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Introduction

The p53 tumor suppressor can cause cell cycle arrest, 
apoptosis, and cellular senescence depending on cellular 
context.1-5 Although this is sufficient to explain its anti-
cancer effect, p53 can suppress cancer independently of these 
activities.6,7 Noteworthy, p53 suppresses anabolic metabolism5-11 
expression of repeats and noncoding RNAs,12 NFκB,13 the mTOR 
pathway,9,14-20 and conversion from quiescence to senescence.21,22 
p53 may promote and suppress senescence.23-31 While arresting 
cell cycle, p53 itself does not promote cellular senescence. It is 
growth-promoting pathways such as PI3K/mTOR that convert 
p53-induced cell cycle arrest into senescence.21,32-35 By inhibiting 
the mTOR pathway, p53 can suppress conversion from arrest to 
senescence.21,22,36 Senescent microenvironment favors cancer.37-46 
Noteworthy, overexpression of p53 under physiological regulation 
increases lifespan and decreases cancer incidence.47 Cancer is an 
age-related disease and its incidence increases exponentially with 
age. Aging is the most important “risk factor” of cancer and any 
interventions that slow aging also delay cancer.44,48-52 Rapamycin 
slows down aging in numerous organisms, including those that 
do not die from cancer.53-59 As an anti-cancer and anti-aging 
agent, rapamycin can delay cancer not only directly but also 
indirectly: by slowing down aging. Mice lacking p53 die from 
cancer early in life.60-62 Rapamycin extends lifespan and delays 
cancer in p53+/− and p53−/− mice.63-65 In p53−/− mice both direct 

(anti-cancer) and indirect (anti-aging) models identically predict 
that rapamycin will delay cancer and extend life span. There is a 
hint for indirect effects: rapamycin is more effective when given 
early in life.63 (In contrast, classic anti-cancer agents such as 
radiation promote cancer, especially when given early in life.) Do 
p53−/− mice have metabolic and tissue alterations that may favor 
both aging and cancer? It was already shown that p53−/− mice are 
characterized by pro-inflammatory syndrome66,67 and accelerated 
atherosclerosis.68-70 Here we investigated the insulin/Akt/
mTOR pathway in p53−/− mice. Conventionally, we performed 
measurements after overnight fasting. We also included a second 
condition: radiation. In cell culture, in order to affect mTOR 
pathway, p53 should be induced. Therefore, we expected that the 
difference between normal and p53−/− mice would be exacerbated 
by radiation. For consistency, all mice were fasted overnight 
before examination.

Results

AKT/mTOR pathway in p53-knockout mice
First we measured phosphorylated AKT and S6 in the hearts 

(Fig. 1). We previously found that the heart muscle is suitable 
to measure these markers.71 Levels of Akt phosphorylation at 
Thr-308 were not significantly different in p53-knockout mice 
(Fig. 1). Phospho-S6 (p-S6), the most validated target of the 
mTOR pathway, was significantly higher in p53-knockout mice 
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(P = 0.0108). Radiation tended to decrease p-S6 in 
normal mice but not in p53-knockout mice (Fig. 1).

We next measured p-Akt-Thr-308 and p-S6 in 
the liver. Basal levels of p-Akt (Thr-308) and p-S6 
were not changed in the livers of p53-knockout 
mice (Fig. 2). Radiation dramatically increased 
hepatic p-AKT (Thr-308) in both types of mice 
(Fig. 2A and C). However, this was not translated 
into phosphorylation of S6 in normal mice (Figs. 2 
and 3). In normal mice, there was a dose-dependent 
decrease in p-S6 by radiation, which reached 
statistical significance at 10 Gray (Fig. 3B). While 
activating Akt (Thr-308) in a p53-independent 
manner (Fig. 2C), radiation decreased p-S6 in a p53-
dependent manner (Fig. 3B). Phosphorylation of 
Akt at Ser-473, a site phosphorylated by mTORC2, 
was not significantly affected by radiation in the 
livers of normal mice (Fig. 3).

Metabolic alterations in p53-knockout mice
Given that mTOR drives cellular mass growth, 

hypertrophy of p53−/− mice was expected. In 
agreement, p53−/− mice were heavier than normal 
(p53+/+) mice (Fig. 4A). The difference was not 
dramatic but still statistically significant (P = 
0.0355). Noteworthy, fasting leptin levels showed 
the opposite tendency (Fig. 4B), in contrast to 
a strong positive correlation between weight 
and leptin in mice of the same genotype shown 
previously.71,72 Since leptin is secreted by fat cells and 
reflects fat content, p53-knockout mice seem to be 
more hypertrophic rather than fatter. Importantly, 
there was a positive correlation between body weight 
and p-S6 levels in the heart tissue (Fig. 4C). Fasting 
levels of glucose did not differ between p53-deficient and normal 
mice (Fig. 4D). Fasting insulin levels were increased in p53−/− 
mice (Fig. 4E). Noteworthy, levels of insulin and IGF-1 were not 
altered in younger p53−/− mice, when measured without fasting 
(not shown). This indicates that hyperinsulinemia is detectable 
in certain conditions, depending on the age and fasting. We next 
irradiated mice to induce p53. Radiation did not affect glucose 
levels in both types of mice and increased insulin levels only 
in normal mice (Fig. 4). Levels of IGF-1, a marker associated 
with accelerated aging,73-75 tended to be increased in p53−/− mice, 
reaching a statistical significance after radiation (Fig. 4F).

