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ABSTRACT A normal mode analysis making use of an em-
pirical potential function including local and nonlocal (nonbonded)
interactions is performed for the bovine pancreatic trypsin inhib-
itor in the full conformational space of the molecule (1,740 de-
grees of freedom); that is, all bond lengths and angles, as well as
dihedral angles, are included for the 580-atom system consisting
of all heavy atoms and polar hydrogens. The heavy-atom fre-
quency spectrum shows a dense distribution between 3 and 1,800
cm™!, with 350 modes below 216 cm ™. Most of the low-frequency
modes, of which many have significant anharmonic character, are
found to be delocalized over the protein. The root-mean-square
amplitudes of the atomic fluctuations are calculated at 300 K from
the normal modes and compared with those obtained from a so-
lution molecular dynamics simulation based on the same potential
function; very good agreement is obtained for the variation in the
main-chain fluctuations as a function of residue number, though
larger differences occur for the side chains. The fluctuations are
generally, though not always, dominated by frequencies below 30
em™), in accord with the results of the dynamics simulation. The
vibrational contributions to the thermodynamic properties of the
protein are calculated as a function of temperature; the effects of
perturbations on the spectrum, suggested for ligand or substrate
binding, are examined. The analysis demonstrates that, in spite
of the anharmonic contributions to the potential, a normal mode
description can provide useful results concerning the internal mo-
tions of proteins.

The nature of the internal motions of proteins is a subject of
considerable interest, particularly because some of these mo-
tions are known to play an important role in protein function
(1, 2). Various theoretical and experimental methods are now
being employed to determine both the magnitudes and the time
scales of the internal motions (1-4). Molecular dynamics, in
particular, has been shown to be a powerful approach for the
study of fluctuations on the subnanosecond time scale (2, 3).
This is true because it is based on integrating the equations of
motion for the individual atoms with the exact forces corre-
sponding to a given potential function. Simulations for proteins
have shown (2, 5) that the atomic fluctuations can be separated
into local oscillations superposed on motions with a more col-
lective character. The former have a subpicosecond time scale;
the latter vary from 1 to 10 ps or longer, corresponding to fre-
quencies in the range 30 to 3 cm™.. Tt is these collective mo-
tions that introduce the variation in the magnitude of the fluc-
tuation that characterize different parts of a protein and are likely
to be of primary importance in biological function.

To examine the collective character of the fluctuations in more
detail, it is useful to apply an alternative approach, harmonic
dynamics, for analyzing the internal motions of proteins. In
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harmonic dynamics (6) it is assumed that the fluctuations of at-
oms are sufficiently small that the potential energy can be ap-
proximated as a sum of terms that are quadratic in the dis-
placements. Although this is known to be an approximation (i.e.,
molecular dynamics simulations have shown that the fluctua-
tions have anharmonic contributions) (7-9), a harmonic analysis
can, nevertheless, provide insights concerning the motional be-
havior. The frequencies and forms of the normal modes are de-
termined by diagonalizing the mass-corrected force constant
matrix. Once the frequencies and modes are known, the mag-
nitudes, times scales, and correlations of the atomic fluctua-
tions can be calculated at any temperature by summing over the
modes. Also, the harmonic model results are of direct interest
for comparison with a variety of spectroscopic measurements
(infrared, Raman, neutron scattering) and permit evaluation of
quantum effects on the fluctuations and thermodynamic prop-
erties.

In this paper, we develop the harmonic model for proteins
and apply it to the bovine pancreatic trypsin inhibitor (BPTI).
This protein was chosen for study because of the wealth of the
available experimental and theoretical information. We use the
same form of potential as was employed in the molecular dy-
namics simulations (9, 10) and include all of the degrees of free-
dom of the molecule; in the extended atom model with explicit
treatment of the polar hydrogens, there are 1,734 vibrational
frequencies, which are found to span a range from =3 to =~3,000
cm™!. Because the primary concern is with the heavy atom
fluctuations, we limited the determination of the normal modes
to the set of 900 with the lowest frequencies (less than 732 cm ™).
Special methods were developed for determining the vibra-
tional frequencies and normal modes of such a large system.
The approach developed here is general and has been applied
to other large molecules such as DNA (11). A preliminary re-
port, including a film of some BPTI modes, has been presented
previously (12).

Two recent papers have been concerned with simplified
treatments of proteins in the harmonic model; one of these
(13) employed an approximate representation of the glucagon
monomer and used a local force field (i.e., nonlocal interaction
terms were neglected), whereas the other (14) used a full po-
tential analogous to the one employed here but diagonalized
the force constant matrix without mass-weighting and re-
stricted the calculation to the space of dihedral angles.

