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Abstract

To function as intended in vivo, a majority of biopharmaceuticals require specific glycan distributions. However, achieving a
precise glycan distribution during manufacturing can be challenging because glycosylation is a non-template driven cellular
process, with the potential for significant uncontrolled variability in glycan distributions. As important as the glycan
distribution is to the end-use performance of biopharmaceuticals, to date, no strategy exists for controlling glycosylation
on-line. However, before expending the significant amount of effort and expense required to develop and implement on-
line control strategies to address the problem of glycosylation heterogeneity, it is imperative to assess first the extent to
which the very complex process of glycosylation is controllable, thereby establishing what is theoretically achievable prior
to any experimental attempts. In this work, we present a novel methodology for assessing the output controllability of
glycosylation, a prototypical example of an extremely high-dimensional and very non-linear system. We first discuss a
method for obtaining the process gain matrix for glycosylation that involves performing model simulations and data
analysis systematically and judiciously according to a statistical design of experiments (DOE) scheme and then employing
Analysis of Variance (ANOVA) to determine the elements of process gain matrix from the resulting simulation data. We then
discuss how to use the resulting high-dimensional gain matrix to assess controllability. The utility of this method is
demonstrated with a practical example where we assess the controllability of various classes of glycans and of specific
glycoforms that are typically found in recombinant biologics produced with Chinese Hamster Ovary (CHO) cells. In addition
to providing useful insight into the extent to which on-line glycosylation control is achievable in actual manufacturing
processes, the results also have important implications for genetically engineering cell lines design for enhanced
glycosylation controllability.
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Introduction

Background and Motivation
With a US market exceeding $99 billion in 2011 and an

expected steady increase in future sales [1], biopharmaceuticals

represent the largest growing class of therapeutics. Many

biopharmaceuticals, such as the therapeutic monoclonal antibod-

ies Herceptin and Avastin, are produced as recombinant proteins

from Chinese hamster ovary (CHO) cells that are cultivated in

bioreactors [2]. As with other manufactured products, these

therapeutic proteins are effective only when their product quality

attributes (bioactivity, potency, purity, etc.) lie within a specific

range of values. Of the many factors that affect the quality and

bioactivity of these proteins, arguably one of the most important is

glycosylation—a post-translational modification in which a car-

bohydrate chain, termed a glycan, is added to a protein and

modified within the endoplasmic reticulum and Golgi apparatus of

a cell [3–6]. Due to the pharmacokinetic effects of the various

sugar monomers, many therapeutic proteins validated for human

use must have a precise distribution of glycans (i.e., specific

percentages of glycans with specific sugar monomers such as

galactose, sialic acid, or fucose) in order to function as intended in

vivo [7]. However, unlike other cellular processes such as DNA

replication and protein production, glycosylation has no master

template. As a result, glycan formation and attachment to the

protein are subject to variability and both are often non-uniform.

Consequently, regulatory agencies, such as the Food and Drug

Administration (FDA) and European Medicines Agency (EMA),

are encouraging biopharmaceutical manufacturers to control

glycosylation on-line during production [8]. To date, on-line

glycosylation control has yet to be implemented in the biophar-

maceutical industry for a variety of reasons, mostly attributable to

the complexity of these bioprocesses, the non-availability of on-line

measurements, and the lack of comprehensive control paradigms

tailor-made for such processes.

Before developing and implementing on-line control strategies

to address the problem of glycosylation heterogeneity, however, it

is imperative first to answer a fundamental question: Is the process

of glycosylation intrinsically controllable? This may be stated

mathematically as follows: let x be the vector of the relative
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percentages of each glycoform or glycan class; to assess control-

lability, determine if x can be directed from any initial state

x(0) = x0 to any arbitrarily specified desired final state xf, in finite

time, via admissible manipulations of available process variables

and operating conditions. Such an assessment allows one to

determine the degree to which the process of glycosylation can be

controlled to yield any desired glycan distribution; it provides a

theoretical basis for determining the best achievable control. It is

crucial to perform this analysis prior to controller design because

even a perfectly designed controller cannot drive the process to the

desired set-point if that set-point is intrinsically unachievable.

Determining System Controllability
Consider a general linear lumped parameter system with n

outputs, y, and m inputs, u, represented in state-space form as:

dx

dt
~AxzBuzCd

y~Cx

where x is the nx-dimensional state vector, and d, the nd-

dimensional disturbance vector. The controllability of such a

system is determined directly from the n x nm ‘‘controllability

matrix’’ Lc defined as

Lc: B AB A2B � � � An{1B
� �

[9]: the process is fully controllable if Lc is of rank n; if Lc is not of

full rank n, then the rank r (r,n) of Lc indicates the number of

controllable system modes. Such controllability analyses and

variations thereof are routinely carried out for chemical processes

to assess attainable operation objectives and to improve dynamic

performance [10–14]. Controllability analysis has also been used

for continuous bioreactors to determine control configurations

most conducive to reducing the occurrence of bioreactor washout

(Zhao and Skogestad 1997).

Unfortunately, standard controllability analysis techniques

cannot be applied to the glycosylation process. Even though there

is sufficient mechanistic knowledge for developing high-fidelity

mathematical models of glycosylation (see, for example, the

models proposed by Umaña and Bailey [15]; Krambeck and

Betenbaugh [16]; Kontoravdi [17]; Hossler et al. [18]; and del Val

et al. [19]), the convoluted reaction schemes, complex network

architecture of approximately 23,000 reactions, and almost 8,000

resulting glycoforms, combine to dictate that such a mechanistic

mathematical model will be exceedingly high-dimensional, com-

plex, and non-linear, and hence severely unwieldy and analytically

intractable. It is entirely impossible to carry out standard theoretical

closed-form, state-space controllability analysis with such models.

Assessing the controllability of glycosylation appropriately there-

fore requires an alternate method.

The approach we propose in this paper is based upon the use of

an appropriately determined process gain matrix to assess output

(rather than state) controllability at operating points of interest.

