsv-diversity/. A less conservative analysis (76)
identified 41 proteins with a total of 113 positively selected residues
(see Table S4 in the supplemental material; per-protein analyses are
included at the URL mentioned above).

Although relatively few crystal or solution structures are avail-
able for HSV-1 proteins, we modeled two examples of positively
selected residues: gH (UL22), which is a component of the viral
fusion machinery, and the DNA polymerase processivity subunit
UL42 (Fig. 7). For gH, the HSV-1 protein was modeled using the
available crystal structure for the HSV-2 gH ectodomain (Fig. 7A,
C, and D) (77). Two of the positively selected residues are surface
exposed, where their variation may influence interactions with
other proteins. For UL42, we used a crystal structure of the N-ter-
minal portion of this protein, which encompasses all of UL42’s
functions as a DNA-binding protein and processivity factor (153).

The positively selected residue 284 (P � 99%) lies adjacent to
residues proposed to interact with DNA (R279, R280, and Q282)
and with HSV polymerase (K289 and V296) (Fig. 7B and E) (153).
These examples illustrate the future directions suggested by the
analysis of positively selected residues in the HSV proteome.

Relationships among circulating HSV-1 strains. Our deter-
mination of 20 new genome sequences provides the first real op-
portunity to assess the relatedness of geographically diverse
HSV-1 strains. Together with previously published sequences, this
collection spans six nations around the globe. The two most recent
analyses of multiple HSV-1 genome sequences included strains
from the United States or Sweden only (13, 30). Also, in contrast
to previous studies that focused on selected regions of the genome
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TABLE 4 Positively selected residues in HSV-1 proteins

HSV-1 protein
(in genome
order)

No. of
positively
selected
residues Amino acid position(s)a

UL11 1 8
gH (UL22) 4 119, 284, 369, 370
Pol (UL30) 1 1124
VP1-2 (UL36) 20 279, 342, 355, 367, 370, 373, 453, 483, 900,

1003, 1127, 1222, 1707, 1866, 2523,
2624, 2726, 2834, 2872, 2981

UL42 1 13
UL43 1 216
gC (UL44) 6 23, 75, 132, 300, 306, 421
VP11-12 (UL46) 2 593, 639
ICP34.5 (RL1) 3 56, 96, 121
ICP0 (RL2) 2 599, 653
ICP4 (RS1) 6 705, 798, 800, 899, 918, 1256
ICP22 (US1) 1 116
US10 5 79, 82, 148, 167, 207
a Positively selected residues are shown in highlighted amino acid alignments at
http://szparalab.psu.edu/hsv-diversity/.
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or excluded intergenic sequences, we used the full genome align-
ment to assess relationships among strains. The dendrogram built
from the matrix of genetic distances contains subgroups that re-
flect geographic zones of origin (Fig. 8). As Sakaoka found in his
RFLP- and PCR-based studies on intra- and intercountry diversity
(10, 20, 32, 33), the African strains reveal deep structure and separa-
tion into multiple subgroups. The North American strain KOS pres-
ents one exception to the geographic groupings, as it clusters with
Asian strain CR38. A similar exception of one U.S. VZV strain coclus-
tering with the Asian clade of VZV has been observed (12); these

isolated examples may reflect the effects of human migration, travel,
and interactions. Overall, the genome-wide dendrogram reflects the
outcome of similar clustering approaches that used smaller DNA seg-
ments or coding regions (data not shown; 13, 25, 30, 154), though the
branch points have higher confidence than those typically found in
trees based on shorter DNA inputs.

In prior analyses of smaller sequence collections, recombina-
tion was described as “widespread” and “extremely frequent”
among HSV-1 genomes (13, 34). We checked this conclusion in
the 26-strain collection using Simplot Bootscan recombination

FIG 7 Coding diversity and positive selection of residues in the HSV-1 entry protein gH and the DNA-binding protein UL42. (A and B) Amino acid sequence
alignments of gH (UL22) (A) and UL42 (B) from 26 HSV-1 strains, showing only those positions where a residue varies in one or more strains compared to the
residue in reference strain 17 (top line). Positions in the sequence are shown along the top. Yellow shading denotes residues exhibiting positive selection (Codeml,
P � 99%; see Materials and Methods for details), and asterisks (*) mark those visible as red spheres on the 3-dimensional models in the panels below. (B) UL42
alignment from 26 HSV-1 strains, in which positive selection was detected for 829 residue 13 (P � 99%) and 284 (P � 95%). (C) Ribbon diagram of the HSV-1
gH ectodomain, homology modeled using the crystal structure of HSV-2 gH (77). Highlighted residues fall into the H1 and H2 domains described previously
(77). (D) Surface interactions (surface indicated by mesh, color coded as follows: green, hydrophobic; pink, H bonding; blue, polar) are low for residue 284 (top)
and are greater for the exposed pair of positively selected residues 369 and 370. (E) The available structure of UL42 (153) captures only residue 284, which lies
adjacent to residues proposed to interact with DNA and with HSV-1 DNA polymerase (Pol [UL30]).
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analysis, as described previously (13, 81). Bootscan plots illustrate
the statistical (bootstrap) support for close clustering of one se-
quence with each member of a set of comparison sequences for
each of many small segments of a sequence alignment. Switches in
the identity of the most similar sequence as one moves along the
alignment are interpreted as support for multiple recombination
events in the history of the sampled sequences. Thus, for example,
we found that the HSV-1 reference strain 17 is most similar to a
variety of different strains in different parts of the genome (Fig.
9A). Similarity switches were visible even among the subgroups of
closely related strains described above (Fig. 8; see also Fig. S3 in the
supplemental material), suggesting that recombination events are
both historical and ongoing (Fig. 9B). These results confirm the
previous findings and suggest that HSV-1 strains are highly re-
combinogenic throughout their genomes. Future experiments are
needed to address both the potential and the actual frequency of
recombination between HSV strains in modern human popula-
tions, because the rate and extent of human movement and inter-
action has increased substantially since many of these strains were
collected (Table 1).

