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Abstract

Prediction and classification techniques have been well studied by machine learning researchers and developed for several
real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to
some difficulties such as the low performance of prediction models when they are applied in different environments. Such a
problem has been addressed by many researchers, mainly from the machine learning community. A second problem,
principally raised by model users in different communities, such as managers, economists, engineers, biologists, and
medical practitioners, etc., is the prediction models’ interpretability. The latter is the ability of a model to explain its
predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a
successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate
collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble
classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the
original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers
combination approach that does not only promote the overall performance but also preserves the interpretability of the
resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers.
We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based
predictions, problems where interpretability is critical to make appropriate clinical decisions.
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Introduction

Classification is a pattern recognition task that has applications

in a broad range of fields. It requires the construction of a model

that approximates the relationship between input features and

output categories. The inputs describe several attributes of an

entity that can be an object, a process or an event, and the outputs

represent a set of classes to which the entity can belong. Typically,

classification models are used to predict the class of new input data

describing a previously-unseen entity. Although they are useful

tools to support the decision-making process in their application

fields, they still suffer from several limitations. One of the major

problems is the low performance of a classifier when applied in

new circumstances. The accuracy of a classifier could vary

enormously from one dataset to another since a classifier that

has produced good predictions for some datasets is not guaranteed

to keep the same performance for other datasets [1]. This is due to

the variation of data which typically follows the variation of the

environment. This problem is worsened by the lack of represen-

tative data on the one hand and by the drawbacks inherited from

the used modeling techniques on the other hand. Many methods

have been dedicated to improve the performance of prediction

classifiers when applied to new unseen data. Among these methods

are the classifier ensembles by which a set of classifiers is combined

to derive a final decision. Those methods are able to achieve a

higher variance and a lower bias of the classification function

realized by the collaboration of a set of involved classifiers [2].

Besides the performance problem, the utilization of classifiers in

many fields suffers from the difficulty of interpreting the produced

decisions. By interpretation, we mean the ability of a classifier (i.e.,

prediction model) to explain its predictions and exhibit the

causality relationships between the input features and the output

categories. This quality of classifiers is of a critical importance,

especially when the user needs to focus his/her effort on improving

some input features to prevent undesirable outputs. Therefore,

with establishing a clear and explicit link between the predictor

input features and the output decisions, the user can easily

understand the effect of predictors variations and subsequently

take the right actions on the input features. This understanding is
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important because it gives an insight into the work process in many

domains. For example, in software engineering, the transparency

of learned knowledge allows software engineer to know how faults

originate during the development process and assists in taking the

remedial actions [3]. In the context of software quality prediction,

Andrew et al. [4] emphasize the fact that without clear semantics

attached to a prediction model, the latter can not reach a

satisfactory level of validity. With similar motivation, Fenton [1,5]

has qualified the models without easy interpretation as naı̈ve and

has proposed the use of Bayesian Networks (BN) as they are easily

interpretable models.

In medical domain, the application areas of prediction models

include diagnosing tumor malignancy, estimating the risk of

cardiovascular disease, diabetes, pregnancy failure, tumor recur-

rence, estimating the therapeutic effect of different therapies, and

detecting predictive factors for various conditions. All these

applications are used in daily clinical practice to solve a broad

range of clinical questions to guide clinicians when deciding upon

the appropriate treatment and estimating patient-specific risks.

Such clinical questions can not be answered without having a

meaningful insight into the associations between explanatory

variables and the dependent variables. Besides, with understand-

able models the resulting transparent diagnosis and risk estimate

can be presented to the patient in a more comprehensible way

than any advanced (i.e., complex) mathematical diagnostic models

[6]. Moreover, in the modern schools of medicine, the compre-

hensibility of model enables a better doctor-patient communica-

tion, which is a very important goal in the age of informed patient

decision making. In the field of drug discovery, not only the

classification of the biological activity of a molecule is targeted but

also the identification of the conformers responsible for the

observed bioactivity for each molecule, is crucial [7]. Likewise, the

ability to interpret prediction models is still one of the primary

objectives in real-world business applications, where those models

serve as tools to uncover relationships and identify the key

variables influencing the classification outcome and the decisions.

In this paper, we propose a new method of classifiers

combination based on Ant Colony optimization (ACO) and

tailored for the case of Bayesian classifiers. The proposed method

promotes performance and preserves the interpretability of the

resulting prediction model. This method is validated with two

different problems from the medical domain, namely, heart

diseases and Cardiotography-based predictions. The main contri-

butions and innovations of this paper are:

N A new implementation of classifiers combination approach

that enhances the prediction performance.

N Customization of an emergent search technique, namely Ant

Colony Optimization (ACO), on the problem of classifiers

structure combination.

N Construction of composite classifier that preserves the ease of

interpretability of individual Bayesian classifiers.

N Successful application of the interpretable classifiers combina-

tion on two different prediction problems from the medical

domain.

Related Work
In this section, we present the main ideas proposed in the

literature to circumvent the problems of prediction models (e.g.

classifiers), namely the low performance and the lack of

interpretability issues. The efforts devoted to solve these problems

fall under one of the following strategies. The first one aims at

improving the predictive accuracy by reusing a set of single

classifiers in order to derive a final decision from many individual

predictions. This strategy is dominated by the methods known as

Classifiers Ensembles. The second strategy aims at preserving an

easy interpretation of the classifier decisions. This is achieved by

choosing appropriate modeling techniques that derive ‘‘ white

box’’ classifiers having the capacity to explain the causal

relationship between inputs and outputs. As part of the first

strategy, the Ensemble Classifiers Methods (ECM) have been

widely applied to various real-word problems. They demonstrated

that the combination of classifiers often outperforms the individual

ones when it is applied on new data (e.g., [8–11]). In general with

ECM, the individual classifiers are combined in different ways to

derive a final output. These ways commonly include averaging,

boosting, bagging and voting. Averaging consists in constructing a

normalized weighted sum of N individual classifiers outputs (fj ).

fAver~
XN

j~1

wjfj

where wj§0,j~1, . . . ,N is the weight of fj . The weight wj of an

individual classifier can be interpreted as our confidence in the jth

classifier. The simplest version of averaging is when the weighting

is uniform (i.e., wj~1=N ), known as simple averaging [12]. The

major intuitive benefit of averaging is achieved by reducing the

estimate variance of the output error. Because of their simplicity,

many improved versions of averaging have been proposed and

used in different disciplines to provide a better prediction accuracy

[11,13–15]. Stacking mainly consists in combining multiple

classifiers in two phases. In the first phase, N classifiers f1,:::,fN

are built by using different learning algorithms L1,:::,LN on a

single dataset Dn. The training process of each individual classifier

fj involves using a leave-one-out cross validation in which one data

point xi : (xi,yi) from Dn is left for testing. Leave-one-out cross

validation method is deemed the most rigorous among others and

hence it has been widely adopted by researchers [16]. In the

second phase, the individual classifiers are applied on the set of left

data points xi : (xi,yi) and a new dataset NewDn is built-up from n
data points (f1(xi),:::,fN (xi),yi). Each data point of NewDn consists

of N predictions of the individual classifiers in addition to the real

class yi of a left data point. A final but important step is to learn a

new classifier from the formed training dataset NewDn. Issues of

choosing the features and the learning algorithms have been

discussed and solutions based on linear regression, multiple linear

regression, decision tree, etc. have been proposed to learn the final

classifier.

Boosting technique [17], iteratively produces a series of

classifiers f1,:::,fN , using a learning algorithm L on a dynamically

weighted dataset Dn. Each new classifier fj is built on a dataset Dj
n,

where its data points are weighted based on the performance of

the precedent classifiers in the series f1,:::,fj{1. Obviously, the

weights of previously misclassified data points are increased and

the weights of correctly classified data points (i.e., by earlier

classifiers) are decreased. Intuitively, the harder a data point is to

learn, the higher is its new weight and vice-versa. In other words,

the previously misclassified data points are given more chances to

be correctly classified in the new classifier. AdaBoost is the most

known algorithm that implements the boosting technique in the

case of binary classification [17].

Another way to pool classifiers is Bagging. It starts by generating

a random number N of subsets from the original training set.

Then it utilizes them to learn individual classifiers f1,:::,fN . The

training subsets, called bootstraps (i.e., sampled by replacement),

are supposed to have enough differences in order to induce
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diversity among the individual classifiers. With Bagging, also called

bootstrapped aggregating, the new data points are assigned the

class that gets the maximum number of votes from the individual

classifiers f1,:::,fN . Voting can itself be considered as the simplest

ECM technique [18], which assigns the class chosen by the

majority of individual classifiers to a given example.