The proposition is predicated upon the fact that for nonlinear

processes of practical importance, in a sufficiently small neighbor-

hood of the process operating condition of interest, the map

between the input and output variables provides a valid (albeit

linearized) representation of the process gain in that region. Also,

since in general, the achievable output space is simply a

transformation of the permissible input space by the process gain

matrix [20], an appropriately determined process gain matrix can

be used to assess the controllability of a nonlinear process in any

arbitrarily small neighborhood of the operating condition of

interest. The primary challenge is therefore two-fold: (i) how to

obtain appropriate process gain matrices for exceedingly high-

dimensional, extremely complex and highly non-linear systems,

and (ii) how to employ the extremely high-dimensional gain matrix

to assess controllability.

In what follows, we discuss first a method for obtaining the

process gain matrix of highly non-linear systems via model

simulations carried out in a systematic and judicious manner

according to a statistical design of experiments (DOE) scheme. We

then discuss how singular value decomposition of the gain matrix

can be used to assess the system’s output controllability at the

operating point of interest. The practical utility of this method is

demonstrated by using it to assess the controllability of various

classes of glycans and of specific glycoforms that are typically

found in recombinant biologics produced with CHO cells.

Materials and Methods

The Controllability Analysis Method
Obtaining the Process Gain Matrix. In principle, the n x m

process gain matrix for a process with n output variables and m

input variables can be obtained analytically via a first-order Taylor

series approximation of the process model around the steady state

of interest. However, such an analytical approach is clearly viable

only for a modest-sized system of equations. Because of the sheer

complexity of the glycosylation model, especially the extreme high

dimensionality, the analytic approach is impractical in this case.

Of course, gain matrices can be obtained numerically via

simulation, but, for such exceedingly high-dimensional systems,

the model simulations must be carried out systematically and

judiciously if the required system gain information is to be

extracted efficiently from the simulation results.

Thus to obtain the glycosylation process gain matrix, we

propose that model simulations be performed according to a

systematic statistical design of experiments (DOE) scheme where

the combination of input perturbations (factor values) are

implemented according to an appropriately chosen experimental

design, and the resulting steady state responses analyzed using

standard analysis of variance (ANOVA). The rationale is as

follows: by definition, the ‘‘main effect’’ of each factor represents

the change in the response (process output) resulting from the

implemented change in the factor (process input) [21,22] and is

hence directly proportional to what we seek to determine: the gain

of the input-output variable pair in question. (In fact, the ‘‘factor

coefficient’’, which for standard factorial experimental designs is

exactly half the value of the computed main effect, is precisely the

process gain in question.) In this regard, standard ANOVA

provides, among other things, estimates of the factor coefficients,

bij in the equation

Dyi~
Xm

j~1

bijDuj i~1,2, . . . ,n ð1Þ

where Duj is the change implemented in each input uj and Dyi is

the change observed in each output yi. ANOVA also provides the

p-values associated with each estimated bij , from which statistical

significance is determined (for p-values less than the defined

significance level, typically a= 0.05). The effective n x m gain

matrix can therefore be constructed using the statistically

significant bij values identified from such analysis of the DOE

data, setting all non-significant factor coefficients to zero.

Controllability Analysis of Protein Glycosylation
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Observe that for nonlinear systems, provided that the magni-

tude of the perturbations are modest, the resulting factor

coefficients provide reasonable estimates of the local process gain

matrix in the immediate neighborhood around which the input

changes were implemented. Such a process gain matrix is

therefore expected to change with operating conditions. This is

not necessarily a disadvantage of the proposed method; on the

contrary, the method in fact allows us to characterize the process

gain (and hence output controllability) of the complex nonlinear

glycosylation process at various operating regions of potential

interest. As we demonstrate later, such results provide insight into

the operating conditions around which the process controllability

characteristics are most favorable.

Assessing Controllability from the Process Gain

Matrix. The result from the DOE data analysis described in

the previous subsection, which may be represented as:

Dy~KDu ð2Þ

indicates how changes in the process input variables are mapped

into changes in the output variables (at steady state) via K, the n x m

local process gain matrix, in the operating region around which

the simulations were performed. Thus, in principle, this local gain

matrix provides direct information about the degree to which each

output yi can be affected by permissible changes in the input

variables uj. In particular, if K is square (m = n) and non-singular,

then observe that for any arbitrarily specified desired change Dy�

in the vector of output variables, the change in the vector of input

variables that will achieve this desired objective is obtained as:

Du�~K{1Dy� ð3Þ

Thus, under these conditions, the system in question will be fully

output controllable if K is non-singular (i.e., of full rank). When the

gain matrix is non-square (m?n), and especially when the

dimensionality of n and/or m is in the hundreds of thousands (as

is the case with glycosylation) determining controllability from the

gain matrix requires special consideration. First, the extremely

high dimensionality presents a practical computational challenge;

more importantly, the inequality of m and n, especially when n.m,

increases the likelihood that the system will not be fully controllable

in the region of interest, presenting another practical challenge—

that of determining what aspects of the process are controllable

(and what aspects are not), and to what extent. As we now show,

both practical challenges are handled simultaneously by singular

value decomposition of the gain matrix.

The singular value decomposition of an n x m matrix K is

defined as

K~WSVT ð4Þ

where, for p = min (m,n), S is an n x m matrix consisting of a

diagonal p x p matrix of the p singular values of K, s1$s2$… sr$

0, (r#p), and sr+1 = sr+2 = … = sp = 0, augmented with an

appropriately dimensioned sub-matrix of zeros; W and V are

orthogonal (unitary) matrices such that WTW = WWT = I; and

VTV = VVT = I, with I as the identity matrix of appropriate

dimensions [23]. Here, r, the number of non-zero singular values,

is the rank of the matrix K. If r = p, then K is of full-rank; it is rank

deficient otherwise. Singular value decomposition thus generalizes

the invertibility conditions of square matrices to general non-

square ones, but for our current purposes of controllability

analysis, singular value decomposition does more.