METHOD

BPTI was treated as a system of 580 atoms; that is, 458 heavy
atoms, including 4 interior water oxygens, and 122 polar hy-
drogen atoms capable of forming hydrogen bonds; the remain-
ing hydrogens were treated as part of the heavy atom to which

Abbreviation: BPTI, bovine pancreatic trypsin inhibitor.
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they are attached (extended atom model). The potential energy
function used is essentially that included in a general program
(CHARMM) (10) for energy minimization and molecular dy-
namics; it consists of local terms associated with bond lengths,
bond angles, dihedral angles, and improper dihedral angles and
nonlocal terms associated with van der Waals, electrostatic, and
hydrogen bonding interactions; a distance-dependent dielectric
constant was used for the electrostatic terms, which were summed
without long-range truncation.

To obtain a structure for the normal mode calculation, it was
necessary to refine the x-ray crystal structure (15). Although it
is usual to carry out normal mode calculations for the minimal
energy conformation, for proteins energy minimization can give
rise to problems; in particular, the energy-minimized structure
is expected to approximate the contracted zero-temperature
structure, whose dynamic properties may differ significantly
from the room-temperature form (16). This is one of the reasons
that the molecular dynamics approach, in which the structural
effects of kinetic energy are included (i.e., static potentials are
replaced by potentials of mean force), is appropriate for study-
ing the fluctuations and other properties of bulk systems. To
obtain the quadratic force field expected for the protein with
its room-temperature structure, constraints were introduced
that led to a minimal energy structure close to the crystal struc-
ture; a mass-weighted atomic harmonic potential was applied
to each atom because it does not directly affect the normal modes.
Successive sets of minimizations [500 adapted basis Newton—
Raphson steps each (10)] were performed with the constraint
reduced and the reference structure updated for each set; the
final constraint constant was 0.05 kcal/mol-A? per atomic mass
(1 keal = 4.18 k]) and the overall root-mean-square (rms) de-
viation from the x-ray structure was 0.62 A. Given the resulting
structure, the normal mode and frequency calculations were
made without constraints.

Because of the large dimension of the normal mode problem
for BPTI (1,740 modes), special methods had to be developed
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for constructing and manipulating the mass-weighted second-
derivative matrix and for using it to determine the vibrational
frequencies and normal modes. Unlike other large matrix prob-
lems, where simplifications can be introduced because the di-
agonal elements are dominant, the force constant matrix for a
globular protein has large off-diagonal elements due to the
presence of nonlocal interactions in the potential function. De-
tails of the procedure, including the need to limit computer
storage and time requirements and minimize error accumula-
tion, will be given in a separate report. All of the calculations
were performed with mass-corrected Cartesian coordinates; the
use of internal coordinates can introduce difficulties for such
large systems with closed loops and nonlocal interactions.

RESULTS

The histogram in Fig. 1A shows the calculated normal mode
spectrum of BPTI, including all degrees of freedom of the 580-
atom system; the figure shows all the frequencies up to 2,000
cm ™! (hydrogen stretching frequencies are not shown); Fig. 1B
gives the cumulative distribution for the number of modes be-
low a given frequency, and Fig. 1C shows an expanded cu-
mulative distribution for the lowest 300 modes of primary in-
terest. There is an essentially continuous, though not completely
uniform, distribution of frequencies between 3.1 and 1,200 cm™.
Between 1,200 cm ™! and 1,800 cm™?, the frequencies tend to
come in groups, many of which are dominated by bond-stretch-
ing vibrations. There are 20 modes between 3.1 and 13 cm™
and there is a peak in the frequency distribution near 50 cm ™.
Because the structure used was not an absolute minimum (see
above), 7 negative modes were found; energy searches along

these modes, which are all local in character, indicated that their
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Table 1. Atom-type averaged rms fluctuations
rms fluctuations, A

Normal Adjusted
Type modes modes* Dynamics
All atoms 0.776 0.555 0.714
Main chain 0.598 0.424 0.582
Side chain 0.905 0.643 0.846
(o 0.611 0.436 0.536
(o 0.712 0.517 0.662
- position 0.736 0.540 0.768
&8 position 0.841 0.626 0.912
€ position 0.996 0.837 0.970

*This column uses normal mode frequencies based on an energy search
(see text).

correct frequencies are in the range 20 to 40 cm™.

The rms atom fluctuations were calculated from the normal

modes by evaluation of the classical expression (6, 7)
. 12
(o = kr 3 2L
i W

in which @y is the vector of the projections of the ith normal
mode with frequency w; on the Cartesian components of the
displacement vector for the kth atom, kg is the Boltzmann con-
stant, and T is the absolute temperature; quantum corrections
are negligible above 50 K (7). Fig. 2 shows the normal mode
rms fluctuations calculated at 300 K and compares them with
the results of a molecular dynamics simulation of BPTI in a van
der Waals solvent (9); this simulation was used because its av-
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erage structure is closest to that employed for the normal mode
analysis. The results for main-chain and side-chain averages as
a function of residue number are given. For the main-chain
fluctuations, the molecular dynamics and normal mode values
are very similar; for the side chains, there is also a correspon-
dence, though the differences are more pronounced. The main
chain values show that the COOH terminus has large fluctua-
tions, as does the loop region at the bottom of the molecule
(residues 25-29) and the binding site in the neighborhood of
residues 14 and 38 at the top of the molecule. By contrast the
B-sheet residues (18-24, 29-35) show smaller fluctuations; the
a-helices (3-7, 47-56) are intermediate.