As a part of the second strategy that aims at promoting

prediction interpretability, many researchers have devoted their

works to show how critical it is to explain the prediction outputs.

As mentioned above, this strategy mainly relies on preferring the

utilization of particular modeling techniques such as decision trees,

Bayesian Networks and Bayesian classifiers, rule set systems and

fuzzy rules. Indeed, decision trees have been widely used as the

most popular and interpretable modeling technique in econom-

ical, medical and engineering domains [4,19,20]. With the same

motivation of supporting intuitive interpretation, Bayesian classi-

fiers and Bayesian networks were used in several contexts

including clinical diagnosis [21], text and mail classification [22],

software engineering [23], etc. In particular, Fenton [1,24]

criticized existing techniques of software quality prediction

because of the lack of interpretability. He described them as naive

and proposed Bayesian models as highly interpretable thanks to

the explicit causality links between features. Other modeling

techniques were proposed to promote prediction interpretability in

different domains. For example, in medicine the Interval Coded

Scoring System [25] was used to identify patient-specific risks and

Fuzzy rule-based models were used to diagnose the causes of

coronary artery disease [20]. In the environmental management

domain, rule-based models were created in order to define a better

management of an ecosystem [26]. Adaptive fuzzy modeling was

used in the process control engineering field to decide the level of

molten steel in a strip-casting process [27].

In spite of the great efforts spent in the above strategies, the

target of simultaneously promoting the performance and the

interpretability of model prediction is rarely achieved. When the

model performance is the goal, researchers, mainly from the

machine learning community, tend to use all the possible

mathematical justifications and techniques to increase the model

performance. They take advantage of the diversity, availability and

re-usability of different models to mathematically enrich a

composite prediction. The tools range from simple weighted sum

using constants to complex data-dependent weighted sum, and

from simple learning from a simple dataset to iterative and

incremental learning of models and weights from weighted

datasets. The use of these techniques increases the complexity of

the model and subsequently accentuates the ‘‘black box’’ property

of the prediction process. Such a black box property of the ECM-

based approach makes the interpretability hard and in many cases,

worsens the interpretability of the original classifiers. In the second

strategy, when the goal is to increase the interpretability,

researchers, mainly working on application domains of prediction

models, tend to trade the high performance of the models with a

higher level of their interpretability. They tend to avoid the use of

the ECM-based approaches, simply because the ‘‘white-box’’

property of the original classifiers is reduced in the sense that there

is more than one classifier responsible for each decision.

Our proposal is a halfway technique. It is inspired by ECM but

preserves the interpretability of the original classifiers. In this

paper, we aim at circumventing two problems namely, the low

performance, known in some application domains as generaliza-

tion, and the interpretability preservation, also known as the

‘‘black-box’’ property of the prediction classifiers. This paper

partly extends our previous work presented in [28] by giving more

importance to the interpretability of classifiers. We propose a new

classifiers combination scheme using the ACO algorithm; by

increasing the interpretability of the resulting models; and by

applying the developed approach in areas other than Software

Engineering, namely in medical prediction problems.

Problem Statement
As explained, a classifier relates its inputs representing the

attributes that can be measured a priori and its outputs representing

attributes that cannot be measured a priori but rather need to be

predicted. For example, a prediction classifier for Heart Disease

(HD) is built to predict the presence of HD in a patient by using a

number of measurable symptom attributes such as blood pressure,

chest pain type, etc. In the particular case where the prediction

model is a classifier, the former is generally built/validated

empirically using a data sample Dc~f(x1,y1), . . . ,(xn,yn)g con-

taining n examples or data points, where xi[Rd , is an observation

vector of d measurable attributes and yi[C is a label to be

predicted. The vector xi~(a1, . . . ,ad ) is the result of measuring d

attributes. We let aj to be the generic value assumed by the jth

attribute.

The dataset Dc should be a representative sample of the data

used for prediction. In the problem of HD, for example, the set Dc

represents HD information of a patient population. This data

characterizes a particular context of Heart Disease conditions that

may bury not-yet-discovered HD risk attributes. In other words,

patients from a particular HD context may share the same

lifestyle, and the same nutritive traditions. With this same

perception, if we want to take into account all the patient

populations, we have to consider collecting data from many

countries. For the sake of discussing some prediction solutions, let

D be the hypothetical set of all contexts overall the world.

To build a prediction model/classifier for particular circum-

stances using a context data Dc, three alternatives can be

considered: (1) applying a statistic-based or machine learning

algorithm on Dc, in this alternative only one context is considered

which makes the resulting model unstable because the coverage of

the set D is low; (2) the second alternative consists in selecting the

best available individual model using Dc, in this alternative, two

contexts are used, however the coverage of the set D remains low;

(3) the third alternative consists in reusing and eventually adapting

as many existing models as possible using Dc to guide a search

process to collect the best chunk from each model. We believe that

the third alternative is more valuable. Indeed, an ideal prediction

model is a mixture of two types of knowledge: domain common

knowledge and context specific knowledge. By reusing existing

models, we reuse the common domain knowledge represented by

versatile contexts. Intuitively, when more contexts are covered, the

resulting prediction model is more generalizable. On the other

hand, by guiding the adaptation via the context specific data, we

take into account the specific knowledge represented by Dc.

Subsequently, by adapting and reusing multiple chucks of

expertise, we target the goal of building an expert that outperforms

all the existing models (i.e., the models that are already built by

third party or by using an available dataset collected for the sake of

controlled experiment). The best expert, i.e. the existing model

achieving the highest accuracy on the dataset Dc in turn, will play

the role of a benchmark for evaluating our proposed solution.

In the present work, we consider the problem of reusing N
predefined prediction models f1, . . . ,fN called experts. In particular,

we propose a new particular solution for combining Bayesian

Classifiers (BC). The challenging question is how to produce a new

optimal BC that inherits the ‘‘white-box’’ property, i.e. ease of

interpretation of BCs, while improving the accuracy, i.e. the ability
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of generalization on the available context represented by Dc.

These BCs will be considered as experts.

Method
To avoid the drawbacks of traditional combination methods (see

Section 2), we propose an approach that reuses the existing

classifiers to derive new classifiers having higher predictive

accuracies, without worsening the interpretability of the original

experts. Considering this objective our approach consists of three

principles:

Principle 1 decomposes each expert into chunks of expertise.

Each chunk represents the behavior of the expert on a ‘‘partition’’

of the entire input space (i.e., the whole hypothetical dataset D). In

general, a chunk of expertise can be defined as a component of the

expert knowledge, which can be represented using certain

techniques such as linear regressions, decision trees, Bayesian

classifiers, etc. The ‘‘partitioning’’ of the input space depends on

the structure of the expert representation. For example, the

decomposition of a decision tree leads to expertise chunks in form

of rules, thus a ‘‘partition’’ is a decision region in the input space.

However, for a Bayesian classifier, the decomposition yields

expertise chunks in the following way: each attribute is subdivided

into intervals, to each interval (i.e., range of attribute values) is

attached a set of conditional probabilities (See more details in

Section 4.2.1).The rational behind the first principle is to give

more flexibility to the process of combination, specially when

selecting the appropriate chunk of expertise. Therefore, an expert

might have some accurate chunks of expertise although its global

performance is low and vice-versa. Moreover, the derived expert

which is a combination of chunks of expertise will be interpretable

since we know the chunks that are responsible for the final

decision.

Principle 2 reuses the chunks of models coming from different

experts in a way to progressively build more accurate combina-

tions of expertise using Dc to guide the search.

Principle 3 modifies some chunks of expertise in order to obtain

new combinations of expertise that are more adapted to the

particular context Dc.

This three-principle process of building an optimal expert can

be thought of as a searching problem where the goal is to

determine the best set of expertise suitable for the context Dc.

Several available experts will be decomposed into a set of expertise

chunks. The combination of these expertise will generate a

combinatorial explosion which makes the problem an NP-

complete one. Such a problem can commonly be solved by using

a search based technique in a large search space. In the current

solution of combining Bayesian classifier experts, we propose a

customization of the ACO as a promoting technique to implement

our approach.