Comments on HSV-1 evolution. This paper presents the first
survey of HSV-1 variation that has near-global coverage and in-
corporates both coding and noncoding features of the genome.

Geographical clustering prevails despite signs of recombination
(Fig. 8 and 9). During the coevolution of humans and HSV-1,
spatial segregation of ancestral host populations is likely to have
generated some geographic isolation of viral lineages. Similar im-
pacts of geographic separation on the results of viral genome clus-
tering have been observed for VZV (12, 15, 155, 156). The current
study, in combination with prior work, indicates extensive recom-
bination between HSV-1 genomes (Fig. 9), at a level that far ex-
ceeds that observed for VZV (13, 15, 156). While dating of VZV
evolution has been proposed based on similar data, we find that
the prevalence of recombination in HSV-1 makes it unwise to add
a time scale to internal nodes or to interpret these clusters as clades
(13, 155, 157).

Although past geographical separation may well have impacted
the currently available sequences, it is worth noting that all of the
currently sequenced genomes were isolated more than 25 years
ago (Table 1). The degree and extent of human global movement
and interaction have increased at a pace that begs future projects
to encompass currently circulating strains. Progress in VZV ge-
nome sequencing and comparison has moved more rapidly in this
regard (158, 159). It has been proposed that the geographically
linked clade structure of VZV may be fading under the impact of
host mixing (12, 155, 160), whereas the signs of recombination
suggest that even decades ago, when these strains were collected,
HSV-1 strains were already a single, panmictic population (Fig. 8).
Future sequencing efforts will be needed to assess whether the rate
of mixing among HSV strains has increased due to human move-
ment and to assess the modern extent of HSV-1 interstrain diver-
sity as a result. These data will be crucial to our understanding of
the efficacy of vaccine candidates and to the development of
widely effective therapeutics.

The preponderant mode of protein evolution appears to be
moderate constraint, although the outliers range from tight con-
straint to near neutrality (Fig. 6). We found evidence for a few
residues being under positive selection using stringent tests (Table
3; see also Table S4 in the supplemental material), and borderline
signals were obtained for many more residues. As further se-
quences become available, more extensive sampling of protein
variability will provide a clearer picture of selective pressures.
Likewise, testing of the alternative versions of positively selected
residues, such as those found in gH (UL22) and UL42 (Fig. 7), will
determine their relative efficacies and how these variations affect
viral spread between hosts.

These data present a rich resource for mining information
about the coevolution of HSV and the human immune response,
which will in turn be relevant for the development of highly stim-
ulatory vaccine antigens. For instance, gB (UL27) has been a key
vaccine target in several recent trials (5). These data reveal that
more than half of the variation among HSV strains in this 904-ami-
no-acid protein occurs in the first 80 residues (see Table S3 in the
supplemental material; see also reference 161). This N-terminal frag-
ment lies outside the gB crystal structure (162). The functions of this
region are not well defined but include a binding site for major his-
tocompatibility complex (MHC) class II molecules (163). Some of
the most variable gB residues (residues 59 to 80, of which one-third
are variable) are also highly antigenic and capable of stimulating im-
munity (164, 165). Knowledge of interstrain variations in gB and
other viral proteins will allow the refinement of vaccine antigens to
create a strong and broadly effective immune response.

As future studies add to our knowledge of HSV genome diver-
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sity, it will be important to maintain as much clinical and passage
history data as possible. The current sequences reveal a wealth of
data about genetic diversity among HSV-1 strains, but we now
need to enrich these data by capturing information about specific
strain origins, disease presentation, immune status, passage his-
tory for cultured strains, and related metadata. Community-wide
resources, such as GenBank and the Virus Pathogen Resource,
provide avenues to include these data alongside newly produced
sequences (69). These approaches will aid future analyses of ge-
netic links to phenotype, host status, and disease progression.
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