Observe that introducing the singular value decomposition of K

into Eq. (2) yields

Dy~WSVTDu ð5Þ

Upon pre-multiplying by WT, invoking the unitary characteristics

of W, and introducing new variables defined as

Dg~W TDy ð6Þ

Dm~VTDu ð7Þ

Eq. (5) is transformed to

Dg~SDm ð8Þ

In terms of the original variables, we may now note the following:

(i) Dg is the vector of changes observed in g = WTy, a linear

transformation of the original output variables, in response to Dm a

change in m = VTu, a different linear transformation of the original

input variables. From Eqs. (6) and (7), for each i = 1,2, …, p

Dgi~
Xn

j~1

WjiDyj ð9Þ

and

Dmi~
Xn

j~1

VjiDuj ð10Þ

(ii) S is the effective process gain matrix relating the changes in

the new output variables g in response to changes in the new input

variables m. Since S consists of a diagonal matrix of the p singular

values si of the original process gain matrix K, the immediate

implications are that for each i, i = 1, 2, …, p = min (m,n),

Dgi~siDmi i~1,2, . . . ,p ð11Þ

The p equations represented by Eq. (11) are central to our

proposed method of controllability analysis of glycosylation: they

indicate which output modes gi, a linear combination of the

original responses in y (in this case the glycoforms or glycan

classes), are controllable by which input modes, mi, a linear

combination of the original inputs in u (in this case glycosylation

enzymes and sugar nucleotides concentrations), while the value of

the associated singular value, si indicates the degree to which (i.e.,

how strongly) mi affects gi.

Thus, singular value decomposition of the process gain matrix K

not only provides the singular values si as a quantitative measure

of process controllability, it also indicates which specific output

modes are controllable by which specific input modes, in

descending order of influence (i.e., the influence of m1 on g1 is

stronger than that of m2 on g2 which is, in turn, stronger than that

of m3 on g3 …, etc.). While modes associated with zero singular

values are entirely uncontrollable, in practice, modes associated

with singular values that are smaller than some minimum s* may

Controllability Analysis of Protein Glycosylation
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be considered as practically uncontrollable since the practical

implication of sk,s* is that the associated then mk will have

minimal effect on gk,

Application
To demonstrate the practical utility of the controllability

analysis method, it was used to assess the controllability of various

classes of glycans and of specific glycoforms that are typically

found in recombinant biologics produced with CHO cells. From a

process systems engineering perspective, the process of manufac-

turing appropriately glycosylated proteins is multi-scale in the

sense that the sub-processes involved occur on multiple length and

time scales, and different sets of variables are of interest at each

scale. At the macro-scale, in the bioreactor, one measures and

controls bulk bioreactor conditions (pH, agitation, temperature,

dissolved oxygen, etc.) and nutrients (glucose, glutamine, etc.); at

the meso-scale, within the cytoplasm (or within the cell’s

membrane boundary), the intracellular nutrients and enzymes

are used for primary and secondary metabolism; finally at the

micro-scale, primarily within the Golgi apparatus, glycosylation

enzymes and sugar nucleotide donors act on proteins during the

process of glycosylation. For the purposes of the current discussion,

we restrict our attention to the micro-scale, since the variability

found in glycan structures actually occurs at this scale. It is

important to reiterate why one must determine first the extent to

which the intracellular process of glycosylation is intrinsically

controllable at the micro-scale before tackling the practical problem

of finding appropriate macro- and meso-scale process variables to

control the process of glycosylation. The rationale is simple: if the

intra-cellular process is intrinsically not controllable, the implica-

tion is that no macro- or meso-scale variables will affect changes in

the glycosylation process at the micro-scale. In other words, there

is no point in seeking process variables to affect the glycan

distribution, if there is no way to control the intracellular

glycosylation process at the micro-scale. Conversely, establishing

controllability implies that effecting intracellular change is possible

(at least in principle); then and only then does it make sense for one

to seek the practical means for effecting such change via

appropriate macro- and meso-scale variables.

The main characteristics of the glycosylation process in question

for this specific application example are as follows (See Table 1):

the manipulated process variables (factors in DOE terms) are the

intra-Golgi concentrations of 15 glycosylation enzymes and sugar

nucleotide donors. The cellular outputs (responses) are listed in

two categories: (i) the relative percentage of various glycan classes

and (ii) the relative percentage of specific glycoforms typically

found in biopharmaceuticals. For each cellular output category,

we carry out controllability analyses (as explained later in section

‘‘Simulation and Data Analysis’’) over different operating ranges to

determine the effects of process non-linearity on glycosylation

process controllability.

Mathematical Model. The glycosylation model used to

illustrate the controllability analysis was based on the Krambeck

and Betenbaugh [16] model. The model inputs are 15 glycosyl-

ation enzyme and sugar nucleotide donor concentrations in the

Golgi apparatus as specified in Table 1; the outputs are the

concentrations of 7,565 glycoforms. Only those glycosylation

reactions that occur within the compartments of the Golgi

apparatus were included in the model. The sequential enzymatic

reactions of the glycosylation process were simulated via a reaction

network, with each reaction in the network constructed from the

set of reaction rules described in Krambeck and Betenbaugh

(2005) for identifying the glycosylation enzymes and how these

enzymes act upon each glycoform. (For example, one of the

reaction rules states that the enzyme ManI cleaves a mannose

nucleotide if there are more than five mannose groups on the

glycan.) The trans-Golgi network and stacked cisternae (cis,

medial, and trans) of the Golgi were modeled as four compart-

ments with each treated like a well-mixed reactor. Consequently,

at steady state, the glycoforms satisfy the following mass balance

equation:

Pij~Pij{1ztjrij ð12Þ

where Pij is the concentration of glycoform species i in

compartment j, tj is the residence time of compartment j, and rij
is the net rate of production of glycoform i, defined as:

rij~
kf Et½ � UDP{S½ � pij

� �
Km Kmdz UDP{S½ �ð Þ 1z

P Pij

Km

� � ð13Þ

Here Et is the glycosylation enzyme concentration, UDP-S is the

sugar nucleotide donor concentration, kf, Kmd, and Km are

glycosylation enzyme kinetic parameters. Because we are interest-

ed here only in the steady state glycoform concentration profile

(i.e., [Pij] as tR‘), we set ri = 0 and solved the resulting system of

equations for [Pij]. The resulting species concentration data were

then used to calculate the relative percentage of the glycan classes

or specific glycoforms in Table 1.

Simulation and Data Analysis. As described in section

‘‘Obtaining the Process Gain Matrix’’, the glycosylation process

gain matrix required for the controllability analysis was obtained

from glycosylation model simulations carried out according to a

DOE scheme. Since the model inputs are 15 enzyme and sugar

nucleotide donor concentrations, we employed a 215-9, resolution

IV fractional factorial experimental design, which allows us to

avoid confounding enzyme main effects with potentially interesting

2-factor interactions (see, for example, Box et al. [24] or [21].