4.1 Naı̈ve Bayesian Classifier
A Bayesian classifier is a simple classification method, that

classifies a d-dimensional observation xi by determining its most

probable class c computed as:

c ~ arg
ck

max p(ckja1, . . . ,ad ),

where ck ranges of the set of possible classes C~fc1, . . . ,cqg and

the observation xi is written as generic attribute vector. By using

the rule of Bayes, the probability p(ckja1, . . . ,ad ) called probability a

posteriori, is rewritten as:

p(a1, . . . ,ad jck)Pq
h~1 p(a1, . . . ,ad jch)p(ch)

p(ck):

The expert structure is drastically simplified under the

assumption that, given a class ck, all the attributes are

conditionally independent. Accordingly, the following common

form of a posteriori probability is obtained:

p(ckja1, . . . ,ad )~
Pd

j~1p(aj jck)
Pq

h~1 P
d

j~1p(aj jch)p(ch)
p(ck): ð1Þ

When the independence assumption is made, the classifier is

called Naive Bayes. p(ck) called marginal probability [1], is the

probability that a member of a class ck will be observed. p(aj jck)

called prior conditional probability, is the probability that the jth

attribute assumes a particular value aj given the class ck.

A naive BC treats discrete and continuous attributes in different

ways [29]. For each discrete attribute, p(aj jck) is a single real value

that represents the probability that the jth attribute will assume a

particular value aj when the class is ck. Continuous attributes are

modeled by some continuous distribution over the range of that

attribute’s value. A common assumption is to consider that within

each class, the values of continuous attributes are distributed as a

normal (i.e., Gaussian) distribution. This distribution can be

represented in terms of its mean and its standard deviation. Then

we interpret an attribute value aj as laying within some interval.

The attribute domain is divided into N intervals Ijtj
and p(Ijtj

jck)

will be the prior conditional probability of a value of the jth

attribute to be in the interval Ijtj
when the class is ck; tj[N is the

rank of the interval in the attribute domain. To classify a new

observation xi (i.e., a1, . . . ,ad ), a naı̈ve BC with continuous

attributes applies the Bayes theorem to determine the a posteriori

probability as:

p(ckjI1t1
, . . . ,Idtd

)~
Pd

j~1p(Ijtj
jck)

Pq
h~1 P

d

j~1p(Ijtj
jch)p(ch)

p(ck): ð2Þ

with aj[Ijtj
.

4.2 ACO Based Approach
Ant Colony Optimization algorithm was inspired by the

biological behavior of ants when looking for food. This behavior

was closely observed and investigated in [30]. The process by

which ants search for food and carry it back to their nest is very

efficient. Throughout its trip, an ant deposits a chemical substance

called pheromone which is usually used as a mean of indirect

communication between species members [31]. The amount of

pheromone deposited by an ant reflects the quality of the food and

the traversed path. Observations show that in the beginning of the

food search, the ants randomly choose their paths. Nevertheless,

after some time and based on their communications through

pheromone trails, they tend to follow the same optimal path. A

graph in which the set of possible solution components can be

modeled as vertices or edges is used to represent an optimization

problem. Based on this representation, an artificial ant builds a

solution by moving along the graph and selecting solution

ACO4BC
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components. The deposited amount of pheromone mirrors the

quality of built solutions.

Like other metaheuristic techniques, ACO has to be customized

to the particular problem we are solving. We recall that we want to

exploit ants’ foraging behavior to derive an optimal set of expertise

that performs well on a given context represented by the dataset

Dc. Deriving an optimal expert will not only include the selection

of existing expertise chunk from the original Bayesian classifiers,

but also the creation of new chunks of expertise mutated from

existing ones. The work of the artificial ants will then consist of

reusing and creating combinations of expertise.

The customization of ACO to the Bayesian classifiers combi-

nation problem needs the definition of the following elements: a

solution representation, a graph on which the artificial ants will

construct the solutions, a measure of the solutions accuracy, a

suitable strategy for ant communication via pheromone update

and finally a moving rule based on which ant decides to move

from one node to the next in the graph [32].
4.2.1 Solution Representation. The partitioning of a BC

into chucks of expertise is central to our approach. This operation

facilitates the exploration of the search space defined by all the

combinations of original and modified chunks of expertise.

Consequently, it makes the steps of reusing and adapting the

existing BCs easier and efficacious.

According to the description of Naı̈ve BCs given in Section 4.1,

two kinds of parameters of a BC can represent a chunk of

expertise. The first is the marginal probabilities of different classes

p(ck), where k~1, . . . ,q. The second is the prior conditional

probabilities of the attributes p(Ijtj
jck). Since the prior conditional

probabilities are more relevant to express a different structure for a

BC, they are chosen to characterize a chunk of expertise.

To each attribute j, mj chunks of expertise are associated. A

chunk of expertise can be represented by a triplet made up of an

interval and two conditional probabilities. To illustrate the

interpretation of a chunk of expertise, let us consider the

prediction of Heart Disease (HD) prediction problem. The used

BCs are binary and predict either the presence or the absence of

heart disease in a patient’s body. The set of class labels is

C~fc1,c2g, with c1~PresenceHD and c2~AbsenceHD. In this

example a chunk of expertise triplet, denoted by

(Ijtj
,p(Ijtj

jc1),p(Ijtj
jc2)), can be interpreted as follows: the prior

conditional probability of a value of the jth attribute to be in the

interval Ijtj
when the class is c1, is equal to p(Ijtj

jc1) and p(Ijtj
jc2)

when the class is c2. The index tj[N is the rank of the interval in

the attribute domain containing N intervals. Continuing with the

same prediction problem, an HD symptom attribute j (e.g., the

RestingBloodPressure) in a Bayesian classifier will be represented

by the following structure:

(½70,120�,0:321,0:146),

(½120,130�,0:243,0:208),

(½130,140�,0:314,0:271),

(½140,200�,0:122,0:375)

0
BBB@

1
CCCA,

where each line is a triplet

(interval,cond:probabilityjc1,cond:probabilityjc2) that encodes a

HD chunk of expertise. For example, the HD expertise defined

by(½70,120�),0:321,0:146) means that the conditional probability,

of a value of RestingBloodPressure to be in the interval ½70,120� when

the class is c1~AbsenceHD, is equal to 0:321 and 0:146 when the

class is c2~PresenceHD. Note that this symptom attribute Resting-

BloodPressure is divided into 4 intervals.

4.2.2 Ant solution construction mechanism. Using ACO,

two strategies of modeling BCs combination are possible. The first

is inspired by the modular structure of BC, in which we propose to

apply ACO on each single attribute. In other words, our artificial

ants will iteratively construct a new composition for each attribute

until obtaining a near optimal set of expertise. The work of the

ants on each attribute, will consist in deriving, a new slicing of the

attribute domain and a new distribution of the conditional

probabilities. This process is separately repeated for all the

attributes in a parallel or a sequential manner. Then, a final

classifier is built-up by grouping the obtained near-optimal

compositions of all the attributes. The second strategy aims at

iteratively constructing new BC solutions until obtaining a near

optimal one. Within this strategy, at each iteration, the work of the

artificial ants consists in simultaneously constructing chunks of

expertise for all the attributes, in order to derive new BCs.

Knowing that both strategies have advantages and disadvantages,

in this paper we will explore the first strategy and will empirically

study and compare the two strategies in our future work.

Accordingly, we focus on applying the ACO at the BC attribute

level.

Combining attributes can be modeled as a search problem of an

optimal path in a directed graph Gr(V ,E) where V is a set of

vertices and E a set of edges. A main task of the ACO

customization consists in constructing the graph on-which the

ants will build the solution.

4.2.3 Attribute graph construction. We define an instance

of the attribute j as its composition in terms of intervals in a

particular BC. This composition can be represented by a sorted

vector of boundaries of those intervals. Since we have N BC to be

combined, each attribute j has, accordingly, N instances. Hence,

in order to construct the attribute graph Gr(V ,E) of an attribute j,
we first consider all the instances of the attribute j. This step

consists in forming a composite sorted vector that holds all the

boundaries got from all the instances of the attribute j. This

composite vector is used to create the new composite instance of

the attribute j, in which, each interval is bounded by two

consecutive values from the composite vector. Therefore, each

vertex v in V , the set of vertices, represents a boundary from the

composite vector. The order of nodes in the attribute graph is

following the order of boundaries values in the composite vector.

In the case of combining N binary BCs, there are N edges eik,

k~1::N, between two consecutive nodes vi and viz1. Each edge, eik

in E, represents a couple of conditional probabilities (i.e.,

p(½vi,viz1�jc1), p(½vi,viz1�jc2)) associated with the attribute interval

½vi,viz1�. These probabilities are computed based on the

conditional probabilities distribution of the original instance of

attribute coming from the kth BC. For example, the conditional

probabilities labeling the edge e11~½v1,v2� are computed in the

following way:

p(½v1,v2�jc1)~
p(½v1

1,v1
2�jc1) � (v2{v1)

(v1
2{v1

1)
and

p(½v1,v2�jc2)~
p(½v1

1,v1
2�jc2) � (v2{v1)

(v1
2{v1

1)
,

where, ½v1
1,v1

2� is the an interval from the original composition of

the attribute j in the BC number 1.