Discussion

We showed that nutrient- and insulin-sensing pathways 
are slightly dysregulated in p53−/− mice. Our study provides a 
glimpse into the complexity of p53-dependent regulation of 
mTOR in the organism. There were tissue-specific (the liver vs. 
the heart) differences in phosphorylation of S6 and Akt. P-S6 
levels were increased in the heart muscle of p53−/− mice. Increased 
levels of p-S6 predict systemic alterations: increased body growth 
and insulin levels. In fact, p53−/− mice were slightly heavier than 
normal mice, consistent with the role of mTOR in growth. 

Also, activated mTOR can cause insulin resistance by feedback 
inhibition of insulin signaling.76,77 In fact, basal levels of fasting 
insulin were increased in p53−/− mice, consistent with resistance 
to insulin, given that levels of glucose were unchanged. The 
mTOR/S6K pathway is involved in aging.78 Hyperinsulinemia 
due to insulin resistance may accelerate aging and cancer.79 In 
cell culture, in order to inhibit the mTOR pathway, p53 should 
be induced.21 Therefore, mice were irradiated to imitate the cell 
culture conditions and to exacerbate p53-dependent trends. 
Indeed, in irradiated p53−/− mice, levels of IGF-1 were significantly 
increased compared with irradiated normal mice. Higher levels 
of IGF-1 are associated with accelerated aging in mice and 
humans.80-84 The most striking alteration caused by radiation was 
phosphorylation of Akt at Thr-308 in the livers of both types of 
mice, thus in a p53-independent manner (Fig. 5). In response to 
insulin and IGF-1, Thr-308 is normally phosphorylated, which 
leads to activation of Akt (Fig. 5). In normal mice, radiation 
induced Thr-308 phosphorylation and decreased p-S6 (Fig. 5).

Metabolic alterations in normal tissues of p53−/− mice can 
be termed oncophilic. The main cause of cancer in p53−/− mice 
is the loss of cell cycle control in cells that give rise to tumors. 
Also, loss of p53 may activate mTOR in tumor cells, given that 
activation of the PI-3K/mTOR pathway is the most common 

Figure 1. Levels of p-s6 and p-aKT in the hearts of normal (p53+/+) and p53-knockout 
(p53−/−) mice. (A) Immunoblot analysis of protein lysates from the hearts of 3.5-mo-old 
normal (p53+/+) and p53-knockout (p53−/−) mice, which were untreated (control) or irra-
diated with 10 gray (Rad), fasted overnight, and sacrificed. Numbers indicate individual 
mice. (B and C) Quantitave analysis of the data shown in (A). Quantified intensities 
of phosphorylated s6 (p-s6) signal (left panel) and signal of aKT phosphorylated at 
Thr308 (right panel) presented as mean ± se. P values indicate statistically significant 
difference in p-s6 levels between p53+/+ vs p53−/− mice.
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alteration in cancer.85,86 In addition, our data suggest 
that there may be also organism-dependent factors 
of accelerated tumorogenesis. This can explain 
why calorie restriction, which is known to inhibit 
mTOR and decelerate organismal aging, delays 
cancer, and prolongs life span in p53−/− mice.87 
Similarly, rapamycin delayed cancer in p53+/− and 
p53−/− mice.63,64 Noteworthy, the effect of rapamycin 
was blunted when it was used later in life, consistent 
with its indirect anti-cancer effect.63 In conclusion, 
mice lacking p53 is characterized by oncophilic 
metabolism, an additional factor fostering 
carcinogenesis.

Materials and Methods

Mice
Animal studies were conducted in accordance 

with the regulations of the Committee of Animal 
Care and Use at Roswell Park Cancer Institute. In 
the study 15 normal (p53+/+) 3.5-mo-old C57B1/6 
male and 9 p53-knockout 3.5-mo-old male mice 
were used. The colony of p53-knockout mice on 
a C57B1/6 background (obtained from Jackson 
Laboratories) was maintained by crossing p53+/− 
females with p53−/− males followed by genotyping 
of the progeny by PCR as described previously.88 
Animals were randomly assigned to control and 
irradiated groups. Normal (p53+/+) mice were divided 
into 3 groups: control (untreated) (n = 5), irradiated 
with 5 gray (n = 5), and irradiated with 10 gray (n = 
5). p53−/− mice were divided into 2 groups: control 
(n = 4) and irradiated with 10 gray (n = 5). All mice 
were fasted overnight and sacrificed. Fasted blood 
and organs were collected. Plasma was prepared and 
used for biochemical analyses.