The implemented fractional factorial design assumes a linear (or

at best bilinear) representation of the process within the specified

process operating range. Since glycosylation is a nonlinear process,

controllability analyses were performed over multiple operating

ranges to determine the effect of process non-linearity on

controllability. For purposes of illustration, we chose to examine

glycosylation controllability over the three operating ranges of

cellular conditions shown in Table 2. Range 1 represents the

widest possible, physiologically relevant range of intracellular

glycosylation enzyme and sugar nucleotide concentrations as

determined from the literature. Range 2, a lower subset of the

physiologically relevant range, includes concentrations that are

within 60.5 mM of the nominal values used by Krambeck and

Betenbaugh [16]. Range 3, an upper subset of the physiologically

relevant range, was obtained as 1.75 times the nominal values used

by Krambeck and Betenbaugh (2005) 60.5 mM.

Using the model described in section ‘‘Mathematical Model’’,

simulations of MAb glycosylation were carried out according to

the 215-9 fractional factorial design over the three operating ranges

in Table 2. Estimates of factor coefficients and the associated p-

values were obtained from the resulting simulated glycan data

using standard fractional factorial ANOVA in Minitab16. The

process gain matrix, K, was constructed from factor coefficient

estimates, retaining statistically significant values (for which p,

0.05) and setting the others (for which p.0.05) to zero. Finally,

singular value decomposition was performed on the resulting

process gain matrix K to produce the singular value matrix, S, and
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unitary matrices W and VT from which the orthogonal output

modes gi, and orthogonal input modes, mi, were constructed

according to Eqns. (9) and (10).

Results and Discussion

Controlling Glycan Classes
Visual inspection of the process gain matrix can provide some

intuition about the potential controllability of glycosylation at the

micro-scale. This is because only those process output variables

connected via significant, non-zero elements of the gain matrix to

process input variables (sugar nucleotides and glycosylation

enzymes) can be affected by manipulating the input variables,

and thus are potentially controllable. The heat maps of the process

gain matrices shown in Figure 1 indicate that significant process

gains are associated with 10 of the 12 glycan classes when the

glycosylation process is operated within the values in Range 1 or 2

for the intracellular variables. On the other hand, there are no

significant process gains associated with any glycan class in

operating Range 3, indicating that the relative percentage of

glycan classes cannot be changed to any significant extent when

the process is operated in Range 3. Such a visual inspection of the

process gain matrices can provide no more than a general sense of

potential controllability however; determining precisely which

specific modes are actually controllable, and the extent to which

each is controllable, requires singular value decomposition of the

process gain matrix, as described below.

Identifying controllable modes. As discussed in section

‘‘Assessing Controllability from the Process Gain Matrix’’, the

magnitude of each singular value, si, provides a quantitative

measure of the relative extent to which each output mode, gi, is

controllable by the associated input mode, mi. Relatively large

values of si indicate that the corresponding mode gi is relatively

more controllable (i.e., perturbations in mi will result in more

noticeable substantial changes to gi) than modes associated with

smaller values of si. The results of the singular value decompo-

sition of the process gain matrices in Figure 1 are the singular

values, si, presented in Table 3, and the coefficients associated

with the controllable output and input modes, gi and mi, shown in

graphical form in Figure 2 and Figure 3, respectively. Here, output

modes gi, associated with singular values, si$s* = 1, are consid-

ered controllable. The choice of the threshold value s* = 1 is

somewhat arbitrary, informed in this specific case by the

consideration that for those modes associated with si,1, changes

to mi will not produce changes in gi that are large enough (by

comparison) to be of practical consequence in a process control

scheme.

When the glycosylation enzyme and sugar nucleotide donor

concentrations are restricted to the Range 1 and 2 values, 7 of the

12 modes are associated with singular values si$1 (See Table 3).

This indicates that 7 output modes (linear combinations of glycan

classes) are controllable with the intracellular concentrations of

glycosylation enzymes and sugar nucleotides specified by the

associated input modes. The singular values associated with

operating Range 3 indicate that no mode is controllable in this

operating range. These results are consistent with the preliminary

assessment of controllability based on visual inspection of the gain

matrix; however, the singular value decomposition results provide

additional quantitative information regarding not just the control-

Table 1. List of responses and inputs used for controllability
analysis.

Input (Enzymes & Sugar
Nucleotide Donors

Response (Glycan
Classes)

Response
(Glycoforms)

FucT S0 { A1G1S1F

GalT S1 A2G1S1F

GnTE S2 A2G2S1F

GnTI S3 A2G2S2

GnTII S4 M5

GnTIII G0 M6

GnTIV G1 M7

GnTV G2 M8

ManI G3 A1

ManII G4 A1F

SiaT F0 A2

CMP-SA F1 A2F

GDP-Fuc A1G1

UDP-Gal A1G1F

UDP-Gn A2G1

A2G1F

A2G2

A2G2F

{Note: The naming convention of the glycan classes is as follows: S# is the
number of sialic acid molecules present in the glycoform, G#, galactose, and
F#, fucose; where A represents anternarity. For example, the S0 class includes
those glycoforms of the 7,565 that are possible with no sialic acid molecules
present. The numbers in the glycoform nomenclature represent the number of
each sugar molecule attached to the core glycan structure (i.e., three mannose
and two n-acetyl glucosamine molecules). For example, the A2G2S2 glycoform
has 2 branches each with a galactose and a sialic acid molecule attached to the
core glycan structure, as shown in Figure 5.
doi:10.1371/journal.pone.0087973.t001

Table 2. Operating ranges of input factors used in
controllability analysis (i.e., mM concentrations used for each
glycosylation enzyme and sugar nucleotide donor
investigated as factors in DoE).

