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Highly pathogenic avian influenza H5N1 virus clades 2.3.4, 2.3.2, and 7 are the dominant cocirculating H5N1 viruses in poultry
in China. However, humans appear to be clinically susceptible mostly to the 2.3.4 virus clade. Here, we demonstrated that A549
cells and human macrophages infected with clade 2.3.4 viruses produced significantly more viruses than those infected with the
other two clades. Likewise, clade 2.3.4-infected macrophages caused the most severe cellular damage and strongest proinflamma-
tory response.

Highly pathogenic avian influenza (HPAI) H5N1 viruses have
continued to evolve and diversify since their occurrence in

China and other countries. Based on the hemagglutinin (HA)
gene of the H5N1 viruses, 10 distinct phylogenetic clades (clades 0
to 9) have been identified (1, 2). HPAI H5N1 viruses have infected
over 633 humans, and 377 of these cases were fatal according to
the World Health Organization (3). These human H5N1 cases
remains relatively uncommon, and only certain clades of H5N1
viruses are linked to human infections (4). In China, since 2005,
epidemiological studies have confirmed that there are three dom-
inant clades (2.3.2, 2.3.4, and 7) of H5N1 viruses cocirculating in
poultry (5, 6). In principle, these three virus clades could be ex-
pected to confer similar rates of infection of humans. However,
83% (35/42) of confirmed human cases of H5N1 virus infection in
China since 2005 were caused by clade 2.3.4 viruses (communica-
tions from Chinese Center for Disease Control and Prevention).
At present, it is not known why humans appear to be most sus-
ceptible to the virus clade 2.3.4 and not to clade 2.3.2 or 7. To
ascertain the human cytopathogenicity of clade 2.3.4, 2.3.2, and 7
HPAI H5N1 viruses, we compared their abilities to attach to hu-
man respiratory epithelial cells, replicate in human airway cells
and macrophages, and induce host proinflammatory response in
macrophages.

Three representative bird strains of H5N1 viruses of each clade,
2.3.4, 2.3.2, and 7, as well as a human strain of the 2.3.4 clade,
A/Anhui/1/2005, were used in the comparative studies (Table 1).
All the characterized avian H5N1 strains were isolated from ap-
parently healthy birds in live poultry markets (5, 7, 8); the human
H5N1 strain was isolated from a pregnant woman (9). Virus
stocks were prepared in Madin-Darby canine kidney (MDCK)
cells, and virus infectivity was based on 50% tissue culture infec-
tion dose (TCID50) assays on MDCK cells as previously described
(8). The intravenous pathogenicity indexes of the 10 viruses (Ta-
ble 1) were considerably greater than 1.2, indicating that they are
highly pathogenic avian influenza viruses. All experiments with
H5N1 influenza viruses were performed in a biosecurity level 3
containment approved by the Biosafety Management Committee
of the State Key Laboratory of Pathogens and Bio-security.

Tropism of avian influenza virus for the human upper respira-
tory tract is regarded as an important determinant of avian-to-

human transmission (10, 11). To investigate the tissue tropism of
clade 2.3.4, 2.3.2, and 7 H5N1 viruses, we examined their binding
patterns to human upper and lower respiratory tissue sections as
previously described (12). Briefly, paraffin-embedded sections of
human trachea and lung tissues, deparaffinized in xylene and re-
hydrated through an alcohol gradient, were incubated with virus
suspensions (64 HA units in phosphate-buffered saline [PBS]),
followed by incubation with a nucleoprotein (NP) antibody to
detect attached viruses. As shown in Fig. 1, the pandemic H1N1/
2009 virus, as a control, bound extensively to ciliated epithelial
cells in the trachea and, to a lesser degree, alveolar lining. All three
clades of H5N1 viruses attached extensively to alveolar cells, but
there was little binding to the tracheal tract. Tissue sections pre-
treated with Arthrobacter ureafaciens sialidase abolished virus
binding, indicating the function of sialic acid receptors in virus
attachment. Thus, all three clades of H5N1 viruses appeared to
possess similarly low binding affinity for the human upper respi-
ratory epithelium but higher binding ability to the alveolar lining.
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TABLE 1 H5N1 avian influenza viruses used in this study

Virus strain Abbreviation Virus clade IVPIa

A/Anhui/1/2005 AH05 2.3.4 3.0
A/tree sparrow/Jiangsu/1/2008 JS08 2.3.4 3.0
A/chicken/Jilin/Q023/2009 JL09 2.3.4 2.92
A/duck/Liaoning/Q1/2009 LN09 2.3.4 3.0
A/chicken/Huabei/0513/2007 HB07 2.3.2 2.85
A/chicken/Tianjin/QA22/2009 TJ09 2.3.2 2.88
A/chicken/Guangdong/QR11/2009 GD09 2.3.2 2.90
A/chicken/Sheny/0606/2008 SY08 7 2.80
A/chicken/Shanxi/QX2/2009 SX09 7 2.85
A/chicken/Ningxia/QH14/2009 NX09 7 2.90
a IVPI, intravenous pathogenicity index.
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Type II alveolar epithelial cells and macrophages are major cell
targets of H5N1 virus in infected human patients (13, 14). To
ascertain viable virus production of each virus clade, human A549
cells, a cell line widely used as an in vitro model for type II pulmo-

nary epithelial cells (15), were infected with H5N1 viruses at a
multiplicity of infection (MOI) of 0.001 and virus titers were an-
alyzed over 72 h of infection. As evident in Fig. 2A, cells infected
with viruses of clade 2.3.4 produced more infectious virus than did
those infected with viruses of clade 2.3.2 or clade 7 from 12 h
postinfection (hpi), reaching high titers at approximately 106.2

