
Effects of Alpha Interferon Treatment on Intrinsic Anti-HIV-1
Immunity In Vivo

Mohamed Abdel-Mohsen,a,d Xutao Deng,b Teri Liegler,a John C. Guatelli,c Mohamed S. Salama,d Hussam El-din A. Ghanem,d

Andri Rauch,e Bruno Ledergerber,f Steven G. Deeks,a Huldrych F. Günthard,f Joseph K. Wong,a,g Satish K. Pillaia,b,g

‹Department of Medicine, University of California, San Francisco, San Francisco, California, USAa; Blood Systems Research Institute, San Francisco, California, USAb;
University of California, San Diego, La Jolla, California, and VA San Diego Healthcare System, San Diego, California, USAc; Faculty of Science, Ain Shams University, Cairo,
Egyptd; Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerlande; Division of Infectious Diseases and Hospital Epidemiology,
University Hospital Zurich, University of Zurich, Zurich, Switzerlandf; Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USAg

Alpha interferon (IFN-�) suppresses human immunodeficiency virus type 1 (HIV-1) replication in vitro by inducing cell-intrin-
sic retroviral restriction mechanisms. We investigated the effects of IFN-�/ribavirin (IFN-�/riba) treatment on 34 anti-HIV-1
restriction factors in vivo. Expression of several anti-HIV-1 restriction factors was significantly induced by IFN-�/riba in HIV/
hepatitis C virus (HCV)-coinfected individuals. Fold induction of cumulative restriction factor expression in CD4� T cells was
significantly correlated with viral load reduction during IFN-�/riba treatment (r2 � 0.649; P < 0.016). Exogenous IFN-� induces
supraphysiologic restriction factor expression associated with a pronounced decrease in HIV-1 viremia.

Detailed analyses of the molecular and immunologic effects of
the cytokine alpha interferon (IFN-�) may provide insights

that contribute to the development of novel prophylactic, thera-
peutic, and curative strategies for HIV-1 infection. Induction of
IFN-� expression is a critical first step in the defense against a
range of viral infections (1, 2). The antiretroviral activity of IFN-�
was demonstrated in vitro soon after the discovery of HIV-1 (3),
and several studies have reported that exogenous IFN-� treatment
potently suppresses HIV-1 in vivo (4–8). Moreover, IFN-� ther-
apy was recently associated with significant reduction in the size of
the HIV-1 latent reservoir (9), suggesting that interferon-associ-
ated pathways may be exploited to achieve HIV-1 eradication. The
mechanisms underlying the in vivo anti-HIV-1 capacity of IFN-�
remain to be thoroughly elucidated.

Cell-intrinsic immune mechanisms likely contribute to the
beneficial effects of type I interferon (10). On this front, our lab-
oratory recently reported that induction of the BST2/tetherin,
APOBEC3G, and APOBEC3F cell-intrinsic immune defenses
contributes to the IFN-�-mediated suppression of HIV-1 in vivo
(6). A large number of additional host restriction factors with
anti-HIV-1 activity in vitro have now been identified and charac-
terized. In this study, we performed a comprehensive analysis of
the effects of exogenous IFN-� treatment on all established anti-
HIV-1 host restriction factors and HIV-1 viremia in vivo.

We examined restriction factor gene expression patterns in
longitudinal samples from HIV/HCV-coinfected individuals un-
dergoing pegylated IFN-�/ribavirin (IFN-�/riba) combination
therapy and additionally characterized a separate population of
non-interferon-treated control individuals. We designed and im-
plemented a custom TLDA to measure the expression of 34 anti-
HIV-1 restriction genes (11). We relied on the following two min-
imal criteria for inclusion in our CuRe TLDA: (i) peer-reviewed,
published evidence of direct inhibition of HIV-1 replication in
vitro and (ii) detectable expression in human peripheral blood
mononuclear cells. All factors in the CuRe array meet the essential,
minimal definition of a host restriction factor and function in a
cell-autonomous manner to suppress HIV-1 replication.