The origin of the differences between the molecular dynam-
ics and normal mode results is likely to have contributions from
anharmonic and solvent effects and from the difference be-
tween the average dynamics structure and that used for the nor-
mal mode analysis. The main-chain atoms apparently experi-
ence a potential of mean force that is closer to the harmenic
potential than do the side chains; because the dynamics sim-
ulation was done in a van der Waals solvent, the exterior side
chains are expected to be most perturbed. To investigate the
nature of the potential in the neighborhood of the structure
used for the harmonic model, we have done an energy search
along the low-frequency normal-mode displacements. The en-
ergy dependence showed some anharmonic contributions. Fit-
ting the resulting energies to a parabola generally led to an in-
crease in the effective frequencies, which reduces the rms
fluctuations (see Table 1); the relative values of the atomic fluc-
tuations are essentially unchanged.

Analysis of the time scale as well as the magnitude of the
fluctuations has been made for the molecular dynamics results.
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From the calculated time series and correlation functions (5),
it has been found that the atomic motions contributing to the
rms displacements generally have a small local high-frequency
component (=0.2 ps or =150 cm™) on which are superposed
motions of a more collective character with time scales ranging
from 1 to 10 ps or 30 to 3 cm ™. The present normal mode study
essentially confirms the dynamics results. Fig. 3 shows the con-
tributions of the different normal modes to the displacements
of some of the atoms whose motions were analyzed in the mo-
lecular dynamics simulations (5); also included is the fluctuation
of the radius of gyration for the molecule. In most cases, the
dominant contributions come from low-frequency modes in the
range 3 to 50 cm™?, although nonnegligible contributions come
from higher frequencies up to 130 cm™". It is evident that for
certain atoms (e.g., C*2 of Tyr-21), only a very small number
of modes are important, whereas for other atoms (e.g., Ala-16
C*, Asp-50 CP) a range of frequencies is involved; for Leu-29
C®, a mode at 44.5 cm™! makes a very large contribution.

It is of considerable interest to examine the form of the nor-
mal modes themselves. This is of particular importance for the
evaluation of the correlation between the motions of different
atoms and different groups of atoms. Analysis of the dynamics
results (5) has indicated that the larger scale motions have a col-
lective character that may involve a few neighboring atoms, a
residue, or groups of many atoms in a given region of a protein.
We show in Fig. 4 the distribution of the displacements over
residues of some of the low-frequency modes. Also included is
one of the translation modes, which clearly demonstrates the
purity of this mode, a pictural verification of the accuracy of
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the normal mode determination procedure. Most of the 300
lowest modes are highly delocalized; they are generally dis-
tributed over the entire molecule. A striking exception is one
of the “negative” modes that is localized in the loop region. The
lowest real mode (at 3.1 cm™) mirrors the overall rms fluc-
tuation (see Fig. 2). Other modes shown, although they are also
delocalized, are distributed somewhat differently over the var-
ious portions of the molecule. In considering the character of
the individual modes, it must be recognized that because of the
close spacing, relatively small effects, such as solvent damping
or external perturbations (e.g., ligand binding), can lead to sig-
nificant mode mixing. This may be of biological interest. It also
suggests that, rather than individual mode properties, those that
involve averages over a range of modes with similar frequencies
are likely to be most significant and least sensitive to anhar-
monic corrections.

