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The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the
crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small,
a-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length
and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P

in the virus life cycle.

ipah virus is a newly emergent, bat-borne paramyxovirus

found in Southeast Asia that causes encephalitis in humans
with 40 to 90% lethality (1, 2). There are no vaccines or antiviral
therapeutics approved for human use (3). Nipah virus has a sin-
gle-stranded, negative-sense RNA genome that is encapsidated by
the nucleoprotein (N) (1) and transcribed and replicated by the
polymerase protein (L) (4). The phosphoprotein (P) plays an es-
sential role as a polymerase cofactor, enhancing polymerase pro-
cessivity and allowing the encapsidation of the newly synthesized
viral genomes and antigenomes (4). In these roles, P serves as a
tether between the polymerase and its template and also serves as
a chaperone for nascent, RNA-free N, termed N°, preventing it
from nonspecifically binding host RNA (5). P has an additional
role in immunosuppression: blocking interferon signaling by
binding host STAT-1 (6, 7).

The N-terminal domain (NTD; residues 1 to 469) of Nipah
virus P is intrinsically disordered and contains the binding site for
N° (residues 1 to 50) (5, 8-10). The C-terminal region of P con-
tains a well-ordered P multimerization domain (PMD; residues
470 to 578), a flexible linker, and the X domain (XD; residues 660
to 709), which mediates binding to the nucleocapsid (5, 8-10).
Multimerization of the P protein is critical for genome replication
(11, 12). Crystal structures of the multimerization domains of P
from the paramyxoviruses Sendai virus, measles virus, and
mumps virus have been determined (13-15). All three structures
are composed of long, tetrameric coiled coils. Notably, the mumps
virus structure is antiparallel (14) while the Sendai virus and mea-
sles virus structures are parallel (13, 15). There is minimal se-
quence identity in this domain among these paramyxoviruses (5
to 26%) (16, 17), and no high-resolution structure has yet been
described for this key domain of Nipah virus. Blocquel et al. have
recently proposed that this domain of Nipah virus forms a trim-
eric coiled coil, in contrast to the tetrameric coiled coils of the
other paramyxoviruses (18). Their findings are based on biophys-
ical data, including analytical ultracentrifugation, chemical cross-
linking, and small-angle X-ray scattering (SAXS) (18).

In order to provide a high-resolution experimental structure,
the multimerization domain of Nipah virus P (residues 470 to
578) was cloned into pET46 and expressed in Escherichia coli with
an N-terminal 6 X His tag followed by a tobacco etch virus (TEV)
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protease cleavage site. The protein was purified via nickel affinity,
ion-exchange (MonoQ), and size exclusion chromatography cou-
pled to multiangle light scattering/refractive index (SEC/MALS).
The protein elutes from SEC/MALS with an apparent molecular
mass of 52.5 kDa, suggesting that it is a tetramer in solution (57.2
kDa is expected for a tetramer, and 42.9 kDa is expected for a
trimer). After TEV removal of the 6XHis tag, the protein was
crystallized in 0.1 M imidazole (pH 7.0), 25% polyethylene glycol
MME 550 and cryoprotected in mother liquor diluted with 15%
glycerol. Data to 2.2 A were collected at Advanced Light Source
(ALS; Berkeley, CA) beamline 5.0.2 and processed by using
HKL3000 and d*TREK (19, 20). The crystal used for structure
determination belongs to space group P1 (Table 1). Other crys-
tals, which diffracted to somewhat lower resolution, belong to
space groups 1422, P42,2, and C2 (Table 1). All crystal forms
showed strong off-origin peaks in self-Patterson maps with a
distance of 5.15 A from the origin (22, 23). These peaks corre-
spond to the length of one full turn of an a-helix and result
from intrahelical vectors of long helices all oriented in the same
direction (24) and are strongly suggestive of an inherent
coiled-coil structure (25).