Abbreviations: APOBEC, apolipoprotein B mRNA editing en-

zyme; ART, antiretroviral therapy; BST2, bone marrow stromal
cell antigen 2; CT, cycle threshold; CuRe, cumulative restriction;
SAMHD1, SAM domain and HD domain-containing protein 1; TRIM,
tripartite motif; ISG, interferon-stimulated gene; CDKN1A, cy-
clin-dependent kinase inhibitor 1A; PAF1, RNA polymerase II-
associated factor; EIF2AK2, eukaryotic translation initiation fac-
tor 2-alpha kinase 2; HCV, hepatitis C virus; HERC5, HECT
domain and RLD 5; HIV-1, human immunodeficiency virus type
1; IFITM, interferon-induced transmembrane; IFN-�/riba, alpha
interferon/ribavirin; LCMV, lymphocytic choriomeningitis virus;
MOV10, Moloney leukemia virus 10, homolog; PBMC, periph-
eral blood mononuclear cell; SLFN11, Schlafen family member
11; TLDA, TaqMan low-density array; GAPDH, glyceraldehyde
3-phosphate dehydrogenase;18S, 18S ribosomal RNA; ACTB, be-
ta-actin; PPIA, peptidylprolyl isomerase A; RPLP0, 60S acidic ri-
bosomal protein, large, P0; UBC, ubiquitin C.

Subjects and specimen processing. Longitudinal samples
were collected from 15 HIV/HCV-coinfected individuals enrolled
in the Swiss HIV Cohort Study ([SHCS]; www.shcs.ch) (12) who
underwent IFN-�/riba treatment (see Table S1 in the supplemen-
tal material). All subjects had PBMC available before, during, and
after IFN-�/riba treatment, were ART naïve, and had detectable
HIV-1 RNA at baseline. Blood was collected prospectively from 12
HIV-1-infected (ART-naïve) viremic individuals and 12 HIV-1-
uninfected individuals enrolled in the University of California San
Francisco (UCSF) SCOPE cohort (see Table S2). PBMCs were
isolated with Ficoll-Paque Plus. CD4� T cells were enriched from
fresh PBMCs using an EasySep Human CD4� T cell enrichment
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kit (StemCell Technologies), according to the manufacturer’s in-
structions. The research was approved by the relevant institu-
tional review boards, and all human participants gave written in-
formed consent.

Gene expression profiling. Total RNA was extracted from
PBMCs and CD4� T cells directly after enrichment using TRIzol
reagent (Invitrogen). RNA was transcribed into cDNA using a
SuperScript VILO cDNA synthesis kit (Invitrogen). Quantitative
real-time PCR utilized custom-made TLDA from Life Technolo-
gies, following the manufacturer’s instructions. All assays and
their respective target genes are listed in Table S3 in the supple-
mental material. Thermal cycling was performed using an ABI
ViiA 7 real-time PCR System. Data were analyzed using ABI ViiA
7 software. A panel of six housekeeping genes (GAPDH, 18S,
ACTB, PPIA, RPLP0, and UBC) was included in the TLDA plates.
RPLP0 was identified as the most stably expressed housekeeping
gene using the GeNorm algorithm (13). Therefore, raw CT num-
bers of amplified gene products were normalized to the house-
keeping gene, RPLP0, to control for cDNA input amounts (see
Fig. S1 in the supplemental material). Fold induction was deter-
mined using the comparative CT method (13). APOBEC3G,
APOBEC3F, BST2/tetherin, and ISG15 relative copy numbers
were recalculated from our previous work (6).

CuRe score calculation. Missing (undetectable) values were
imputed using the minimum expression value across samples for
each gene. The expression value for the ith gene is notated as ei. A
reference sample was selected based on having the maximum
number of genes that were closest to the median gene expression
profile. The reference expression value for the ith gene is notated
as ri. The CuRe score for a sample is the cumulative fold difference
in antiviral gene expression with respect to the value determined
for the reference individual, expressed by the following formula:

CuRe � �
i�1

n

ei ⁄ ri

Statistical analysis. The paired Wilcoxon test, Mann-Whitney
U test, and Pearson’s r correlation coefficient were applied to data
using GraphPad Prism v5.0c.