Range 1 Range 2 Range 3

Factor Low High Low High Low High

FucT 0.2 8.5 1.25 3.75 3.75 6.25

GalT 0.2 8.5 0.33 0.99 0.99 1.65

GnTE 0.2 8.5 1.735 5.20 5.20 8.67

GnTI 0.2 8.5 1.52 4.57 4.57 7.62

GnTII 0.2 8.5 0.64 1.93 1.93 3.22

GnTIII 0.2 8.5 0.55 1.65 1.65 2.75

GnTIV 0.2 8.5 1.81 5.43 5.43 9.05

GnTV 0.2 8.5 0.20 0.60 0.60 1.00

ManI 0.2 8.5 0.89 2.67 2.67 4.45

ManII 0.2 8.5 0.66 1.98 1.98 3.30

SiaT 0.2 8.5 0.50 1.50 1.50 2.50

CMP-SA 960 7200 1200 3600 3600 6000

GDP-Fuc 1000 7500 1250 3750 3750 6250

UDP-Gal 1520 11400 1900 5700 5700 9500

UDP-Gn 3680 27600 4600 13800 13800 23000

doi:10.1371/journal.pone.0087973.t002
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lable modes but also the extent of controllability of each mode—

information that is not possible from mere inspection of the

process gain matrix. That is, while 7 output modes are controllable

over the indicated operating ranges, the extent to which each is

mode is controllable (indicated by the relative magnitude of its

corresponding si) is different in each case. For example, in Range

1 the first output mode, g1, with associated singular value,

s1 = 39.2, is the most controllable of the glycan class output

modes. On the other hand, with a singular value, s7 = 2.3, the

seventh output mode is the least controllable of the glycan class

output modes in this operating range. This information indicates

that in controlling the seventh output mode, g7, within operating

Range 1, a step change of +8.3 mM (i.e., the entire physiologically

relevant range) in the intracellular concentrations of the enzymes

and sugar nucleotides of input mode, m7, will only result in small

changes in the relative percentage of the associated glycans,

perhaps as small as 1%. Larger changes to the associated glycan

relative percentages would not be possible as this would require

step changes to the input concentrations of enzymes and sugar

nucleotides that fall outside the allowable range. Conversely, in

controlling the first output mode g1 in Range 1, a similar step

change to the inputs will result in a much larger change to the

relative percentage of the associated glycans, as much as almost

20%. Thus while 7 output modes are controllable, directing g7 to a

desired state will require much larger perturbations in m7 relative

to the perturbations in m1 required to direct g1 to a desired state.

The successively smaller singular values si associated with each

mode i, from 1 to 7 indicates that progressively larger changes are

required in mi to effect changes in the corresponding gi.

The magnitudes of the singular values associated with the

controllable output modes in Range 2 are comparable to those of

Range 1, suggesting that the controllability of the glycan class

output modes is similar in these two operating ranges. However, it

is important to note that the glycan classes comprising gi over

operating Range 1 are not necessarily the same glycan classes

comprising gi over Range 2 as we now discuss.

Relating controllable output modes to glycan classes. As

discussed in section ‘‘Assessing Controllability from the Process

Gain Matrix’’, each output mode gi arising from singular value

decomposition of the gain matrix consists of a weighted sum (or

linear combination) of the original variables, with the elements of

the ith row of the WT matrix as the weights (See Eq. 9). How much

an original variable contributes to an output mode (a linear

combination of glycan classes) is reflected in the coefficient

associated with that variable in the linear combination. A

dominant contributor to a mode (where one exists) is identified

as the variable with the largest coefficient in the weighted sum.

Figure 2 shows the coefficients for variables associated with each

glycan class comprising the various controllable output modes in

the three operating ranges tested. This figure provides some insight

into the characteristics of glycosylation. Most notably, the glycan

classes represented in each mode differ greatly from one operating

range to another, highlighting the inherent nonlinearity of the

glycosylation process. For example, in Range 1, the most

controllable mode, g1, is dominated by the F0 and F1 classes as

well as the S0 class (note the scale). The relative coefficient

magnitudes within the mode suggest that in Range 1, perturbing

the enzyme and sugar nucleotide concentrations in the associated

input mode, m1, will affect the F0 and F1 glycan classes much more

than the S0 glycan class and the S0 more than any other glycan

class. In Range 2, on the other hand, the coefficients associated

with most of the contributors to g1 are much smaller, and the

group now includes the G0 and G1 classes. The relative

equivalence of the coefficient magnitudes for the F0, F1, G0,

and G1 classes in output mode, g1, of Range 2, indicates that in

this operating range, each of these glycan classes will be affected

approximately equally by changes in the associated input mode. A

comparison of the coefficient magnitude scales of the two

operating ranges suggests that the process gains associated with

g1 in Range 2 are smaller than the process gains associated with g1

in Range 1, which is confirmed by inspection of the process gain

matrices (See Figure 1). We also observe that the fourth most

controllable mode in Range 2, g4, while consisting of multiple

glycan classes, is entirely dominated by the S1 glycan class; in

Range 1, the S1 class barely features in g4 and nowhere else. The

fact that the S1 glycan class dominates only one output mode and

that output mode is associated with a relatively small singular

s4 = 4.5, suggests that increasing the relative percentage of S1

glycan species may be a difficult control objective to achieve in

practice. This is not surprising as the relative percentage of

sialylated glycan species of monoclonal antibodies produced in

CHO, for instance, is typically low (i.e. ,0.5%) [25,26].

As previously alluded to, the singular values and coefficients

associated with each glycan class in a particular output mode

provide guidance regarding how best to achieve desired glycan

distributions. For example, a process objective to maximize

fucosylation in the glycan distribution (i.e., maximize the F1

glycan class), is clearly best achieved via an output mode for which

the F1 glycan class is the most dominant contributor. However,

multiple output modes are dominated by the F1 glycan class: g1

and g4 in operating Range 1, and g1 in operating Range 2. To

select the most appropriate output mode for achieving the process

objective, we now recall from section ‘‘Identifying controllable

modes’’ that how effectively any mode can be controlled is

indicated by the associated singular value. Specifically, output

modes associated with larger singular values are more controllable

than those associated with smaller singular values. In the particular

case in question, we observe that of the three output modes where

the F1 class dominates, g1 in operating Range 1 is associated with

the largest singular value, s1 = 39.2. Therefore, to maximize the

F1 glycan class, one should restrict the enzyme and sugar

nucleotide donor concentrations to the Range 1 values and use

input mode m1 to control output mode g1.