Figure 1 shows the graph constructed for an attribute j. It

depicts the new slicing (into intervals) of the attribute domain that

takes into account the original compositions of the attribute j

ACO4BC
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through N individual BCs. For any given vertex vi, outgoing edges

(incoming to viz1) represent (i.e., are labeled by) all possible

couples of conditional probabilities associated with the interval

½vi,viz1� originating from N individual BCs involved in the

combination process. For the sake of simplicity of the graph in

Figure 1, the label Pik of an edge eik represents the couple of

probabilities p(½v1,v2�jc1) and p(½v1,v2�jc2) computed based on the

original conditional probabilities of the interval ½vi,viz1� in the BC

number k.

4.2.4 Solutions construction. As described above, the

solutions construction mechanism assumes that the used graph

(see Figure 1) is static, built on quantized pairs of conditional

probabilities domain; all possible values of conditional probabil-

ities are pre-determined, listed, and used to build the static graph.

Thus, a candidate attribute solution is an instance constructed by

traversing the attribute graph while following the nodes order from

the first node (lower boundary of the attribute domain ) to the last

node (upper boundary of the attribute domain). In each transition

to next node one edge is selected to form at the end a combination

of edges.

4.2.5 Solution quality measure. We recall that we need to

evaluate an attribute composition constructed by the ants. Every

move of an ant has to be taken into account since it has an impact

on the composition of the attribute being constructed. A new

attribute composition has to integrate a BC in order to be

evaluated. Thus, the accuracy of the subsequent new BC will

indicate the quality of the attribute composition. During the

execution of the ACO algorithm at the attribute level, we use a BC

for which we fix all the attribute compositions but the one being

evaluated. The mission of the ACO algorithm is to maximize the

predictive accuracy of the BC by integrating the processed

attribute. Our approach is a learning process where the dataset Dc

representing the particular context of prediction is used to guide

the ants in their trails to construct solutions. Therefore, the set Dc

is used as an evaluation data set for computing the predictive

accuracy of the classifier proposed by the ACO process at the

attribute level.

This predictive accuracy of BC can be measured in different

ways as discussed in [33–35]. An intuitive measure of it is the

correctness function is given by:

C(f )~

Pq
i~1 niiPq

i~1

Pq
j~1 nij

,

where nij is the number of cases in the evaluation dataset with real

label ci classified as cj (Table 1). Note that for a BC, the class label

ci of a given case is the label that has the highest posterior

probability (see equation 2).

In several prediction problems, the data is often unbalanced; for

example, patients tend to be healthy and not suffering from heart

diseases. A much higher probability is assigned to the majority

class labels. On an unbalanced dataset, low training error can be

achieved by the constant classifier function fconst that assigns the

majority label to every input vector. To give more weight to data

points with minority class labels, we decided to use Youden’s J-

index [36] defined as

J(f )~
1

q

Xq

i~1

niiPq
j~1 nij

:

Intuitively, J(f ) is the average correctness per label. If we have

the same number of points for each label, then J(f )~C(f ).
However, if the dataset is unbalanced, J(f ) gives more relative

weight to data points with rare labels. In statistical terms, J(f )
measures the correctness assuming that the a priori probability of

each label is the same. Both a constant classifier fconst and a

guessing classifier fguess (that assigns random, uniformly distributed

labels to input vectors) would have a J-index close to 0:5, while a

perfect classifier would have J(f )~1. For an unbalanced training

set, C(fguess)^0:5 but C(fconst) can be close to 1.

4.2.6 Ant walk, attractiveness and visibility. Using the

graph attribute Gr(V ,E), at each iteration of the ACO algorithm,

all ants start their trails from the vertex representing the lower

boundary, v1, of the attribute, complete one tour visiting all

vertices and finish at the vertex representing the upper boundary

of the attribute domain. When an ant on a vertex vi moves to the

next vertex viz1, it chooses an edge eik representing the kth couple

of conditional probabilities associated to the interval ½vi,viz1� and

originally yielded from the kth BC. In other words, the ant’s task

after each move, is to assign a pair of conditional probabilities to

an attribute interval ½vi,viz1�.
At the beginning, the ants start by moving randomly from one

vertex to the following one. In the following iterations, these moves

are guided by a certain transition strategy. Actually, the choice of

an edge to be traversed depends on the amount of pheromone

accumulated on that edge. The higher the amount of pheromone,

the higher will be the probability of choosing that edge. This

probability is defined by the following equation:

p(choosing(eik))~
t(eik)a � g(eik) b

PN
h~1 t(eih)a � g(eih) b

, ð3Þ

Figure 1. Graph for the Solution Construction Mechanism.
doi:10.1371/journal.pone.0086456.g001

Table 1. The confusion matrix of a decision function f . nij is
the number of cases in the evaluation dataset with real label
ci classified as cj .

Predicted label

c1 c2 . . . cq

c1 n11 n12 . . . n1q

real c2 n21 n22 . . . n2q

label ..
. ..

. ..
. P ..

.

cq nq1 nq2 . . . nqq

doi:10.1371/journal.pone.0086456.t001
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where t(eik and g(eik) are respectively the attractiveness and the

visibility of the edge eik to be chosen. The attractiveness function is

based on the success of the previous solutions. It is modeling the

amount of pheromone accumulated on the trail of an ant is

defined in Equation 4. However, the visibility function is defined

as the sum of conditional probabilities associated to the edge eik.

This definition is inspired by analogy to path minimization

problem where the visibility, is reciprocal of the distance between

the two nodes of the edge. In the proposed definition of edge

visibility, the higher the sum, the more visible is the edge. The two

parameters a and b are used to balance the impact of

attractiveness (i.e., pheromone) versus visibility. These are two

parameters of the ACO Algorithm and have to be set empirically

after several runs. After calculating the probability of choosing for

every edge eik, k~1::N, a Casino wheel selection method is

applied to determine the chosen edge.

4.2.7 Pheromone update strategy. When an ant traverses

an edge, it deposits a pheromone amount on it. The accumulated

amounts of pheromone form the attractiveness of an edge. This

can also be interpreted as a long-term memory of the ant colony. In

our proposed ACO algorithm, this long-term memory is updated

each time an ant finishes one tour. The strategy of updating the

pheromone amount deposited, in the iteration t on an edge eik,

k~1::N , is governed by the following equation:

t(eik)t~
(1{r) � t(eik)t{1, if edge is not traversed

(1{r) � t(eik)t{1zQ � J(f ), otherwise,

 
ð4Þ

where 0ƒrƒ is a parameter of the ACO algorithm representing

the evaporation rate of the pheromone substance. A small value of

this parameter means that the evaporation is low and vice-versa.

The Dt~Q � J(f ) is the newly deposited pheromone that contains

the base attractiveness constant Q and a quality measure J(f ) to

be maximized. The accuracy J(f ) is measuring the quality of a

HD Bayesian classifier f containing the attribute being treated (see

Section 4.2.5). The process is iterated and at each tour increasingly

accurate attribute compositions are constructed until a stopping

criterion is met.

Experimental Works
The applicability of our approach is not restricted to one

particular domain. In this paper, we evaluate the proposed ACO

based approach of combining Bayesian classifiers by conducting

controlled experiments, on two problems from the medical

domain where data is available. The chosen two problems are

namely, the Heart Disease prediction (HD problem, for short) and

Cardiotocography-based fetal pathologies prediction (CTG prob-

lem). In the HD problem a prediction model tries to predict the

presence or the absence of heart disease in a patient and in the

CTG problem, a prediction model tries to predict potential fetal

pathologies. For both problems, interpretability is increasingly

gaining high interest. In fact, heart disease is considered by the

World Health Organization (WHO) as the leading cause of death

in many world-wide populations [37]. In Japan for instance, the

number of strokes has fallen by more than 85% when the

government has discovered that the trigger for heard disease is

blood pressure [38]. How has the Japanese government been

successful in achieving this impressive reduction of the number of

strokes in its population? The answer to this question highly valued

the preventive actions of health screening and education. Several

studies have been done in University of Osaka to discover how risk

factors contribute to strokes [38]. The interpretation of the

relationship between a stroke and its risk factors, guided the

government to focus their efforts on establishing community-based

programmes including regular health check-ups to control key risk

factors and health promotion campaigns on healthy lifestyle. With

respect to the CTG problem, the cardiotocography is used for

electronic fetal monitoring in order to record during pregnancy,

the fetal heart beat, uterine contractions, etc. The continuous

monitoring by using CTG requires interpretations of several

features as described in Table 3 in order to predict potential fetal

pathologies. The ultimate goal of the proposed approach is to

build a high performance and interpretable prediction model. To

Table 2. Dataset description.

dataset Name Location Size Reference

Cleveland Cleveland Clinic [45]

Foundation, Ohio

Hungarian Hungarian Institute [46]

of Cardiology, Budapest

V.A. Medical Center, [41]

Long Beach Long Beach, California

doi:10.1371/journal.pone.0086456.t002

Table 3. The 13 symptom attributes used to predict HD in
the experiment.