We initially examined the effects of IFN-�/riba treatment on
plasma HIV-1 load. The 15 IFN-�/riba-treated individuals in-
cluded in this study represent a subset of individuals studied in our
previous work on IFN-� effects, chosen based on sample availabil-
ity (6). Subject characteristics and IFN-�/riba treatment regimens
are described in Table S1 in the supplemental material. IFN-�/
riba treatment reduced plasma viral load by 0.91 (� 0.70) log10
copies/ml during treatment, and viremia typically returned to ap-
proximate pretreatment levels following therapy cessation (see
Fig. S2 in the supplemental material). This effect is consistent with
previous IFN-�/riba and IFN-� monotherapy studies (4, 5, 7, 8).
Seven of 15 individuals were included in analyses of PBMC gene
expression, and the remaining eight individuals were included in
analyses of CD4� T cell gene expression. A separate population of
24 IFN-�-untreated individuals (12 HIV-1 uninfected and 12
HIV-1 infected and ART naïve) enrolled in the SCOPE cohort was
additionally characterized as a control group (see Table S2).

We next implemented the CuRe array to examine the effects of
IFN-�/riba treatment on the expression of 34 anti-HIV-1 restric-
tion factors (described in Table S3 in the supplemental material)
in PBMCs and CD4� T cells. Expression of 14 (APOBEC3A,
APOBEC3H, IFITM1, IFITM2, IFITM3, ISG15, PKR, HERC5,

MOV10, RSAD2 [viperin], TRIM11, TRIM14, TRIM19, and
TRIM22) of 34 restriction genes was significantly elevated in un-
fractionated PBMCs during the IFN-�/riba treatment period with
respect to pretreatment levels (Fig. 1A). Expression of an overlap-
ping but distinct set of 15 restriction factors (APOBEC3F,
APOBEC3G, BST2/tetherin, IFITM1, ISG15, PKR, HERC5,
MOV10, RSAD2 [viperin], TRIM11, TRIM14, TRIM19, TRIM22,
TRIM28, and TRIM32) was significantly induced by IFN-�/riba
treatment in isolated CD4� T cells (Fig. 1B). In both unfraction-
ated PBMCs and CD4� T cells, expression of induced genes re-
turned to approximate baseline levels postcessation of IFN-�/riba
treatment. Gene-by-gene fold induction levels (and statistics) ob-
served in PBMCs and CD4� T cells are presented in Table S4 in the
supplemental material.

To infer the contribution of anti-HIV-1 restriction factors to
the observed IFN-�/riba-mediated suppression of HIV-1, we ex-
amined correlations between the induction of restriction genes
and reduction in HIV-1 viremia during the treatment period. We
defined the CuRe score (explained above in greater detail) to rep-
resent overall, cumulative restriction factor gene expression across
our 34 measured targets. IFN-�/riba-mediated viral load reduc-
tion did not exhibit any correlation with induction of the CuRe
score in unfractionated PBMCs (r2 � 0.064, P � 0.584) (Fig. 2A)
or induction of any of the 34 restriction factors in PBMCs consid-
ered on an individual gene-by-gene basis. IFN-�/riba-mediated
viral load reduction exhibited a significant, pronounced correla-
tion with induction of the CuRe score in CD4� T cells (r2 � 0.649,
P � 0.016) (Fig. 2B). Viral load reduction was significantly corre-
lated with the induction of nine individual anti-HIV-1 restriction
genes in CD4� T cells (see Fig. S3 in the supplemental material),
listed here hierarchically according to the strength of statistical
association: TRIM22 (r2 � 0.64, P � 0.008), PKR (r2 � 0.533, P �
0.019), TRIM32 (r2 � 0.499, P � 0.025), TRIM11 (r2 � 0.534, P �
0.031), HERC5 (r2 � 0.435, P � 0.038), APOBEC3F (r2 � 0.42,
P � 0.041), RSAD2 (viperin) (r2 � 0.41, P � 0.043), BST2/teth-
erin (r2 � 0.402, P � 0.046), and IFITM1 (r2 � 0.401, P � 0.046).