On the other hand, if the process objective is to maximize the

relative percentage of glycan species in the glycan distribution with

both branches galactosylated (i.e., maximize the G2 glycan class),

the best option is to operate the process in Range 2 and use input

mode m5 to control output mode g5. This is because while output

mode g5 in Range 2 is co-dominated by the S2 and G2 glycan

classes with coefficients 0.6 and -0.6 respectively, it is the only

controllable output mode where the G2 class is at least partially

dominant. (Output mode g7 in Range 2, barely controllable with

s7 = 1.0, consists of many other glycan classes, such as S0, S2 and

S3, whose contributions to the mode are almost as significant as

Figure 1. Heat maps representing the significant elements of the process gain matrices for the glycan classes in operating (a) Range
1, (b) Range 2, and (c) Range 3. Visual inspection suggests that significant process gains are associated with 10 of the 12 glycan classes when the
process is operated in Range 1 or 2 indicating that the relative percentage of glycan classes can be changed in these operating ranges. There are no
significant process gains for any glycan class in operating Range 3, suggesting that the relative percentage of glycan classes cannot be affected or
controlled at all when the process is operated in Range 3.
doi:10.1371/journal.pone.0087973.g001
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Figure 2. Graphical representation of the coefficients associated with each glycan class in the controllable output modes, gi. Modes
that were not controllable (i.e. associated with singular values, si,s* = 1) are not shown. Each column shows the glycan classes (output modes) that
are controllable in each operating range (See Table 1). No output modes are shown for operating Range 3 since no controllable modes were found in
this range. Coefficients were obtained using eq. 9 following singular value decomposition of the glycan class process gain matrix as described in
section ‘‘Assessing Controllability from the Process Gain Matrix’’. How much the glycan class contributes to an output mode is reflected in the
coefficient associated with that variable in the linear combination. A dominant contributor to a mode (where one exists) is identified by the variable
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with the largest coefficient in the weighted sum. Any glycan classes associated with a non-zero coefficient can be affected by perturbations in the
associated input mode; however the dominant glycan class will be affected the most.
doi:10.1371/journal.pone.0087973.g002
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that of G2.) The relatively small singular value associated with g5

in Range 2, s5 = 2.52, indicates that even with this choice,

maximizing the G2 glycan class may be a relatively difficult

process objective to achieve in practice.

These concepts are also useful when considering multiple

simultaneous process objectives, such as, say maximizing both the

F1 and G2 glycan classes. The controllable output modes in

operating Range 1 involve only the fucosylated and sialylated

glycan classes, so that only these two glycan classes can be directed

to a desired state if the process is operated in this range. On the

other hand, the controllable modes in operating Range 2 provide

some degree of control over all the glycan classes listed in Table 1

except the S4 and G4 classes. The simultaneous objective of

maximizing the F1 and G2 glycan classes may therefore be met via

the dual strategy of (i) directing the F1 glycan class to a desired

state by using input mode m1 to control output mode g1 in

operating Range 2 (rather than Range 1); and (ii) using input mode

m5 to control output mode g5 in operating Range 2, since, as

discussed above, the G2 glycan class is theoretically controllable

only via this option. Finally, observe that the singular value for

output mode g1 in operating Range 2, s1 = 25.9, is technically

smaller than the corresponding singular value, s1 = 39.2 in Range

1; practically, however, both singular values are of comparable

magnitude and thus will afford similar degrees of control for the F1

glycan class. Therefore by operating in Range 2, both F1 and G2

can be directed jointly to respective desired states, whereas in

operating Range 1, only F1 would be controllable.

Relating input modes to glycosylation enzyme and sugar

nucleotide donor concentrations. The process controllability

analysis presented here involves more than just the determination

of controllable output modes (linear combinations of glycan

classes); it also identifies the appropriate corresponding input

mode that can be used to affect the most change in an output

mode such that the output mode can be directed effectively and

efficiently to a desired state. Just as each output mode gi is a linear

combination of the glycan classes, each input mode mi is also a

linear combination of the original inputs variables (i.e., glycosyl-

ation enzymes and sugar nucleotide donor concentrations). And as

with the output modes, elements of the ith row of the VT matrix are

the coefficients of the weighted sum of original inputs that make up

the mi mode (see eq. 10).

Figure 3 shows the coefficients associated with the 15

glycosylation enzyme and sugar nucleotide donors that make up

the controllable input modes, mi, for each operating range

investigated. Each mi is a unique combination of glycosylation

enzyme and sugar nucleotide donors that can be used to influence

the glycan classes of each corresponding output mode gi. In all

operating ranges investigated, the majority of coefficients associ-

ated with sugar nucleotide donors are zero. A comparison of the

coefficients associated with sugar nucleotide donors against those

associated with the glycosylation enzymes (the latter of which are

larger on average, and across the board), suggests that glycosyl-

ation enzyme concentrations may have a greater impact on the

resulting glycan distribution than sugar nucleotide donor concen-

trations. This result is supported by the data of Hills et al (2001),

which showed that increasing intracellular UDP-Gal 5 fold did not

increase the degree of galactosylation significantly, and increasing

CMP-Sialic Acid by 44-fold did not increase sialylation. We

hypothesize that mechanistically, the glycosylation enzymes are

rate limiting with respect to the sugar nucleotide donor

concentrations within the Golgi apparatus.

Controlling Specific Glycoforms
Thus far, results of the controllability analysis suggest that

multiple controllable output modes exist for glycan classes when

the operating conditions are restricted to the Range 1 and 2

values. However, rather than influencing entire classes of glycans,

a more desirable, albeit challenging, control objective would be to

direct the relative percentage of specific individual glycoforms from

some initial state to some desired final state such that the glycan

distribution of a therapeutic protein batch will consist of only a

few, or perhaps even a single, specific glycoform. The ability to

achieve such a control objective would substantially reduce glycan

heterogeneity, which, in turn, may help to improve the consistency

of the therapeutic protein’s pharmacokinetic behavior.