Name Description

AGE age of a patient

SEX sex of patient (1 = male; 0 = female)

CPT Chest Pain Type

– Value 1: typical angina

– Value 2: atypical angina

– Value 3: non-angina pain

– Value 4: asymptomatic

TRESTBPS : resting blood pressure (in mm Hg on admission to the
hospital)

CHOL Serum Cholesterol in mg/dl

FBS (Fasting Blood Sugar §120 mg/dl) (1 = true; 0 = false)

RESTECG Resting Electrocardiographic results

– Value 0: normal

– Value 1: having ST-T wave abnormality (T wave inve-

rsions and/or ST elevation or depression of §0:05 mV)

– Value 2: showing probable or definite left ventricular

hypertrophy by Estes’ criteria

THALACH maximum heart rate achieved

EXANG exercise induced angina (1 = yes; 0 = no)

OLDPEAK ST depression induced by exercise relative to rest

SLOPE the slope of the peak exercise ST segment

– Value 1: up-sloping

– Value 2: flat

– Value 3: down-sloping

CA number of major vessels (0–3) colored by fluoroscope

THAL 3 = normal; 6 = fixed defect; 7 = reversible defect

doi:10.1371/journal.pone.0086456.t003
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achieve this goal, two datasets are used: (1) A set of existing models

called experts and (2) a representative dataset that will be used to

guide the combination process of the experts, called context data.

5.1 Data Description
5.1.1 Data for HD problem. For the sake of results validity,

three separate datasets representing three different populations of

HD patients and collected in three different locations, are used in

our experiments. These datasets were freely available from UCI

machine learning repository [39]. Table 2 summarizes the

properties of datasets used in the three experiments on HD

problem.

Each dataset uses 14 symptom attributes of HD selected out of

an original set of 76 attributes. The selection of the 14 attributes

was a consensus of machine learning researchers in several

previous published experiments such as in [40] and [41].

Accordingly, every patient from the studied three populations is

described by a vector of 14 values, 13 of them are mapping

symptom attributes and one is a binary variable equal to 1 when

the patient has HD and 0 otherwise. The 13 attributes are then

used as inputs of the simulated HD experts. A description of these

symptoms attributes is given by Table 3.

5.1.2 Data for CTG problem. The dataset used for the

CTG problem is published in the UCI repository and collected by

the faculty of Medicine at the University of Porto, Portugal [42]. It

contains 2126 records of fetal cardiotocographies represented by

21 diagnostic attribute related to fetal heart rate and uterine

activity. These attributes are inputs of a binary classifier that

distinguishes normal fetal cardiotograms from pathological ones. A

short description of the CTG attributes is shown in Table 4.

5.2 Individual Experts ‘‘Construction’’ and Context Data
Although, the proposed approach assumes the availability of

already built experts, we chose to perform a controlled experiment

in which the individual experts were built ‘‘in-house’’. Two thirds

of each dataset was used as training data to build a number of

experts, which simulate the existing prediction models. Accord-

ingly, in the case of HD problem, we obtained three training

datasets, respectively referred to as TCleveland , THungarian and

TLong{Beach. The remaining one-third of each dataset is used to

form the context data representing the HD diagnosis of a

particular patients population. The context data of a population

is used to guide the combination process in order to derive a

prediction model appropriate for such population conditions. We

respectively, form three context datasets referred to as CCleveland ,

CHungarian and CLong{Beach. Similarly, in the case of CTG

problem, we created a training dataset referred to as TCTG and

a context dataset denoted CCTG .

From each training dataset and by using random combinations

of attributes, we formed 50 subsets of training data. By using a

different combination of attributes in each subset of data, we

imitated different opinions of experts of the targeted prediction

problem. In addition, by randomly splitting each of the obtained

datasets into two subsets, we created in total 100 final training sets.

Then, a classifier is trained on each training set by using the RoC

machine learning tool (the Robust Bayesian Classifier, Version 1.0

of the Bayesian Knowledge Discovery project) [43]. Among the

100 learned BCs, we retained the top ones having lower training

errors (i.e., these are 50 in the HD case and 40 in the CTG case).

The numbers 50 and 40 are the sizes of the smallest set of

classifiers achieving a training error v10% in the case of HD and

in the case of CTG, respectively.

This procedure of building individual BCs is repeated for the

three training datasets, TCleveland , THungarian and TLong{Beach, in

the case of HD prediction problem and is also repeated for the

training dataset TCTG in the case of CTG-based prediction.

Accordingly, 50 HD BCs are derived from the data of each HD

population (Cleveland, Hungarian and Long-Beach), and 40 CTG BCs

are built from the CTG data.

5.3 Experimental Design
To evaluate the performance of the resulting models of our

approach, on the two studied problems, four independent

experiments were conducted in order to build BCs for HD

prediction and for CTG prediction. Three of the experiments are

carried on the three different HD contexts, namely, CCleveland ,

CHungarian, CLong{Beach. In each experiment, a composite HD BC

was derived by combining individual BCs learned in two of the

three contexts while being guided by the third one. In the fourth

experiment conducted for the CTG problem, a composite CTG

BC was built by combining individual BCs trained on TCTG while

being guided by CCTG . Table 5 specifies the two inputs of our

approach for the four experiments.

In each experiment, the accuracy of the resulting composite BC,

named fACO, is compared to those of BCs built by other

benchmark methods of improving model performance. Four of

these methods were investigated: (1) selection of the best existing

model, (2) combination of all training data (3) boosting method

and (4) bagging method. The first two methods are intuitive and

have the advantage of not worsening the model interpretability.

The last two methods belong to the ensemble classifiers methods,

Table 4. The 21 CTG attributes used to predict potential fetal
pathologies.

Name Description

FHRBL Fetal Heart Rate (FHR) Baseline (beats per minute)

AC # of accelerations

FM # of fetal movements per second

UC # of uterine contractions per second

DL # of light decelerations per second

DS # of severe decelerations per second

DP # of prolonged decelerations per second

ASTV percentage of time with abnormal short

term variability

MSTV mean value of short term variability

ALTV percentage of time with abnormal long

term variability

MLTV mean value of long term variability

Width width of FHR histogram

Min minimum of FHR histogram

Max maximum of the histogram

Nmax # of histogram peaks

Nzeros # of histogram zeros

Mode histogram mode

Mean histogram mean

Median histogram median

Variance histogram variance

Tendency histogram tendency: 21 = left assymetric;

0 = symmetric; 1 = right assymetric

doi:10.1371/journal.pone.0086456.t004
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known to be successful in achieving high model accuracy. The

classifiers derived by these methods are, respectively, named fBest,

fAllData, fBoost and fBagg. They are constructed within each of the

four experiments in the following way:

N fBest : the best existing BC is determined after measuring the

accuracy of the 50 HD (resp. 40 CTG) individual BCs, used as

input models to our approach, on the context data of the

experiment. Then fBest is the individual BC among the existing

ones that has the highest accuracy on the considered context

data.

N fAllData : the individual BC derived from the data that has been

used to build all the 50 HD (resp. 40 CTG) individual BCs. To

construct this BC, the datasets that have been used to train the

individual BCs (i.e., input models) are combined into one

global dataset called DAllData. Then DAllData is used as a

training set to build a new BC referred to as fAllData. In HD

prediction problem, the dataset DAllData consists of the union

of THungarian and TLong{Beach in experiment#1, the union of

TLong{Beach and TCleveland in experiment #2, and of the union

of TCleveland and THungarian in experiment #3. However it is

equal to TCTG in the case of CTG prediction problem

evaluated by experiment #4.

N fBoost : the classifier derived from combining the 50 HD (resp.

40 CTG) individual BCs using the well known Adaboost

algorithm (more details on Adaboost are in Section 2).

N fBagg : the classifier derived from combining the 50 HD (resp.

