
Mobilization of Circulating Endothelial Progenitor Cells Correlates
with the Clinical Course of Hantavirus Disease

Ellen Krautkrämer,a Stephan Grouls,a David Hettwer,a Neysan Rafat,b Burkhard Tönshoff,b Martin Zeiera

‹Department of Nephrology, University of Heidelberg, Heidelberg, Germanya; Department of Pediatrics, University Children’s Hospital Heidelberg, Heidelberg, Germanyb

Infections with hemorrhagic fever viruses are characterized by increased permeability leading to capillary leakage. Hantavirus
infection is associated with endothelial dysfunction, and the clinical course is related to the degree of vascular injury. Circulating
endothelial progenitor cells (cEPCs) play a pivotal role in the repair of the damaged endothelium. Therefore, we analyzed the
number of cEPCs and their mobilizing growth factors in patients suffering from hantavirus disease induced by infection with
Puumala virus. The numbers of EPCs of 36 hantavirus-infected patients and age- and gender-matched healthy controls were
analyzed by flow cytometry. Concentrations of cEPC-mobilizing growth factors in plasma were determined by enzyme-linked
immunosorbent assay. Laboratory parameters were correlated with the number of cEPCs. In patients infected with hantavirus,
the number of cEPCs was significantly higher than that in healthy controls. Levels of mobilizing cytokines were upregulated in
patients, and the mobilization of cEPCs is paralleled with the normalization of clinical parameters. Moreover, higher levels of
cEPCs correlated with higher serum albumin levels and platelet concentrations. Our data indicate that cEPCs may play a role in
the repair of hantavirus-induced endothelial damage, thereby influencing the clinical course and the severity of symptoms.

Viral hemorrhagic fevers are characterized by severe endothe-
lial dysfunction that often impairs the functions of multiple

organs (1–3). Pathogens affect endothelial cells directly by infec-
tion and replication, or the function of cells lining the vessels is
impaired indirectly via immune-mediated effects (4–6). Endothe-
lial dysfunction results in disturbed permeability. The conse-
quences of capillary leakage are hemorrhages, edema, hypoten-
sion, and organ failure. Pathogen-induced loss of endothelial
function has a major impact on the clinical course and outcome of
the infection. The control of the passage of ions, water, and mol-
ecules requires an intact endothelial monolayer. Maintenance and
restoration of alterations of endothelial integrity are crucial pro-
cesses for proper endothelial function. Detached endothelial cells
may be replaced by the proliferation and migration of adjacent
endothelial cells. Another mechanism of repair of the injured
endothelium is the mobilization and differentiation of bone
marrow-derived progenitor cells to endothelial cells. Endothe-
lial progenitor cells (EPCs) contribute to vasculogenesis and
reendothelialization by differentiation toward endothelial cells
(7, 8). Upregulation of cytokines induces the release of EPCs from
the bone marrow. Several growth factors, such as angiopoietin 1
(Ang-1) and Ang-2, vascular endothelial growth factor (VEGF),
stroma-derived factor 1� (SDF-1�), granulocyte-macrophage
colony-stimulating factor, granulocyte colony-stimulating factor,
and erythropoietin (EPO), have been identified as crucial in the
mobilization and proliferation of circulating EPCs (cEPCs) (9–
16). The list of proteins, drugs, and behavioral factors that influ-
ence the complex process of mobilization of EPCs is increasing.
Estrogen and physical exercise elevate the number of EPCs,
whereas increasing age, diabetes, and smoking are associated with
the depletion of cEPCs (17–21). Furthermore, drugs for the treat-
ment of cardiovascular pathologies, such as statins and angioten-
sin-converting enzyme (ACE) inhibitors positively modulate EPC
levels, thereby improving reendothelialization (22–24). The role
of EPCs in different pathological conditions with vascular altera-
tion and their impact on the outcome have been described in
many studies, and their potential use as a predictive marker and as

a therapeutic approach is under investigation (25–29). However,
in contrast to the field of cardiovascular research, the significance
of EPCs in the repair of endothelial damage in infectious diseases
is not well characterized thus far. Many infectious diseases are
associated with endothelial damage leading to organ failure. For
example, multiple organ failure in sepsis is a consequence of al-
tered endothelial function due to infection and the subsequent
host response. Recently, several studies have identified the key role
of EPCs in the outcome of severe sepsis (30–32). The number of
cEPCs in septic patients correlates with survival and inversely with
the severity of the clinical course.