Given the results of the present analysis (frequencies and
normal modes) it is possible to calculate a wide range of ex-
perimental properties, always subject to the caveat that a har-
monic model is being used. Spectral results such as infrared
and Raman frequencies follow directly, though the broadening
due to solvent damping should be included for experimental
comparisons; a point-charge model can be used for the infrared
intensities. Also, it is straightforward to determine the normal
mode contributions to motional effects involved in nuclear mag-
netic resonance (17, 18), fluorescence depolarization (19, 20),
and hydrogen exchange (21), all of which have been examined
by molecular dynamics simulations. Here we report the results
of the vibrational contribution to the thermodynamic proper-
ties. It is essential to do quantum mechanical calculations to
obtain absolute values although, as has been pointed out in a
quasi-harmonic formulation of molecular dynamics (22), clas-
sical values may be adequate for room temperature entropy dif-
ferences between conformations. In Fig. 5 we show the vibra-
tional contribution to the enthalpy, entropy, free energy, and
heat capacity as a function of temperature; values up to 2,000
K are included only to indicate the approach to the asymptotic
classical limits in the functional behavior; corrections for ne-
glect of the nonpolar hydrogens have not been made. Of par-
ticular interest is the low-temperature heat capacity (see Inset),
which is sensitive to the density of states in the frequency range
of interest. Although no measurements on BPTI exist, heat ca-
pacity measurements have been in the range of 1 to 20 K for
polyglycine (23) and between 10 and 310 K for anhydrous in-
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sulin and a-chymotrypsin (24). Room-temperature data for a
number of proteins in solution (25) yield C,, equal to 0.32 * 0.2
cal/K-g; the calculated vibrational C, is 0.25 cal/K-g. The cal-
culated value of dC,/dT at 300 K is 0.0011 cal/K>g, whereas
the measured values range from 0.001 to 0.002 cal/k*g.

It has been suggested (26) that binding of ligands and sub-
strates can have a significant effect on the thermodynamic
properties by perturbing the low-frequency vibrations of the
protein; e.g., for BPTI some change might be expected on
binding to trypsin. As a model for this effect, we compare the
results obtained for the directly calculated and adjusted modes,
the latter corresponding to the “perturbed” system with higher
frequencies. At 100 K, the vibrational free energy changes from
—41.5 to —37.7 kcal/mol in the presence of the perturbation;
at 300 K, the values are —336.4 and —325.1 kcal/mol, re-
spectively. At all temperatures the vibrational enthalpy in-
creases while the entropy decreases, leading to a significant
destabilizing effect on the system. The change in enthalpy con-
trasts with that assumed in previous discussions (26), due to the
fact that we have included the zero-point contribution. These
considerations can be applied to systems such as hexokinase, for
which inelastic neutron scattering has indicated that there is a
change in the low-frequency spectrum on ligand binding (27).

CONCLUSIONS

This paper provides a complete normal mode analysis for a pro-
tein, BPTI. All degrees of freedom of the main-chain and side-
chain atoms (bond lengths, bond angles, and dihedral angles)
were included in the calculation. The present study is of special
interest because it uses the same form of potential function as
has been employed in a series of energy minimization and mo-
lecular dynamics studies of this molecule.

The calculated normal mode frequencies range between 3.1
and 3,200 cm ™, with an almost continuous distribution below
1,200 cm™%; a peak in the density of states occurs near 50 cem L
Most of the low-frequency modes are highly delocalized, sug-
gesting that correlated fluctuations occur in the protein; this is
in accord with molecular dynamics results (ref. 5 and unpub-
lished calculations). The rms atomic fluctuations calculated from
the normal modes behave similarly to those from a molecular
dynamics simulation; particularly for the main chain, the vari-
ation of the fluctuations as a function of residue number is nearly
identical. Further, the frequency distribution of the modes that
make the dominant contributions to the fluctuations (3 to 30
cm™Y) is in accord with the estimates from molecular dynamics.
This agreement provides evidence for the utility of a normal
mode treatment for the analysis of the internal motions of pro-
teins.

The dense distribution of modes in the low-frequency region
(150 modes in the range 3 to 60 cm™") and approximately 350
modes below 200 cm ™!, which corresponds to kgT at room tem-
perature, is of considerable interest. All of these will be pop-
ulated at room temperature and can serve as energy sources for
structural change and enzymatic activity. It is just these low-
frequency modes that tend to be highly delocalized. As already
suggested from molecular dynamics results (5), this makes them
candidates for the transmission of information from one part of
the molecule to another, due to binding or solvent perturba-
tions or even amino acid substitutions via natural or artificially
induced mutations.

Anharmonic effects, which molecular dynamics has shown to
be important in protein motions, are neglected in the normal
mode calculation. In particular, a molecular dynamics simu-
lation samples many minima in the multidimensional config-
uration space, whereas the harmonic model is restricted to a
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single minimum. The present results suggest that for certain
motional properties, especially those involving averages over
many modes, the harmonic model is a useful first approxima-
tion; this is certainly correct at low temperatures and in BPTI
it appears true even at room temperature. Apparently, the ef-
fective potentials seen by many of the atoms or groups of atoms
are sufficiently similar for the different minima that the relative
values of the fluctuations are preserved. Adjustment of the force
constants to account for some anharmonic contributions can ex-
tend the range of the normal mode treatment [“quasi-harmonic -
model” (22)]. Phenomena, such as ring flips or larger rear-
rangements involving barriers, are clearly outside the harmonie
realm though even here the normal mode model may provide
some insights. Whether it will be fruitful to approximate pro-
tein motions as involving fluctuations in multidimensienal wells
on a short time scale with transitions to other wells on a longer
time scale awaits the results of future studies.
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