The extent to which individual glycoforms can be directed from

some initial state to some desired final state, with the available

enzymes and sugar nucleotide donors, can be determined from

appropriate glycoform controllability analysis. For the specific

example in question, applying the controllability analysis method

to the specific glycoforms listed in Table 2 produced the following

results. First, Figure 4 shows a heat map of the relevant process

gains. Visual inspection indicates that significant process gains are

associated with 8 of the 18 glycoforms when the process is

Figure 3. Graphical representation of the coefficients associated with each enzyme and sugar nucleotide donor in input modes, mi,
associated with the controllable output modes for glycan classes, gi, shown in Figure 2. Each column shows the coefficients associated
with the enzymes and sugar nucleotides of each input mode in each operating range (see Table 1). No input modes are shown for operating Range 3
since no controllable modes were found in this range. Coefficients were obtained using eq. 10 following singular value decomposition the process
gain matrix for the glycan classes as described in section ‘‘Assessing Controllability from the Process Gain Matrix’’. How much the enzyme or sugar
nucleotide contributes to an input mode is reflected in the coefficient associated with that variable in the linear combination. A dominant contributor
to a mode (where one exists) is identified by the variable with the largest coefficient in the weighted sum. The enzyme(s) and/or sugar nucleotide(s)
that are dominant contributors of the input mode affect the glycan classes of the associated output mode the most.
doi:10.1371/journal.pone.0087973.g003

Table 3. Singular values, si, obtained from singular value
decomposition of the glycan class process gain matrices for
three operating ranges.

Singular value Range 1 Range 2 Range 3

s1 39.2 25.9 0

s2 21.1 20.4 0

s3 17.0 14.3 0

s4 6.9 4.5 0

s5 3.9 2.5 0

s6 3.1 2.1 0

s7 2.3 1.0 0

s8 0.7 0.8 0

s9 0.2 0.3 0

s10 0 0.1 0

s11 0 0 0

s12 0 0 0

Output modes associated with singular values, si.s* = 1, are considered
controllable.
doi:10.1371/journal.pone.0087973.t003
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operated in Range 1, and 11 of the 18 glycoforms when operated

in Range 2. There are no significant process gains for any glycan

class in operating Range 3, suggesting that, as with the glycan

classes, one cannot achieve any arbitrarily desired relative

percentage of specific glycoforms when the process is operated

in Range 3. A general comparison with Figure 1 (for glycan

classes) indicates that even the specific glycoforms that are

controllable will be more difficult to control than glycan classes

because the former on average have comparatively smaller process

gains.

We illustrate the controllability of specific glycoforms using as a

representative case the A2G2S2 glycoform which, as shown in

Figure 5, has two terminal sialic acid molecules. It has been shown

[7] that increasing the relative amount of terminal sialic acid

increases serum half-life. Thus, one way to prolong the pharma-

cokinetic effects of a therapeutic treatment in vivo may be to

produce the therapeutic protein in question with predominantly

the A2G2S2 glycoform attached.

Visual inspection of the significant process gains in Figure 4 over

the 3 ranges of operating conditions investigated in this

controllability analysis indicates that controllable modes exist for

specific glycoforms when the process operation is restricted to

Ranges 1 and 2 but not 3. Specifically for the A2G2S2 glycoform,

however, only Range 2 contains significant, non-zero process

gains, suggesting that controllable modes exist for the A2G2S2

glycoform only in operating Range 2.

The singular values shown in Table 4, obtained from singular

value decomposition of the process gain matrices, indicate that 3 of

the 18 output modes are controllable in Range 1, and 5 of the 18

output modes are controllable in Range 2. As was the case with the

glycan classes, none of the output modes in Range 3 is

controllable.

Figure 6 shows a graphical representation of coefficients of

glycoforms comprising each controllable output mode, gi, while

Figure 7 represents the coefficients of enzyme and sugar nucleotide

donors comprising each input mode, mi graphically. The

coefficients of gi suggest that the A2G2S2 glycoform dominates

two output modes g3 and g4 over Range 2, but, as already inferred

from the gain matrix, this glycoform is not represented in any

output mode in Range 1 or 3. Of the two output modes in Range

2 where the A2G2S2 is the dominant contributor, g3 is associated

with the largest singular value. Consequently, to control the

A2G2S2 glycoform the operating conditions should be restricted

to the Range 2 values and input mode m3 (See Figure 7) should be

used to control output mode g3 (See Figure 6).

In addition to controlling the A2G2S2 glycoform, one may wish

to direct other glycoforms simultaneously to respective desired

states in order to induce some other pharmacokinetic effects in vivo.

In such a case, the controllability results provide useful insight into

which glycoforms are controllable in a particular operating range.

Specifically, observe that when the enzymes and sugar nucleotide

donors are restricted to the Range 2 values, not only is the

A2G2S2 glycoform controllable with the available controllable

output modes, but each sialylated, high mannose glycoform, as

well as G1 and G2 glycoform, are also controllable (See Figure 7).

Conversely, the output modes in Range 2 provide limited or no

control over the A1F and A2F species. Thus if the desired (or

undesired) pharmacokinetic behavior results from the presence or

absence of A1F or A2F species, it is not beneficial to restrict the

glycosylation enzymes and sugar nucleotide donors to Range 2.

On the other hand, operating Range 2 is ideal for producing

proteins whose therapeutic characteristics depend on the presence

of the A2G2S2 glycoform jointly with any or all of the sialylated,

high mannose glycoform or G1 and G2 glycoforms.

Figure 4. Heat maps representing the significant elements of the process gain matrices for specific glycoforms typically found in
biologics in operating (a) Range 1, (b) Range 2, and (c) Range 3. Visual inspection suggests that significant process gains are associated with
8 of the 18 glycoforms when the process is operated in Range 1 and 11 of the 18 glycoforms when operated in Range 2, indicating that the relative
percentage of glycoforms can be changed in these operating ranges. As with the glycan classes, there are no significant process gains for any
glycoforms in operating Range 3, suggesting that the relative percentage of glycoforms cannot be affected or controlled at all when the process is
operated in Range 3.
doi:10.1371/journal.pone.0087973.g004

Figure 5. Example glycoform structure – A2G2S2 glycoform.
doi:10.1371/journal.pone.0087973.g005

Table 4. Singular values, si, obtained from singular value
decomposition of the glycoform process gain matrix for three
operating ranges.