TCID50/ml at 72 h of infection. In contrast, clade 2.3.2 and clade 7
viruses showed peak titers at 104.5 and 103.5 TCID50/ml, respec-
tively. To show that the differences in virus titers were not from
differences in the early stage of infection, we determined viral
protein expression levels by Western blotting with the cells in-
fected by three clades of viruses at an MOI of 2 at 6 hpi. As shown
in Fig. 2B, there were no differences in the expression levels of NP
protein among the three virus clades. These results indicated that
clade 2.3.4 viruses possessed the highest replication rate in human
A549 epithelial cells.

Macrophages in the lung play an important role in innate and
adaptive immune responses to viruses and other intracellular patho-
gens (16, 17). Due to the difficulty in sourcing human alveolar mac-
rophages, human monocyte-derived macrophages (MDMs) were
used in the study of macrophage response to influenza virus infection

FIG 1 Binding of influenza viruses to human respiratory tissue sections. Hu-
man tracheal and alveolar tissue sections were incubated with clade 2.3.4 vi-
ruses (AH05, JS08, JL09, and LN09), clade 2.3.2 viruses (HB07, TJ09, and
GD09), clade 7 viruses (SY08, SX09, and NX09), pandemic H1N1 (CA04)
influenza virus, or negative control. Influenza virus nucleoprotein was subse-
quently localized by fluorescein isothiocyanate-labeled goat anti-mouse IgG.

FIG 2 Viral growth properties in A549 cells. (A) Viable virus output from
A549 cells infected with clade 2.3.4 (AH05, JS08, JL09, and LN09), clade 2.3.2
(HB07, TJ09, and GD09), and clade 7 (SY08, SX09, and NX09) viruses at an
MOI of 0.001. At 12, 24, 48, and 72 h postinfection, virus titers in the super-
natants were determined by TCID50 assays on MDCK cells. The values are
expressed as means � standard deviations (n � 3). **, P � 0.01 between clade
2.3.4 virus-infected cells and clade 2.3.2 virus-infected cells. The dashed line
represents the detection limit of the TCID50 assay. (B) A549 cells were infected
with clade 2.3.4 (AH05, JS08, JL09, and LN09), clade 2.3.2 (HB07, TJ09, and
GD09), and clade 7 (SY08, SX09, and NX09) viruses at an MOI of 2. At 6 h of
infection, the viral NP expression levels were determined by Western blotting.
�-Actin was used as a loading control.

FIG 3 Immunofluorescence staining of macrophages (A) and MDCK cells (B)
at 6 and 24 h postinfection with JS08 (clade 2.3.4), AH05 (clade 2.3.4), HB07
(clade 2.3.2), or SY08 (clade 7). Influenza virus nucleoprotein was detected
with a fluorescein isothiocyanate-conjugated mouse antibody (left column at
each time point). Nuclei were detected with 4=,6-diamidino-2-phenylindole
(right column).
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(18–20). We prepared human MDMs from healthy donors as previ-
ously described (19). To determine the infection ability of clade 2.3.4,
2.3.2, and 7 HPAI H5N1 virus in macrophages, we infected macro-
phages with the representative virus strains at an MOI of 0.1 and
examined the percentage of infected cells by the detection of viral NP
using immunofluorescence at 6 or 24 hpi. As shown in Fig. 3A, the
number of JS08 or AH05 (clade 2.3.4)-infected cells (�95%) was
significantly higher (P � 0.05) than that of cells infected with HB07
(clade 2.3.2) (63% � 6%) or SY08 (clade 7) (25% � 3%) at 6 hpi. By
24 h of infection, similar proportions (�95%) of macrophages were
infected by JS08, AH05 (clade 2.3.4), and HB07 (clade 2.3.2), which in
turn were significantly higher (P � 0.05) than SY08 (clade 7) (47% �
8%) virus-infected cells. Similar results were obtained with two addi-
tional virus strains of each clade (data not shown). To ensure that the
H5N1 viruses at the calculated titers were infected at comparable
doses, we also infected MDCK cells with the representative virus
strains at an MOI of 0.1 and examined the percentage of infected cells
by the detection of viral NP using immunofluorescence. As shown in
Fig. 3B, MDCK cells were equally susceptible to infections by viruses
from the three clades, with over 95% of cells expressing virus protein

FIG 4 Viable virus output from macrophages infected with clade 2.3.4 (AH05,
JS08, JL09, and LN09), clade 2.3.2 (HB07, TJ09, and GD09), or clade 7 (SY08,
SX09, and NX09) virus at an MOI of 0.001. At 6, 12, 24, 36, 48, and 60 h
postinfection, virus titers in the supernatants were determined by TCID50

assays on MDCK cells. The values are expressed as means � standard devia-
tions (SD) (n � 3). *, P � 0.05, and **, P � 0.01, between clade 2.3.4-virus
infected cells and clade 7 virus-infected cells. The dashed line represents the
detection limit of the TCID50 assay.