The multimerization domains of the Sendai virus (15), measles
virus (13), and mumps virus (14) P proteins failed to generate
successful molecular replacement solutions. This Nipah virus
structure was eventually determined by using the automated pipe-
line AMPLE (26), which performs molecular replacement
searches using ab initio models. Here, AMPLE was used differ-
ently: to cluster and truncate a set of 100 comparative models for
Nipah virus P that were generated by ROSETTA (27), using
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TABLE 1 Data collection and refinement statistics for the multimerization domain of Nipah virus P

Nipah Virus P Tetramer Structure

Value(s) for space group:

Parameter P1 1422 P42,2¢ c
Beamline ALS 5.0.2 ALS 5.0.2 ALS 5.0.3 ALS 5.0.2
Wavelength (&) 1.0000 1.0000 0.976548 1.0000

Cell dimensions

a, b, c(A) 48.06, 76.88, 80.75 44.67, 44.67, 275.23 96.09, 96.09, 127.96 142.89, 55.64, 77.84
o, B,y (°) 100.56, 100.85, 107.78 90, 90, 90 90, 90, 90 90, 116.09, 90
Resolution range” (A) 46.37-2.20 (2.28-2.20) 40.16-2.20 (2.28-2.20) 33.97-2.50 (2.59-2.50) 39.71-2.65 (2.74-2.65)
Completeness* (%) 97.7 (97.2) 99.8 (100.0) 99.9 (99.2) 99.3 (99.4)
Rmcrgca (%) 6.3 (29.8) 6.0 (44.1) 9.9 (70.4) 10.4 (56.8)
I/ol? 9.3 (3.0) 14.5 (3.6) 9.4 (2.2) 5.2 (1.5)
No. of reflections
Total® 195,915 101,741 308,837 57,710
Unique” 51,813 7,660 21,369 16,320
Refinement”
R0 (%) 18.7
R (%) 23.8
Mean B value of:
Protein (A?) 40.1
Water (A2) 52.1
All atoms (A?) 41.8
Ramachandran plot
Most favored region (%) 100.0
Additional favored region (%) 0.0
Bond RMSD#$
Lengths (&) 0.003
Angles (°) 0.635

@ Values in parentheses are for the highest-resolution shell.

b A structure was refined only for the highest-resolution crystals, belonging to space group P1.

Ruork = (St [Fopsl = K [Feare D/ Zhia [Fos|)-

@ Riyee is the same as R, with 5% of reflections chosen at random and omitted from refinement.

¢ The 6 XHis tag was not cleaved from this protein.
/This protein contained a point mutation, $472D, and the 6 X His tag was not removed.
£ RMSD, root mean square deviation.

mumps virus P as a template (PDB, 4EIJ; 26% identical in se-
quence to Nipah virus) (16, 17). AMPLE then used Molrep (28) to
determine the correct positioning for one of these ensemble
search models. In the successful case, the search model consisted
of an ensemble of 30 structures, each a helical fragment (18 resi-
dues). This is the first successful deployment of AMPLE with com-
parative models deriving from a distantly homologous template.

The solution was refined with Refmac (29) and used as the starting
point for a nearly complete Cax trace of the target structure using
SHELXE (30). The model was brought closer to completion through
the use of multiple rounds of ARP/WARP (31) and Buccaneer (32) to
build side chains and missing residues. Refinement was carried out in
Phenix (33), followed by manual building in Coot (34).

The asymmetric unit contains eight monomers, which have
assembled into two tetrameric coiled coils. Residues 476 to 576 are
visible in electron density maps for most monomers. The Nipah
virus coiled coil is a few residues longer than those of the other
paramyxoviruses (68 versus 56 to 64 residues) (35, 36). Analysis of
potential quaternary structures with PISA suggests that these two te-
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tramers are energetically stable, with 15,000 to 20,000 A% of buried
surface area and dissociation energies of 140 to 200 kcal/mol (37).
The two tetramers interact at the base, burying 1,600 A* in a crystal
contact assembled octamer, but neither PISA nor visual inspection
can identify any trimeric interaction in this crystal structure. On the
basis of these findings and SEC/MALS, we posit that the Nipah virus
multimerization domain forms a tetramer in solution.