40 CTG) individual BCs using the bagging algorithm.

5.4 Hypotheses
To perform the above comparisons and to determine the right

conclusions, we proposed a set of hypotheses to be tested for two

different prediction problems (i.e., HD and CTG). In the four

performed experiments, we assume that we are proposing an

approach which, on the one hand, performs better than fACO and

fAllData, and on the other hand, is as good as ensemble classifiers

based methods, such as Bagging and boosting. According to these

assumptions, the following hypotheses were formulated and tested

with four different contexts, namely, CCleveland , CHungarian,

CLong{Beach and CCTG (See Table 5).

1. H1: The composite BC fACO, derived by ACO-based approach

has a higher predictive accuracy than the best individual

experts fBest.

2. H2: The composite BC fACO, derived by ACO-based approach

has a higher predictive accuracy than the expert, fAllData,

trained on all the data used to build the simulated individual

experts.

3. H3: The accuracy of the composite BC fACO, derived by ACO-

based approach is at least as high as the accuracy of the

classifier obtained by the Boosting ECM fBoost.

4. H4: The accuracy of the composite BC fACO, derived by ACO-

based approach is at least as high as the accuracy of the

classifier obtained by the Bagging ECM fBagg.

5.5 Ant Colony Optimization Setting
In each experiment, the parameters setting of the ACO

algorithm is determined based on several runs. The goal of the

setting phase is to assign parameter values that allow high accuracy

of the derived model without falling in the overfitting problem.

Therefore, the termination criterion MaxIter, the number of

artificial ants NbrAnt, the pheromone variation t, the pheromone

evaporation rate r, the impacts of pheromone a, and the

pheromone visibility b are set according to Table 6.

Results

To verify the hypotheses for the four contexts, the accuracies of

the obtained classifiers were evaluated using J-index of Youden

(See Section 4.2.5) and estimated using 10-fold cross-validation.

Accordingly in each of the experiments, the evolution of the ACO

algorithm to derive a new BC is guided by the union of 9 folds

from the context data Dc. In other terms, a new BC fACO is then

trained on the union of 9 folds, and tested on the remaining fold.

Similarly, the two classifiers fBoost and fBagg, respectively derived

by the boosting and the bagging algorithms are trained on the

union of the same 9 folds, and tested on the remaining fold. With

respect to the first two benchmark approaches, the derived BCs

fBest and fAllData are simply evaluated on both the union 9 folds,

and tested on the remaining fold. The whole process, i.e., for ACO

and the alternative approaches, is repeated 10 times for all 10
possible combinations. For each approach, the accuracy mean and

standard deviation are calculated for J-index on both the training

and the test samples. Results are obtained for the three HD

Table 5. Experiments description.

Experiment# Prediction Individual BCs Population

Problem learned on (Context dataset)

1 HD THungarian & Cleveland

2 HD TCleveland & Hungarian

TLong{Beach (CHungarian)

3 HD THungarian & Long-Beach

TCleveland (CLong{Beach)

4 CTG TCTG Porto

(CCTG )

doi:10.1371/journal.pone.0086456.t005

Table 6. ACO parameters setting.

Experiment# MaxIter NbrAnt t r a b

1 150 100 1.0 0.02 2.0 1.0

2 120 70 1.0 0.04 3.0 2.0

3 150 100 1.0 0.02 2.0 1.0

4 100 50 2.0 0.03 2.0 2.0

doi:10.1371/journal.pone.0086456.t006
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contexts CCleveland , CHungarian and CLong{Beach as well as for the

CTG context CCTG . These are respectively, reported in Tables 6,

7, 8 and 10.

6.1 Comparison with Best Expert
The obtained results for both HD and CTG predictions, show a

considerable improvement in the accuracy of the generated BC

when compared to the best expert fBest. Indeed, in the three HD

contexts as well as in the CTG context, the resulting BC, fACO has

gained between 11% and 18% in predictive accuracy on the

training dataset, and between 10% and 25% on the testing data. A

statistical analysis of the results using t-test shows that the null

hypothesis H0, assuming that fBest accuracy is not higher than the

accuracy of fACO, is rejected with a very strong evidence, greater

than 99% in all the three HD contexts and greater than 95% in the

CTG context.

6.2 Comparison with Data combination
A similar comparison between the resulting BC fACO and the

BC trained on all the available data denoted fAllData shows over all

the HD and CTG contexts an accuracy increase achieved by fACO

that ranges between 7% and 33% on training data, and between

12% and 15% on testing data. A statistical testing using the t-test

shows a signicant difference between fACO and fAllData. The null

hypothesis H0, assuming that fACO accuracy is not higher than

that of fAllData, is rejected by t-test with very high confidence

greater than 95% in the HD contexts as well as in the CTG

context. (i.e., One-tailed t-test p-valuev 5% in all the contexts).

6.3 Comparison with Boosting
In comparison with the ECM based methods, it is noticed in the

three contexts that our ACO approach preforms better than

Boosting and Bagging. Indeed, in the case of HD prediction, fACO

has achieved higher accuracy than fBoost with gains ranging from

2% in the Long-Beach’s context to 22% in the Cleveland’s one. The

statistical analysis of the comparison results in the Cleveland’s

context show that the null hypothesis H0, stating that fACO

accuracy is lower than the fBoost accuracy, is rejected at

significance level of 1% (i.e., p-value = 0:001). In both contexts

Hungarian and Long-Beach, results show only a slight outperfor-

mance of fACO over fBoost which explains why the statistical

analysis fails to reject the same null hypothesis. However, our

assumption, stating that our ACO-based approach is as at least as

good as the Boosting methods, has held up. In the case of CTG

prediction, fACO has outperformed fBoost with an accuracy gains of

14% and 22% on the testing and training data, respectively. The

statistical analysis of the comparison results in the CTG’s context

show that the null hypothesis H0, stating that fACO accuracy is

lower than the fBoost accuracy, is rejected at confidence level of

95% (i.e., p-value~0:001).

6.4 Comparison with Bagging
More consistent achievements are noticed in the comparisons

with Bagging approach (fBagg) in all the experiments. In these

comparisons, fACO accuracy in Hungarian, Cleveland, Long-Beach and

CTG contexts, has respectively gained 4%, 7%, 14% and 19% on the testing

data. These results hold up our assumption that fACO accuracy is at

least as high as the accuracy of (fBagg). Moreover in the Long-Beach

context, from HD problem as well as in the CTG context from CTG

Table 9. Experimental results for HD prediction problem.
Accuracy percentage values of ACO and benchmark
approaches in the context of Long-Beach population, (f� is the
classifier compared to fACO).

Approaches

fACO fBest fAllData fBoost fBagg

Mean 69.63 44.70 56.12 67.13 55.36

STDEV: 15.77 9.01 12.13 16.82 13.71

p-value – 0.0023 0.04 0.04 0.39

fACO vs. f� (Two-tail)

doi:10.1371/journal.pone.0086456.t009

Table 10. Experimental results for CTG prediction problem.
Accuracy percentage values of ACO and benchmark
approaches in the context of CTG, (f� is the classifier
compared to fACO).

Approaches

fACO fBest fAllData fBoost fBagg

Mean 74.60 64.05 59.16 55.00 60.32

STDEV: 11.61 15.16 25.99 21.35 16.13

p-value – 0.049 0.056 0.011 0.018

fACO vs. f� (Two-tail)

doi:10.1371/journal.pone.0086456.t010

Table 7. Experimental results for HD prediction problem.
Accuracy percentage values of ACO and Benchmark
approaches in the context of Cleveland population, (f� is the
classifier compared to fACO).

Approaches

fACO fBest fAllData fBoost fBagg

Mean 73.33 54.45 61.08 51.61 66.19

STDEV: 11.95 13.78 12.78 11.50 13.61

p-value – 0.003 0.040 0.001 0.23

fACO vs. f� (Two-tail)

doi:10.1371/journal.pone.0086456.t007

Table 8. Experimental results for HD prediction problem.
Accuracy percentage values of ACO and Benchmark
approaches in the context of Hungarian population, (f� is the
classifier compared to fACO).

Approaches

fACO fBest fAllData fBoost fBagg

Mean 73.27 57.53 59.86 69.14 69.40

STDEV: 4.60 3.74 4.65 4.80 100

p-value – 0.007 0.039 0.514 0.476

fACO vs. f� (Two-tail)

doi:10.1371/journal.pone.0086456.t008
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problem, the null hypothesis H0, stating that fACO accuracy is lower

than the fBagg accuracy, is rejected using the t-test at a significance

level of 5% (i.e., p-values ƒ0:04).