Hantaviruses are members of the Bunyaviridae family. Patho-
genic hantaviruses are transmitted to humans via inhalation of
aerosols that contain virions because of contamination with ro-
dent excreta. Hantavirus disease is characterized by capillary leak-
age and is manifested predominantly in the lung (hantavirus car-
diopulmonary syndrome [HCPS]) or the kidney (hemorrhagic
fever with renal syndrome [HFRS]). The severity of infection var-
ies among the different hantaviruses. Furthermore, the clinical
picture differs between individuals and ranges from asymptom-
atic infection to severe courses with a fatal outcome. Hallmarks of
hantavirus disease are increased vascular permeability and throm-
bocytopenia. Common signs of hantavirus-induced vascular dys-
function are hypotension, hypoalbuminemia, hemorrhages, pleu-
ral effusion, and edema (33, 34). Although hantaviral disease
shows high variability in the intensity and manifestation of symp-
toms, endothelial dysfunction seems to be the common underly-
ing mechanism of hantavirus infection. Viral replication and im-
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mune-mediated effects both contribute to tissue damage in
hantavirus infection, and the mechanisms of regenerative repair
are not known (35–42). Therefore, we analyzed the role of EPCs in
the clinical course of hantavirus infection.

MATERIALS AND METHODS
Study design. Patients with serologically confirmed Puumala virus infec-
tion (n � 36) were included. All patients met the case definition of acute
hantavirus infection of the German Robert Koch Institute (43). For a
control, we recruited an age- and gender-matched group of 29 healthy
volunteers. Clinical data were collected through a review of medical charts
of the Department of Nephrology. Neither patients nor controls were
treated with statins or ACE inhibitors. This study was approved by the
Ethics Committee of the University of Heidelberg, Heidelberg, Germany,
and it adhered to the Declaration of Helsinki. Written informed consent
was obtained from all of the participants.

Isolation of peripheral blood mononuclear cells (PBMCs) and flow
cytometry. Fifteen-milliliter samples of blood were collected in EDTA
tubes. Blood samples were processed within 1 h after collection. PBMCs
were separated from whole blood by density gradient centrifugation with
Ficoll-Hypaque. To analyze the expression of cell surface proteins, 1 � 106

cells were incubated with Fc receptor blocking reagent (Miltenyi Biotec).
Subsequently, cells were stained with the fluorescently labeled anti-hu-

man mouse monoclonal antibodies CD31-allophycocyanin (Miltenyi
Biotec), CD34-fluorescein isothiocyanate (BD Biosciences), CD45–peri-
dinin-chlorophyll-protein (BD Biosciences), and CD133-phycoerythrin
(Miltenyi Biotec) or with fluorescently labeled, isotype-matched mouse
antibodies (Miltenyi Biotec and BD Biosciences) at 4°C for 30 min in the
dark. After triple washing, cells were subjected to flow cytometric analysis
with a FACSCalibur cytometer (BD Biosciences). Analysis was done in
duplicate and with an isotype control for each patient and a healthy con-
trol person. Data were processed with BD CellQuest Pro (BD Biosciences)
software.

ELISA. The levels of Ang-2, EPO, SDF-1�, and VEGF in plasma were
quantified by Quantikine enzyme-linked immunosorbent assay (ELISA;
R&D Systems). Assays were performed according to the manufacturer’s
instructions.

Statistical analysis. Medians of clinical parameters of two groups were
compared with the Mann-Whitney U test, and P values of �0.05 were
considered significant. Normal distribution was tested with the Kolmogo-
rov-Smirnoff test. Correlation was assessed by calculating Spearman’s
correlation coefficients.

RESULTS
Patient characteristics. A total of 36 patients (10 women, 26 men)
with acute kidney injury induced by hantavirus infection were
included in this study. Their ages ranged from 21 to 70 years.
Twenty-nine volunteers (11 women, 18 men) with ages ranging
from 23 to 64 years were included as an age-matched healthy
control group. Patients infected with hantavirus showed the char-
acteristic initial flu-like symptoms with abdominal pain, nausea,
vomiting, headache, fever, and typical signs of vascular damage
(hypotension, pleural effusion, pulmonary congestion). Labora-
tory analysis revealed increased levels of leukocytes, C-reactive
protein (CRP), and lactate dehydrogenase (LDH) and decreased
serum albumin and platelet levels (Table 1). Renal involvement
was revealed by elevated serum creatinine levels, proteinuria, and
hematuria. Hemodialysis treatment was not required for any pa-
tient. The findings indicate an increased permeability of the vas-