The crystal structure reveals that the Nipah virus coiled coil is
parallel, like that of Sendai virus and measles virus (Fig. 1A),
thereby maintaining the N-terminal N° binding domain and the
C-terminal nucleocapsid binding domains on opposite ends of the
oligomeric P protein. The crystal structure of Nipah virus P also
reveals that each monomer has a two-helix N-terminal cap at-
tached at the outer top of each helix in the coiled coil. This cap
structure is clearly visible in the recently reported SAXS structure
(18), and it is likely that this crystal structure would fit nicely into
their calculated envelope. In Sendai virus P, the cap structure is
formed by three helices instead of two (15). The measles and
mumps virus P proteins lack cap structures (13, 14).
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FIG 1 (A) Cartoon representations of the multimerization domain of Nipah virus P, with the dimensions, N and C termini, and residues involved in kinking
indicated. (B) Cartoon representations of the multimerization domains of P from three other paramyxoviruses, Sendai virus, measles virus, and mumps virus,
drawn on the same scale as Nipah virus P. Termini and residues involved in kinking of the central helices are indicated. (C) Cartoon representations of the
multimerization domains of P from two rhabdoviruses, vesicular stomatitis virus and rabies virus. Both domains are dimers in solution and crystallized as dimers,
but vesicular stomatitis virus has been shown to form a tetramer in the context of the RNA replication machinery (48, 49).

The Nipah virus tetramer is stabilized primarily by hydropho-
bic interactions typical of coiled coils (isoleucines, leucines, and
valines) (38). At the N-terminal end, however, a pocket contain-
ing eight water molecules is formed by residue Gly 519, which is
flanked by Ser 515 and Asn 522. These are the only water mole-
cules found inside the channel. The measles virus and mumps
virus tetramers are similarly hydrophobic, with only a few
charged/polar residues and water molecules in their channels. In
contrast, the interhelical channel in Sendai virus P is lined with
many aromatic and polar residues and is filled with 23 water mol-
ecules and one calcium ion (15, 35). The multiple water molecules
throughout the Sendai virus channel are accommodated by a
larger superhelical radius (up to 9 A wide versus 7.3 to 7.5 A for the
other viruses) and a lower superhelical frequency (twist of —1.7°/
residue versus —2.8 to —3.3%residue for the other viruses) (35).
Hence, although Nipah virus and Sendai virus are the only two to
have an N-terminal cap, they are assembled internally via different
interactions and have different superhelical parameters. The
Nipah virus structure is more typical of coiled coils, while the
Sendai virus assembly is an outlier (35).