Immunoblot analysis
Tissues were homogenized in Bullet blender 

using stainless steel 0.5 mm diameter beads (Next 
Advantage, Inc.) and RIPA lysis buffer supplemented 
with protease and phosphatase inhibitors tablets 
(Roche Diagnostics). Lysates were cleared by 
centrifugation at 4 °C at 13 000 rpm. Equal amounts 
of protein were separated on gradient Criterion 

Figure 2. Levels of p-s6 and p-aKT in the livers of normal (p53+/+) and p53-knockout 
(p53−/−) mice. (A) Immunoblot analysis of protein lysates from the livers of 3.5-mo-old 
normal (p53+/+) and p53-knockout (p53−/−) mice, which were untreated (control) or irra-
diated for 1 h (Rad), fasted overnight and sacrificed. Note: p53−/− mice in Rad group 
received 10 gray radiation; p53+/+ Rad group received 5 gray (mice 18 and 19) or 10 gray 
(mice 23 and 24) radiation. Numbers indicate individual mice. (B and C) Quantitative 
analysis of data shown in (A). Quantified intensities of phosphorylated s6 (p-s6) signal 
(left panel) and signal of aKT phosphorylated at Thr308 (right panel) presented as mean 
± se. P < 0.0001 values indicate statistically significant difference between respective 
control and irradiated groups using two-tailed t test analysis.

Figure  3. p-s6 and p-aKT (s473) in the livers of normal 
(p53+/+) mice: control and irradiated. (A) Immunoblot anal-
ysis of protein lysates from the livers of 3.5-mo-old normal 
(p53+/+) mice, which were untreated (control) or irradiated 
for 1 h with 5 gray (Rad [5]) or 10 gray (Rad [10]), fasted 
overnight, and sacrificed. (B and C) Quantitative analysis 
of data shown in (A). Quantified intensities of phosphory-
lated s6 (p-s6) signal (left panel) and signal of aKT phos-
phorylated at ser473 (right panel) presented as mean ± 
se. P = 0.0115 value indicates statistically significant differ-
ence between control and irradiated with 10 gray groups 
using two-tailed t test analysis.
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Figure 4. Metabolic profile of 3.5-mo-old normal (p53+/+) and p53−/− mice. (A) Weight (g) of normal (n = 15) and p53-knockout (n = 9) mice. Data present 
mean ± se. (B) Fasting leptin levels of control normal (n = 5) and p53-knockout (n = 4) mice presented as mean ± se. (C) Correlation between weight 
and intensity of p-s6 signal in the heart of control normal and p53-knockout mice. r, Pearson coefficient. (D) Glucose levels (fasting) in normal and 
p53-knockout mice: control and irradiated—presented as mean ± se. (E) Insulin levels (fasting) in normal and p53-knockout mice: control and irradi-
ated—presented as mean ± se. P = 0.0392 and P = 0.0442 values indicate statistically significant difference between control and combined irradiated 
groups of p53+/+ mice and control and irradiated groups of p53−/− mice, respectively. (F) IGF1 levels in plasma of normal and p53-knockout mice: control 
and irradiated—presented as mean ± se. P = 0.0115 value indicated statistically significant difference between control and combined irradiated groups 
of p53+/+ mice.

gels (BioRad). Primary antibodies used: rabbit anti-phospho 
S6(Ser 240/244), anti-phospho AKT(Ser473), and phospho 
AKT(Thr308) (Cell Signaling Biotechnology); monoclonal anti-
β-actin-peroxidase (Sigma-Aldrich).

Glucose levels in blood plasma
Glucose levels in blood plasma were measured using Accu-

Chek Aviva strips (McKesson).
Insulin concentration in blood plasma
Insulin concentration in blood plasma was measured using 

Insulin (Mouse) Ultrsensitive ELISA kit (ALPCO Diagnostics) 

according to manufacturer’s protocol. Data were analyzed using 
range of insulin standards and four parameter logistic fit.

IGF1 concentration in blood plasma
IGF1 concentration in blood plasma was determined using 

IGF1 (Mouse/Rat) ELISA kit (ALPCO Diagnostics) according 
to manufacturer’s protocol. Data were analyzed using range of 
IGF1 standards and four parameter logistic fit.

 Leptin concentration in blood plasma
Leptin concentration in blood plasma was determined using 

Mouse Leptin ELISA kit (Crystal Chem Inc.) using according 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

1186 Cancer Biology & Therapy Volume 14 Issue 12

to manufacturer’s protocol. Data were analyzed using range of 
leptin standards and four parameter logistic fit.

Statistical analyses
Statistical analyses were performed using GraphOad Prizm 

5.00 for Windows, GraphPad Software, http://www.graphpad.
com.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Figure  5. Relationship between p53 and the insulin/aKT/MTOR/s6 
pathway.
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