TABLE 1 Characteristics and mean peak and nadir levels of laboratory
parameters of 36 patients with serologically confirmed hantavirus
infection during hospitalization

Characteristic Mean value � SD

Age (yr) 42.78 � 14.16
Duration of hospitalization (days) 7.889 � 4.471
Max serum creatinine level (mg/dl) 6.330 � 2.833
Min serum albumin level (g/liter) 32.84 � 3.774
Max leukocyte no. (G/liter) 10.69 � 3.172
Min platelet no. (G/liter) 141.9 � 97.54
Max LDH activity (U/liter) 412.8 � 137.2
Max CRP level (mg/liter) 63.31 � 35.34

FIG 1 Representative data from flow cytometric analysis of human PBMCs of a healthy control person (top) and a hantavirus-infected patient (bottom). Human
mononuclear cells were separated from whole blood samples and stained for CD31, CD34, CD45, and CD133 or with the respective fluorescently labeled isotype
control antibodies. Circulating EPCs were identified as CD31� CD45dim CD34� CD133� cells. FITC, fluorescein isothiocyanate; APC, allophycocyanin; PerCP,
peridinin-chlorophyll-protein; PE, phycoerythrin.
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culature due to endothelial damage in hantavirus-infected pa-
tients.

Increased numbers of cEPCs in hantavirus-infected patients.
The percentage of cEPCs, defined as cells expressing specific en-
dothelial and hematopoietic progenitor markers, was analyzed by
flow cytometry in blood samples of hantavirus-infected patients
and healthy control persons. In accordance with the protocol of
Duda et al., cEPCs were identified as a population of cells express-
ing four specific markers (CD31� CD34� CD45dim CD133�);
cEPCs were positive for CD31 (a marker of monocytes and endo-
thelial cells), CD34 (a marker of hematopoietic progenitor and
endothelial cells), and CD133 (a marker of hematopoietic precur-
sor cells) and expressed low levels of CD45 (a marker of leukocyte
lineage/leukocyte common antigen) (44). Figure 1 shows repre-

sentative data from the flow cytometric analysis of blood samples
of a healthy control person and a hantavirus-infected patient and
demonstrates the gating of cell populations to identify cEPCs.
Blood mononuclear cells were analyzed for the presence of CD34
and CD45 and the coexpression of CD31 and CD133. The cEPC
levels in hantavirus-infected patients during the acute phase were
compared to the number of cEPCs in the age-matched group of
healthy control persons (Fig. 2). The median time of cEPC mea-
surement was 10 (range, 5 to 24) days after the onset of symptoms.
The analysis revealed that the percentage of cEPCs in the PBMCs
of healthy individuals was low. The median percentage of cEPCs
in the PBMCs of hantavirus-infected patients (0.145% [range,
0.021 to 0.544%]) was significantly higher than that in the healthy
control group (0.046% [range, 0.012 to 0.136%]) (P � 0.0001,
two-tailed Mann-Whitney U test). We observed a 3-fold higher
level of cEPCs in hantavirus disease patients than in the healthy
control group. In septic patients, the number of cEPCs is 2 to 4
times that in healthy controls (31, 32). The increase in cEPC num-
bers seems to indicate a mobilization of progenitor cells due to
hantavirus-induced endothelial damage.

Cytokine levels in hantavirus-infected patients. Different cy-
tokines have been found to promote the proliferation and differ-
entiation of circulating EPCs. Levels of cytokines (Ang-2, SDF-1�,
VEGF, and EPO) known to play a major role in the mobilization
of EPCs were analyzed in plasma samples from hantavirus-in-
fected patients and healthy control subjects (Fig. 3). The analysis
revealed that the median levels of Ang-2 (3,400 pg/ml [range,
1,475 to 9,260 pg/ml] versus 1,321 pg/ml [range, 912.5 to 3,588
pg/ml] [P � 0.0001]), SDF-1� (3,672 pg/ml [range, 2,857 to 5,260
pg/ml] versus 2,592 pg/ml [range, 2,178 to 3,799 pg/ml] [P �
0.0001]) and VEGF (78.31 pg/ml [range, 14.76 to 736.3 pg/ml]
versus 37.25 pg/ml [range, 7.08 to 87.25 pg/ml] [P � 0.0007])
were higher in the plasma of hantavirus-infected patients than the
median levels in the healthy control group. In contrast to the

FIG 2 Percentages of circulating EPCs (CD31� CD45dim CD34� CD133�

cells) in PBMCs from 36 hantavirus-infected patients (hanta) and 29 age-
matched healthy volunteers (ctrl) identified by flow cytometry. Median levels
are indicated by horizontal bars. The P value was determined by two-tailed
Mann-Whitney U test.