Discussion

The results obtained with the above comparisons support our

claims about the proposed ACO-based approach. Indeed, it is

evaluated against two different prediction problems represented by

four different contexts (tree for HD prediction and one for CTG

based prediction). Four benchmark approaches are compared to

the proposed one and the summary of the results shows (1) a

significant outperformance over both best expert and data

combination approaches and (2) a comparable performance to

ensemble classifiers methods (Bagging and Boosting). Nonetheless,

some threats to validity has to be considered which may provide

better interpretation of results. Concerning the inputs classifiers of

our approach, we tried to use individual HD BCs trained merely

on two completely independent circumstances in order to simulate

the general domain knowledge and allow better variability within

the individual experts. However, one can comment on the

diversity of the classifiers to be minimal, especially in the case of

CTG-based prediction, where the combined Bcs are learned from

the same environment. This comment is actually, in favor of our

approach since this latter is based on the diversity principle.

Despite the lack of a large diversity of individual classifiers, the

proposed approach succeeded achieving a high performance. The

obtained results support that, with larger diversity our approach

will be able to achieve higher performance. A second concern is

related to the context-data size. We assume that the context data

has to be representative rather than large, a property that has to be

investigated. In the four performed experiments, the context

datasets were chosen randomly and their sizes ranged from 70 to

100 in the case of HD prediction, and equal to 330 in the case of

CTG-based prediction. These sizes are relatively small ones, but

we can not say that they are not representative. Such a claim needs

more analysis of the data density with respect to size, as well as to

other data features in both HD and CTG problems. Although in

the CTG context size is relatively reasonable, we believe that our

approach has to be experimented with larger context data

assuming that, the more the data the better the context

representation.

The results of applying ACO-based approach on the three HD

contexts Hungarian, Cleveland and Long-Beach as well as on the

CTG context are respectively summarized in Figures 2, 3, 4 and 5

as boxplots charts. The accuracies boxplots on both training and

testing data are grouped in the chart by the benchmark

approaches in the following order: J(fACO), J(fBest), J(fAllData),

J(fBoost) and J(fBagg).

The proposed approach follows the trends of predictions in

many domains. In particular, these trends aim at promoting

interpretability which is gaining an increasing interest. We share

the belief that the prediction model or classifier should have the

ability to explain its predictions and exhibit the causality

Figure 2. Evaluation in HD case: Prediction accuracies in the context of Cleveland population CCleveland ACO-based approach Vs. Best
model, data-combination Model, Boosting and Bagging.
doi:10.1371/journal.pone.0086456.g002
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relationships between the inputs and the outputs. Without an

attached semantic or a potential of explaining, the prediction is

hard to be accepted. In the field of healthcare management,

Physicians need to calculate and analyze various factors in order to

diagnose and prevent accurately the threats to human health.

Certainly, they need to understand the causality mechanism with

which they identify the risk factors responsible for undesirable

health problems such as heart disease and fetal pathologies. The

interpretability of the resulting classifiers allows a such mandatory

understanding. Indeed, by simply looking at the attribute

compositions of the final resulting BCs, we can easily interpret

the link between the classifier’s inputs and its outputs. Therefore,

we can draw the following interpretations:

1. Some attributes are always keeping almost the same condi-

tional probability distribution over many final resulting BCs

obtained by several runs. In other words, these attributes are

built-up of a set of stables expertise chunks learned by our

approach. These stable expertise chunks can resist to the

context evolution and give a better generalization ability to the

prediction model.

2. The attributes where the conditional probability distribution is

near-uniform, have to be carefully studied and even considered

as bad predictors; A first example of such an attribute in the

problem of CTG prediction is the FM’s attribute (i.e., the

number of fetal movements per second) and a second example

in the problem of HD prediction is the CHOL’s attribute (i.e.,

serum cholesterol in mg/dl). Both attributes keep a near-

uniform distribution of conditional probabilities in all the

derived classifiers.

3. The attributes that are build-up of stables expertise chunks and

with conditional probability distribution constantly different

from a normal one can be considered as good predictors.

4. By exploring the resulting BCs of many runs of our algorithm

for both HD and CTG problems, we realized that the FHRBL’s

attribute (i.e., Baseline fetal heart rate) keeps the most stable

conditional probability distribution; it is mostly the same non-

uniform distribution over all the derived classifiers. Hence, we

classify the attribute FHRBL as a good CTG-based predictor of

the fetal health. Similarly, by interpreting the HD classifiers we

discovered that CPT’s attribute (i.e., Chest Pain Type) is a good

predictor of HD in a patient.

These interpretations suggest that some attributes could not be

good predictors of the targeted health problem in both HD and

CTG-based predictions. Although, these results require more

validation by experts and clinicians, the above conclusions show

that our approach can, in part, substitute a feature selection

technique.

Our approach has demonstrated an outperformance over all the

alternative approaches including ECM based methods. Our

experiment is subject to threats to validity. According to the

validity classification of Cook and Campbell [44], we to discuss the

internal, external and construct threats to the validity of results.

Figure 3. Evaluation in HD case: Prediction accuracies in the context of Hungarian population CHungarian ACO-based approach Vs. Best
model, data-combination Model, Boosting and Bagging.
doi:10.1371/journal.pone.0086456.g003
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The primary issue that affects the internal validity of our

controlled experiments is instrumentation. In our case, several

programs and tools were required to conduct the experiment,

including the machine learning tools, the data collection programs

and the ACO tool of BC combination. These tools can add

variability and negatively affect our experiment. To reduce this

threat, we chose a high quality tool to build Bayesian classifiers

and implemented a reliable ACO algorithm further tested with

inputs of different scales. A second issue affecting internal validity

is the model accuracy evaluation choice and whether it yields what

it claims to measure. As discussed in Section 4.2.5 Youden’s J-index

is well suited to classification problems in health care domain,

where data is likely to be unbalanced with respect to the health

problem to predict. The accuracy function was well-defined and

also tested on a wide set of classifiers.

Threats to external validity limit the ability to generalize the

results of the experiment to industrial practice. In order to avoid

such threats, we applied our approach to two different prediction

problems namely, HD disease and Cardiotography-based predic-

tions. Four experiments were conducted in four different contexts.

In each experiment, the proposed ACO algorithm was applied on

a completely different and unseen dataset collected in different

locations in the world. In addition, the performance of our

approach achieved in each context is compared with state of the

art ECM methods. Nevertheless, it is necessary to replicate the

application of our approach on problems from different fields

whenever data is available. Besides, applying our approach to

other types of models will strengthen its generalizability. To avoid

problems that affect our ability to draw correct conclusions, we

used tests with high statistical power and rigorous techniques to

estimate results; in particular, we precisely estimated classifier

accuracy using 10-fold cross-validation. Null hypotheses were

rejected, in all the independent studied contexts, with strong

significance levels in the medical field, i.e., an error rate lower than

5% with the t-test.

Conclusion

We proposed a particular solution based on ACO for a new idea

of combining prediction models. Unlike the traditional ways of

model combination, our idea does not consist in combining the

models’ outputs but it rather combines structural elements within

the models. In fact, the new idea and subsequently the particular

solution are based on collecting the best chunks of expertise buried

in individual existing models and combining them with respect to

given circumstances. The combination process is driven by data

reflecting the context where the resulting prediction model will be

applied. The combinatorial complexity of our solution was helped

by an ACO algorithm customized for combining Bayesian

Classifiers. We applied the proposed solution to two prediction

problems, namely, the heart disease and the cardiotography-based

predictions. The evaluation of the ACO-based approach in four

different contexts has shown promising results. In particular, the

Bayesian Classifier derived by our approach performs significantly

better than both the best existing expert and the expert built on all

Figure 4. Evaluation in HD case: Prediction accuracies in the context of Long-Beach population CLong{Beach ACO-based approach Vs.
Best model, data-combination Model, Boosting and Bagging.
doi:10.1371/journal.pone.0086456.g004
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the ‘‘available data’’. For the sake of valid contribution, our

approach is compared to two well-known ensemble classifiers

methods namely Boosting and Bagging. The results clearly show,

in all the contexts, that the proposed ACO-based approach is at

least as good as the Boosting and Bagging methods. With respect

to the second objective of this work, i.e. the interpretability, the

resulting classifiers of our approach show a potential of explaining

their predictions. In particular, by enabling the selection of good

predictors. Finally, the transparency of the learned clinical

knowledge can help in deciding upon the appropriate treatment

for heart disease or fetal pathologies, and improving the

communication with patients. Future work will be devoted to

the application of our approach on larger context data on the one

hand, and on larger diversity of individual classifiers learned on

data collected from different populations on the other hand.