An additional difference between the Nipah virus and Sendai
virus coiled coils is that the Nipah virus coiled coil contains Pro
544 in the middle of its long a-helix, which induces a kink (Fig.
1A). This kink is more reminiscent of the Leu 342-kinked measles
virus and Gly 246-kinked mumps virus structures, but only in
Nipah virus does this kink cause a coil frameshift, breaking from
ideal Crick parameters for coiled coils (35).
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It is interesting that mumps virus P gave a successful molecular
replacement solution for Nipah virus P, as mumps virus P is
uniquely antiparallel, while Nipah virus P, measles virus P, and
Sendai virus P are all parallel (14) (Fig. 1A and B). The mumps-
based model likely worked because its central kink and superheli-
cal frequency (how twisted the oligomer is) are closer to Nipah
virus than the other structures. Further, the search model did not
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FIG 2 Thermal denaturation curve of the Nipah virus P multimerization
domain collected by DSC. Normalized molar heat capacity (Cp) is plotted over
arange of 25 to 130°C. The peak at 60.10°C is sharp and likely corresponds to
the dissociation of the tetramer. The following two peaks at 86.11 and 98.6°C
are broad and likely result from a two-state unfolding event, perhaps unfolding
of the two helix cap, followed by the long helix.
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FIG 3 (A) Electrostatic surface potential representations, generated in APBS
(42), of the four paramyxovirus P multimerization domain structures. The
residues in a basic patch of Sendai virus P implicated in L binding are indicated
(39), as are the residues in a corresponding basic patch of Nipah virus P. It is
unknown if L binds this site or a different site in P, as noted for the rhabdovirus
vesicular stomatitis virus (43) (B) Model of the organization of the Nipah virus
replication machinery, roughly to scale, based on dimensions visualized by
electron microscopy (Nipah virus nucleocapsid [44] and vesicular stomatitis
virus L [44, 45]) and X-ray crystallography (this structure and the X domain of
measles virus P [46]). For clarity, Nipah virus P is illustrated in either its
polymerase cofactor function, in which it is bound to L and the nucleocapsid
(left), or in its role as a chaperone for nascent N (right). The three main
domains of P (NTD, PMD, and XD) are indicated. Note that the nucleocapsid
is shown in only one conformation (47) and that only about one-third of the
actual width of the nucleocapsid is shown. It should also be noted that the
Nipah virus L binding site has not been confirmed.

contain a cap structure (mumps virus lacks a cap, and Nipah virus
and Sendai virus have differently structured caps), and the search
model was a monomer, which could be placed equally well in a
parallel or antiparallel fashion in molecular replacement.
Differential scanning calorimetry (DSC) suggests that the
tightly coiled, hydrophobically assembled Nipah virus P multim-
erization domain is highly stable, undergoing transitions only at
60.1, 86.1, and 98.6°C (Fig. 2). These are likely to be the tempera-
tures required for dissociation of the tetramer, unraveling of the
helices, and unraveling of the cap structure. These data agree with
the findings of Blocquel et al., who reported finding transitions at
52 and 85°C by using circular dichroism (CD) (18). The third
transition point (~99°C) may not have been observed because the
CD study was performed over a range of 20 to 100°C, while the
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DSC experiment was performed from 20 to 130°C. The central
value (85°C by CD, 86°C by DSC) is comparable to the 85°C pre-
viously measured by CD for unraveling of helical secondary struc-
ture in measles virus P (13). Our DSC and SEC/MALS findings
and the additional observation that the purified protein remains
stably tetrameric for a year at 4°C suggest that Nipah virus P, and
likely other paramyxovirus P proteins, does not easily change its
oligomeric state.

In Sendai virus P, the binding site for L was found to be within
the multimerization domain and several charged residues were
implicated in binding (Fig. 3) (39). The corresponding residues in
Nipah virus P are Asp 554, Arg 555, and Lys 559. In the Nipah
virus P structure, these residues form a basic patch flanked by
acidic residues. Indeed, a similar central basic patch is observed in
all four paramyxovirus P structures (Fig. 3) and may function as
the L binding site in each of them (39).

In conclusion, the Nipah virus P multimerization domain is a
long, parallel, tetrameric, coiled coil organized with an N-terminal
cap and a hydrophobic core. Although the multimerization domains
of the different paramyxoviruses have low sequence identity and dif-
fer in the presence or absence of a cap and in the composition of their
internal cores, all four crystal structures illustrate tetrameric coiled
coils of similar lengths. The conservation and stability of this struc-
tural feature suggest that oligomerization of this type serves an essen-
tial scaffolding or organization function in the paramyxovirus life
cycle. Interestingly, the multimerization domain of the P proteins of
rhabdoviruses show little structural similarity to those of paramyxo-
viruses or to each other (Fig. 1C) (40, 41).

Protein structure accession number. The coordinates and
structural factors of the Nipah virus P multimerization domain
have been deposited in the Protein Data Bank under accession
number 4N5B.
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