FIG 3 Plasma Ang-2, VEGF, SDF-1�, and EPO levels in 34 hantavirus-infected patients (hanta) and 23 healthy controls (ctrl). Median levels are indicated by
horizontal bars. The P values were determined by two-tailed Mann-Whitney U test.
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higher levels of Ang-2, SDF-1�, and VEGF, hantavirus-infected
patients exhibited lower levels of EPO than healthy controls (3.11
mIU/ml [range, 0.22 to 13.23 mIU/ml] versus 7.33 mIU/ml
[range, 3.96 to 23.52 mIU/ml] [P � 0.0001]). EPO deficiency
during hantavirus infection probably resulted from acute renal
failure and damage to peritubular cells, which are mainly respon-
sible for the production of EPO (45).

Course of cEPC mobilization. The cEPC number of most pa-
tients was measured once during the clinical course and most
likely did not reflect the peak level of cEPC mobilization. To ana-
lyze the mobilization and role of cEPCs during the course of han-
tavirus infection in more detail, levels of cEPCs, growth factors,
and laboratory parameters were examined over time. Blood sam-
ples of hantavirus-infected patients were sampled longitudinally
during the acute and recovery phases (�16 days) after symptom
onset, and cEPC levels were measured. cEPC numbers increased
after symptom onset and decreased rapidly to the baseline level
after the peak level was reached. Together with the course of cEPC
levels, the courses of various laboratory parameters of patients
were analyzed and compared with the course of cEPC numbers
(Fig. 4). Leukocyte and serum creatinine levels decreased with the
mobilization of cEPCs. Decreased platelet concentrations nor-
malized in parallel with the increase in cEPC numbers. Impaired
endothelial barrier function was ameliorated since hypoproteine-
mia also improved with the mobilization of cEPCs. These findings
show that the recovery phase of hantavirus infection starts with
the appearance of high levels of cEPCs.

To examine the mobilization of cEPCs, cytokine levels were
also analyzed over time (Fig. 5). Levels of Ang-2 and SDF-1� were
elevated early in the course of infection. In contrast, levels of
VEGF increased later in the clinical course. As mentioned before,
EPO levels were lower in hantavirus-infected patients than in con-
trol persons. The analysis of EPO levels during the clinical course
revealed that levels of EPO increased after the mobilization of
cEPCs. We conclude that cEPC-mobilizing cytokines are upregu-
lated during the acute phase of hantavirus infection.

Correlation of cEPC levels with clinical parameters. In the
next step, we examined the association between cEPC levels and
laboratory parameters on the day of cEPC measurement in han-
tavirus-infected patients (Table 2). During mobilization, levels of
cEPCs correlate negatively with CRP levels and positively with
serum albumin levels and platelet concentrations. No correlation
between cEPCs and age or levels of leukocytes, LDH, or serum
creatinine was observed. The correlation between platelet concen-
trations and serum albumin and cEPC levels indicates the rela-
tionship between cEPCs and the repair of vascular damage in han-
tavirus disease.

DISCUSSION

Therapy of viral hemorrhagic fever diseases and other viral infec-
tions is often limited to the treatment of symptoms because of the
lack of a specific antiviral therapy. The clinical picture and severity
of infectious diseases vary among different causative agents. How-
ever, the common underlying pathogenic mechanisms responsi-
ble for the disease are often endothelial damage and increased
vascular permeability, which are accompanied by additional
pathogen-specific symptoms. In severe infections, capillary leak-
age leads to hemodynamic alterations that result in hypotension,
organ failure, and shock. The broad spectrum of clinical illness,

FIG 4 Time courses of median levels of cEPCs and of laboratory parameters in
hantavirus-infected patients after symptom onset. Levels are reported as me-
dian values with interquartile ranges. Horizontal lines indicate the median
levels of cEPCs (solid) and ranges (dashed) of the healthy control group.
Dashed lines indicate reference ranges for healthy adults. dpo, days postonset.
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ranging from mild disease to a fatal outcome, is influenced by
multiple factors.