To investigate the hypothesis that exogenous IFN-� drives
supraphysiologic expression of restriction factors, we compared
CD4� T cell anti-HIV-1 restriction factor expression in our SHCS
interferon-treated population to CD4� T cell restriction factor
expression in a separate population of 12 HIV-1-infected (ART-
naïve) viremic individuals and 12 HIV-1-uninfected individuals
enrolled in the UCSF SCOPE cohort. There were no significant
differences between SHCS subjects pre-IFN-�/riba treatment and
SCOPE viremic subjects in terms of CuRe score (P � 0.464) or
ISG15 expression (P � 0.203). However, there was a significant
elevation in the CuRe score in SHCS subjects during IFN-�/riba
treatment with respect to SCOPE viremic (P � 0.002) and unin-
fected (P � 0.0003) subjects, respectively (Fig. 2C). Similarly,
ISG15 expression was significantly higher in SHCS subjects during
IFN-�/riba treatment than in SCOPE viremic (P � 0.0002) and
uninfected (P � 0.0002) subjects (Fig. 2D), supporting the hy-
pothesis that exogenous IFN-� drives antiviral gene expression to
supraphysiologic levels. Gene-by-gene analyses for each of the
nine genes associated with IFN-�/riba-mediated suppression of
HIV-1 viremia in our study are presented in Fig. S4 in the supple-
mental material.

Several recent reports have rejuvenated interest in deciphering
the molecular pathways associated with the antiviral effects of
IFN-� (6, 7, 9, 14–16). In particular, two recent reports on LCMV
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infection suggest that IFN-� is associated with both beneficial and
detrimental disease outcomes and that the overall balance be-
tween the various, diverse effects of type I interferon ultimately
determines the course of disease (14, 15). This is mirrored in stud-
ies of interferon within the context of HIV-1 infection, whereby
IFN-� is known to induce several antiretroviral mechanisms that
suppress viral replication but that may result in poor disease out-
comes due to association with T cell activation and inflammation
(17–19). Taken together, these observations suggest that addi-
tional work needs to be performed to dissect interferon-associated
molecular pathways to identify critical antiretroviral mechanisms
and to avoid possible proinflammatory consequences.

Endogenous IFN-� is often associated with rapid HIV-1 dis-
ease progression and high viral load (17, 18). We hypothesized
that the inverse relationship between IFN-� and viral load ob-
served within the context of exogenous IFN-� administration
may result from the induction of antiviral genes to supraphysi-
ologic levels not typically encountered in the absence of pharma-

cological manipulation. Our data strongly support this hypothesis
and suggest that the induction of several restriction factors con-
tributes to IFN-� suppression of HIV-1 in vivo. It is provocative
that individual N in our study exhibited the greatest IFN-�/riba
induction of the CuRe score and was the only individual to sup-
press viral load to undetectable levels for the entire duration of our
study (see Fig. S2 in the supplemental material). Moreover, exog-
enous IFN-� induces these antiviral mechanisms without appre-
ciably increasing CD4� T cell activation, which promotes viral
transactivation and replication (20). The lack of a relationship
between restriction factor induction in PBMCs and viral load re-
duction suggests that specific consideration of HIV-1 target cells
may be important when evaluating cell-intrinsic immune effects.
In addition, a number of innate and adaptive immune mecha-
nisms are likely triggered by IFN-� which may influence disease
outcomes as well. The contribution of non-cell-intrinsic mecha-
nisms to IFN-� anti-HIV-1 effects should be explored in greater
detail.

FIG 1 IFN-�/riba induction of anti-HIV-1 restriction factors. (A) Fold induction in unfractionated PBMCs. (B) Fold induction in negatively selected CD4� T
cells. Values corresponding to fold induction during IFN-�/riba (green bars) and post-IFN-�/riba (red bars) treatment were normalized to the pretreatment
expression level, as indicated by the dashed line. The mean and standard error are represented in each bar. Asterisks indicate statistically significant differences
between the expression levels determined during and pretherapy based on a paired Wilcoxon test (* � P � 0.05; ** � P � 0.01).
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These data support the concept that the induction of particular
intrinsic immune mechanisms may constitute a promising anti-
retroviral strategy, complementing our previous in vitro work (21)
and our translational studies of restriction mechanisms in HLA-
B*57-positive individuals (22) and HIV-1 elite controllers (11).
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