FIG 5 Morphological changes of human macrophages caused by three clades of H5N1 viruses. (A) Phase-contrast microscopy of macrophages infected with JS08
(clade 2.3.4), HB07 (clade 2.3.2), SY08 (clade 7), or mock control at an MOI of 0.1 for 12, 24, 36, and 48 h. (B) Scanning electron micrograph of human
macrophages infected with JS08 (clade 2.3.4), HB07 (clade 2.3.2), SY08 (clade 7), or mock control at an MOI of 0.1 for 24 h.
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at 6 or 24 hpi. The results indicated that clade 2.3.4 viruses prolifer-
ated better in macrophages than did the other two virus clades.

Culture supernatants of macrophages infected at an MOI of
0.001 with the three clades of viruses were titrated by TCID50

assays on MDCK cells. As shown in Fig. 4, there was no significant
difference in virus titers between the clade 2.3.4 and 2.3.2 viruses
at each time point. However, from 12 h of infection onward, clade
2.3.4 and 2.3.2 viruses produced more viable progeny viruses (P �
0.05) than did clade 7 viruses. At their peak, the mean outputs
of clade 2.3.4 and 2.3.2 viruses were 59 times and 41 times
higher than that of clade 7 viruses, respectively. Thus, although
all of the three virus clades were able to replicate in macro-
phages, virus replication rates varied considerably between in-
dividual viruses.

Morphological changes of macrophages infected at an MOI of
0.1 with the three clade viruses were examined (Fig. 5A). Clade
2.3.4 viruses produced the most severe cytopathic effects, exhibit-
ing extensive damage and detachment of cells as early as 12 hpi,
followed by clade 2.3.2 viruses and clade 7 viruses, which caused
the least severe cellular disruption even at 48 hpi. We further ex-
amined the surface morphology of macrophages infected with the
three clades of viruses at an MOI of 0.1 at 24 hpi by scanning
electron microscopy. Clade 2.3.4 virus-infected macrophages
showed severe morphological damage and extensive cellular dis-
integration, in sharp contrast to mock-infected cells. Clade 2.3.2
virus-infected cells displayed less-severe damage and the presence
of numerous fine pseudopodia extending from each cell body.

Clade 7 virus-infected macrophages were least morphologically
affected, and there were no obvious changes observed compared
with uninfected controls (Fig. 5B). These results demonstrated
that clade 2.3.4 viruses were able to cause the most severe cyto-
pathic damage in human macrophages.

Since macrophages are a major source of cytokine and chemo-
kine production during infection, we analyzed the expression of
interleukin-1� (IL-1�), IL-6, IL-8, tumor necrosis factor alpha
(TNF-�), gamma interferon (IFN-�), and monocyte chemotactic
protein 1 (MCP-1) in the culture supernatants of macrophages
infected with the three clades of viruses at an MOI of 0.1 for 12 h
(Fig. 6). Clade 2.3.4 viruses induced the highest expression of IL-
1�, IL-6, IL-8, TNF-�, IFN-�, and MCP-1 compared with the
other two virus clades (P � 0.01). Interestingly, clade 7 viruses
appeared to have little effect on the induction of cytokine or
chemokine production in infected macrophages. These findings
indicated that clade 2.3.4 was the most potent of the three clades to
induce the production of cytokines and chemokines in human
macrophages.

In summary, we found no apparent difference in binding af-
finity for the human respiratory tract among the three virus clades.
However, clade 2.3.4 viruses were clearly the most prolific of the
three clades in the de novo production of infectious virus from
alveolar epithelial cells and macrophages. Furthermore, clade
2.3.4 viruses induced the earliest and most severe cytopathic dam-
age and the strongest proinflammatory response in human mac-
rophages. These findings were consistent with the clinical severity

FIG 6 Cytokine and chemokine production in human macrophages infected with the three H5N1 virus clades. At 12 h of infection at an MOI of 0.1, the
supernatants of the infected cells were collected and the proteins of 6 cytokines (IL-1�, IL-6, IL-8, TNF-�, IFN-�, and MCP-1) were determined by cytometric
bead array assays. The values are expressed as means � standard deviations (n � 3). **, P � 0.01 between clade 2.3.4 virus-infected cells and clade 2.3.2
virus-infected cells.
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and frequency of human cases of H5N1 virus infection caused by
clade 2.3.4 virus in China.
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