Our findings indicate that circulating EPCs may play a role in
the clinical course of hantavirus infection. We have shown that the
number of circulating EPCs is elevated and that cytokines impor-
tant in cEPC mobilization are upregulated. The complex process
of repair of endothelial injury by progenitor cells is not yet com-
pletely understood. Many cytokines are known to be involved in
the steps of reendothelialization, namely, mobilization, prolifera-

tion, migration, and differentiation. We demonstrate the upregu-
lation of three major determinants that have been found to play a
key role in these processes. Levels of Ang-2, VEGF, and SDF-1�
are increased during hantavirus infection. Interestingly, levels of
Ang-2 and SDF-1� are elevated early in the course of hantavirus
infection. In contrast, the VEGF concentration increases at later
time points after symptom onset. The effects of the individual
cytokines in the course of hantavirus disease and cEPC mobiliza-
tion, homing, and differentiation remain to be investigated. Cy-
tokines may activate different signaling cascades and cause many
effects. VEGF promotes angiogenesis but also induces capillary
leakage (46, 47). Previous studies have demonstrated the elevation
of VEGF levels in HCPS and HFRS patients (48–51). They ob-
served early and rather localized elevation of VEGF levels and
sustained systemic upregulation later in infection. Early in the
infection VEGF seems to contribute to hantavirus pathogenesis,
whereas VEGF at later time points may contribute to endothelial
repair and convalescence (48, 50). Local and systemic effects of
cytokines may be involved in pathogenesis and repair (52, 53).
The temporospatial regulation of cytokines in hantavirus infec-
tion may influence the clinical course and needs further investiga-
tion. EPO, a cytokine also important for the mobilization of pro-
genitor cells, is decreased in hantavirus-infected patients. The
reason for the downregulation of EPO is the organ-specific man-
ifestation of infections with hantaviruses that cause HFRS. The
damage of EPO-producing renal peritubular cells may be respon-
sible for the deregulation of this cytokine (45, 54, 55). Therefore, it
would be of great interest to analyze the number of cEPCs and the
mobilizing cytokines in infections with New World hantaviruses
that cause HCPS. HCPS is characterized by rapidly progressive
pulmonary edema, whereas renal involvement is less prominent
than in HFRS (56). EPCs may also play a role in the outcome of
HCPS. It was shown that an increased number of circulating EPCs
is associated with higher survival rates in patients with acute lung
injury (57). The mobilization of cEPCs could also be beneficial to
patients with HCPS. Furthermore, EPCs probably mediate the
repair of endothelial damage in a wide range of infectious diseases.
Clinical signs of vascular leakage, such as pleural effusion, ascites,
and decreased serum albumin, are common in a wide range of
diseases such as viral hemorrhagic fevers (58, 59). Several hemor-
rhagic fever viruses have been classified as causes of emerging
infectious diseases, and the list of viruses that cause organ failure
by affecting endothelial function is increasing (60–63). Knowl-
edge of the pathogenesis and epidemiology of these infections has
become more and more the focus of multidisciplinary research. As
demonstrated here for hantavirus infection, the level of mobiliza-FIG 5 Time courses of mean levels of cEPCs and the cytokines Ang-2, VEGF,

SDF-1�, and EPO in hantavirus-infected patients after symptom onset. Levels
are reported as median values with interquartile ranges. Horizontal lines indi-
cate median levels (solid) and ranges (dashed) of healthy control persons. dpo,
days postonset. TABLE 2 Correlation between cEPC levels and clinical parameters at

day of cEPC measurement in hantavirus-infected patients

Parameter ra CIb P value

Age (yr) 	0.219 	0.519–0.127 0.1980
CRP level (mg/liter) 	0.510 	0.734–0.186 0.0029
LDH activity (U/liter) 0.054 	0.317–0.409 0.7745
Leukocyte no. (G/liter) 	0.243 	0.537–0.103 0.1537
Serum creatinine concn (mg/dl) 	0.171 	0.481–0.177 0.3196
Platelet no. (G/liter) 0.461 0.146–0.691 0.0047
Serum albumin concn (g/liter) 0.399 0.071–0.649 0.0158
a r, Spearman’s correlation coefficient.
b CI, 95% confidence interval.
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tion may be responsible for the clinical course and outcome of
other infections that cause severe endothelial damage.

The understanding of the mechanism of endothelial damage
and repair will give useful insights into the pathogenesis of hem-
orrhagic fever diseases that will provide implications for new ther-
apeutic strategies.
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