Furthermore, this new approach raises many new research

question about its application to other types of model and to

other prediction problems. Finally, a better calibration of the used

ACO algorithm is needed to derive higher resulting model

performance.

Acknowledgments

The authors would like to acknowledge the continuous assistance from the

Office of the Deputy Vice Chancellor for Research and Graduate Studies,

United Arab Emirates University (UAEU).

Author Contributions

Conceived and designed the experiments: SB EMH NZ. Performed the

experiments: SB. Analyzed the data: SB EMH NZ EAK. Contributed

reagents/materials/analysis tools: SB EMH EAK. Wrote the paper: SB

EMH NZ EAK. Contributed to the conceptual idea of the study and

directed the writing of the manuscript: SB NZ.

References

1. Fenton N, Neil M (1999) A critique of software defect prediction models. IEEE

Transactions on Software Engineering 25: 675–689.

2. Oza N, Tumer K (2008) Classifier ensembles: Select real-world applications.

Information Fusion 9: 4–20.

3. Briand LC, Basili VR, Hetmanski CJ (1993) Developing interpretable models

with optimized set reduction for identifying high-risk software components.

IEEE Trans Softw Eng 19: 1028–1044.

4. Gray A, MacDonell S (1997) A comparison of techniques for developing

predictive models of software metrics. Information and Software Technology 39:

425–437.

5. Fenton N, Krause P, Neil M (2002) Software measurement: Uncertainty and

causal modelling. IEEE Software 10: 116–122.

6. Van Belle VM, Van Calster B, Timmerman D, Bourne T, Bottomley C, et al.

(2012) A mathematical model for interpretable clinical decision support with

applications in gynecology. PloS one 7: e34312.

Figure 5. Evaluation in CTG case: Prediction accuracies in the CTG context, ACO-based approach Vs. Best model, data-combination
Model, Boosting and Bagging.
doi:10.1371/journal.pone.0086456.g005

ACO4BC

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e86456



7. Fu G, Nan X, Liu H, Patel R, Daga P, et al. (2012) Implementation of multiple-

instance learning in drug activity prediction. BMC Bioinformatics 13: S3.
8. Moerland P, Mayoraz E (1999) DynaBoost: Combining boosted hypotheses in a

dynamic way. Technical report, IDIAP, Switzerland.

9. Meir R, El-Yaniv R, Ben-David S (2000) Localized boosting. In: Proceedings of
the 13th Annual Conference on Computational Learning Theory. 190–199.

10. Oza N, Tumer K (2008) Classifier ensembles: Select real-world applications.
Information Fusion 9: 4–20.

11. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2012) A review

on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on 42: 463–484.
12. Perrone M, Cooper L (1993) Artificial Neural Networks for Speech and Vision,

London: Chapman and Hall, chapter When networks disagree: Ensemble
Methods for hybrid neural networks. 126–142.

13. Rokach L (2010) Ensemble-based classifiers. Artificial Intelligence Review 33: 1–

39.
14. Alkoot F, Kittler J (1999) Experimental evaluation of expert fusion strategies.

Pattern Recognition Letters 20: 1361–1369.
15. Das R, Turkoglu I, Sengur A (2009) Effective diagnosis of heart disease through

neural networks ensembles. Expert systems with applications 36: 7675–7680.

16. Zaki N, Wolfsheimer S, Nuel G, Khuri S (2011) Conotoxin protein classification
using free scores of words and support vector machines. BMC Bioinformatics

217.
17. Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System
Sciences 55: 119–139.

18. Merz C (1998) Classification and Regression by Combining Models. Ph.D.

thesis, university of California Irvine.
19. Quinlan J (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.

20. Tsipouras M, Exarchos T, Fotiadis D, Kotsia A, Vakalis K, et al. (2008)
Automated diagnosis of coronary artery disease based on data mining and fuzzy

modeling. Information Technology in Biomedicine, IEEE Transactions on 12:

447–458.
21. van Gerven M, Jurgelenaite R, Taal B, Heskes T, Lucas P (2007) Predicting

carcinoid heart disease with the noisy-threshold classifier. Artificial Intelligence
in Medicine 40: 45–55.

22. Chen J, Huang H, Tian S, Qu Y (2009) Feature selection for text classification
with naı̈ve bayes. Expert Systems with Applications 36: 5432–5435.

23. Lounis H, Ait-Mehedine L (2004) Machine-learning techniques for software

product quality assessment. In: QSIC. IEEE Computer Society, 102–109.
24. Fenton N, Ohlsson N (2000) Quantitative analysis of faults and failures in a

complex sofware system. IEEE Transactions on Software Engineering 26: 797–
814.

25. Van Belle VMCA, Van Calster B, Timmerman D, Bourne T, Bottomley C, et

al. (2012) A mathematical model for interpretable clinical decision support with
applications in gynecology. PLoS ONE 7: e34312.

26. Adriaenssens V, Baets BD, Goethals PL, Pauw ND (2004) Fuzzy rule-based
models for decision support in ecosystem management. Science of The Total

Environment 319: 1–12.

27. Lee D, Lee J, Kang T (1996) Adaptive fuzzy control of the molten steel level in a

strip-casting process. Control Engineering Practice 4: 1511–1520.
28. Bouktif S, Ahmed F, Khalil I, Antoniol G, Sahraoui H (2010) A novel composite

model approach to improve software quality prediction. Information and

Software Technology 52: 1298–1311.
29. John GH, Langley P (1995) Estimating continuous distributions in bayesian

classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence. 338–345.

30. Deneubourg J, Aron S, Goss S, Pasteels J (1990) The self-organizing exploratory

pattern of the argentine ant. Journal of insect behavior 3: 159–168.
31. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Computa-

tional Intelligence Magazine, IEEE 1: 28–39.
32. Ayari K, Bouktif S, Antoniol G (2007) Automatic mutation test input data

generation via ant colony. In: Proceedings of the 9th annual conference on
Genetic and evolutionary computation. ACM, 1074–1081.

33. Bouktif S (2005) Improving software Quality prediction by combining and

adapting predictive models. Ph.D. thesis, Montreal University.
34. Bouktif S, Sahraoui HA, Antoniol G (2006) Simulated annealing for improving

software quality prediction. In: Genetic and Evolutionary Computation
Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8–

12, 2006. ACM, 1893–1900.

35. Bouktif S, Ahmed F, Khalil I, Antoniol G (2010) A novel composite model
approach to improve software quality prediction. Information and Software

Technology 52: 1298–1311.
36. Youden WJ (1961) How to evaluate accuracy. Materials Research and

Standards, ASTM.
37. Organization HW (2011) The top 10 causes of death. Available: http://www.

who.int/mediacentre/factsheets/fs310/en/index.html. Accessed 2013 Feb 21.

38. WHO (2013) Community-based efforts to reduce blood pressure and stroke in
Japan. Available: http://www.who.int/features/2013/japan_blood_pressure/

en/index.html. Accessed 2013 May 17.
39. WHO (2013) Community-based efforts to reduce blood pressure and stroke in

Japan. Available: http://www.who.int/features/2013/japan_blood_pressure/

en/index.html. Accessed 2013 May 17.
40. Detrano R, Janosi A, Steinbrunn W, Pfisetrer M, Schmid J, et al. (1987)

International application of a new probability algorithm for the diagnosis of
coronary artery disease. American Journal of Cardiology 64: 304––410.

41. Gennari JH, Langley P, Fisher D (1989) Models of incremental concept
formation. Artificial Intelligence 40: 11–61.

42. Ayres-de Campos D, Bernardes J, Garrido A, Marques-de Sa J, Pereira-Leite L

(2000) Sisporto 2.0: a program for automated analysis of cardiotocograms.
Journal of Maternal-Fetal and Neonatal Medicine 9: 311–318.

43. Ramoni R, Sebastiani P (1999) Robust bayesian classification. Technical report,
Knowledge Media Institute, the Open University.

44. Cook TD, Campbell DT, Day A (1979) Quasi-experimentation: Design &

analysis issues for field settings. Houghton Mifflin Boston.
45. Zhou ZH, Jiang Y (2004) Nec4.5: neural ensemble based c4.5. Knowledge and

Data Engineering, IEEE Transactions on 16: 770–773.
46. Bradley AP (1997) The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern recognition 30: 1145–1159.

ACO4BC

PLOS ONE | www.plosone.org 15 February 2014 | Volume 9 | Issue 2 | e86456