Singular Values Range 1 Range 2 Range 3

s1 31.3 9.1 0

s2 6.2 4.4 0

s3 2.5 1.6 0

s4 0.3 1.2 0

s5 0.1 0.9 0

s6 4.5E-4 0.5 0

s7 2.7E-16 0.4 0

s8 9.7E-18 0.2 0

s9 2.4E-21 0.1 0

s10 1.2E-33 1.4E-1 0

s11 6.9E-37 2.3E-16 0

s12 0 1.3E-16 0

s13 0 6.1E-17 0

s14 0 2.1E-17 0

s15 0 4.6E-33 0

s16 0 0 0

s17 0 0 0

s18 0 0 0

Output modes associated with singular values, si.s* = 1, are considered
controllable.
doi:10.1371/journal.pone.0087973.t004
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Implications of Controllability Analysis
By applying the controllability analysis method described in this

work to the glycosylation process, we have identified the conditions

under which glycosylation is controllable (i.e., we have identified

the operating ranges for which controllable input and output

modes exist), and the extent of controllability, (i.e., the glycosyl-

ation control objectives that are achievable in practice). We have

also shown that due to the non-linearity of the glycosylation

process, process controllability characteristics change over differ-

ent operating ranges (i.e., different ranges of intra-Golgi glycosyl-

ation enzyme and sugar nucleotide donor concentrations)—with

the practical implication that some operating ranges are more

conducive than others for achieving particular glycosylation

control objectives. As such, these results have provided insight

into which specific operating regimes are most conducive to

meeting certain product quality objectives (e.g., glycan distribu-

tions), and how best to meet these objectives by identifying the

input modes (relative intracellular concentrations of enzymes and

sugar nucleotides) that can be used to bring about the most

efficient change to the desire output mode. It is imperative to note,

however, that the specific results from this study depend on the

fidelity with which the glycosylation process is faithfully repre-

Figure 6. Graphical representation of the coefficients associated with each glycoform in the controllable output modes, gi. Modes
that were not controllable (i.e. associated with singular values, si,s* = 1) are not shown. Columns show the glycoforms of each controllable output
mode in each operating range (See Table 1). No output modes are shown for operating Range 3 since no controllable modes were found in this
range. Coefficients were obtained using eq. 9 following singular value decomposition of the glycoform process gain matrix as described in section
‘‘Assessing Controllability from the Process Gain Matrix’’. How much the glycoform contributes to an output mode is reflected in the coefficient
associated with that variable in the linear combination. A dominant contributor to a mode (where one exists) is identified by the variable with the
largest coefficient in the weighted sum. Any glycoform associated with a non-zero coefficient can be affected by perturbations in the associated
input mode; however the dominant glycoforms will be affected the most.
doi:10.1371/journal.pone.0087973.g006
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sented by the model. The glycosylation process may vary by cell

line and production process. Therefore the mathematical repre-

sentation of the glycosylation process should be validated by

experimental data prior to employing controllability analysis for

process design decisions.

For process control purposes, the intent of controllability

analysis is to identify operating regions where the extent of

controllability is relatively high so that desired changes in the

output variables can be effected relatively easily. However,

identifying operating conditions of low controllability is also

useful, but for different reasons. Consider the case where the

desired glycan distribution can be achieved in a few different

operating regions, one of which is a ‘‘low controllability’’ region.

Because with low controllability the process output variables

cannot be changed to any significant extent by changes in the

input variables, observe that the process will essentially be immune

(hence robust) to fluctuations in the values of the input variables in

such ‘‘low controllability’’ regions. Thus, for robust design

purposes, the objective is to identify a region (in which to operate

the process) where the product quality objectives can be met and

which is simultaneously of ‘‘low controllability’’. Under such

conditions, the process can operate robustly without much active

control, and quality will be achieved consistently by design.

Figure 7. Graphical representation of the coefficients associated with each enzyme and sugar nucleotide donor in input modes, mi,
associated with the controllable output modes for glycoforms, gi, shown in Figure 6. Each column shows the glycosylation enzymes and
sugar nucleotides of each input modes in each operating range (see Table 1). No input modes are shown for operating Range 3 since no controllable
modes were found in this range. Coefficients were obtained using eq. 10 following singular value decomposition of the process gain matrix
corresponding to the glycoform distribution as described in section ‘‘Assessing Controllability from the Process Gain Matrix’’. How much the enzyme
or sugar nucleotide contributes to an input mode is reflected in the coefficient associated with that variable in the linear combination. A dominant
contributor to a mode (where one exists) is identified by the variable with the largest coefficient in the weighted sum. The enzyme(s) and/or sugar
nucleotide(s) that are dominant contributors of the input mode affect the glycoforms of the associated output mode the most.
doi:10.1371/journal.pone.0087973.g007
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The controllability analysis method we have described also has

clear implications for cellular engineering applications. The

controllability analysis identifies what combination of glycosylation

enzymes and sugar nucleotides will produce a particular glycan

distribution. Therefore, the results can be used to guide genetic

engineering of cell lines. Prior to the analysis presented here, the

indirect and interactive effects of glycosylation enzymes on final

glycosylation distribution were largely unknown. While there have

been attempts to engineer cell lines that yield a desired glycan

distribution, past attempts have generally focused on the over

expression or deletion of only one or a few glycosylation enzymes

without a concrete a priori knowledge of the effects on the resulting

glycan distribution [27–30]. Such fortuitous attempts are effective

for identifying the function of enzymes; however, a more directed

and systematic approach is required if one wishes to design a cell

line that has the capability to produce a specific desired glycan

distribution. The controllability analysis we have presented here is

a tool that can be used to provide a more systematic approach to

cellular engineering.

Media formulation can also be guided by controllability

analysis. Media formulation and media supplements also have

been shown to affect the glycan distribution by altering the

glycosylation enzyme expression and intracellular sugar nucleotide

donor concentration [25,31–33]. Again, with these media

supplement studies, glycan distributions are altered in an ad-hoc

fashion, with no concrete a priori knowledge. These studies have

been useful for identifying the specific media components that

affect the relative percentage of certain glycans and, in some cases,

the intracellular mechanisms that result in such effects. However,

to direct the glycan distribution to a desired state via a media

formulation approach, it would be beneficial to identify which

combination of supplements will result in the desired glycan

distribution prior to performing any experimental media studies.

The controllability analysis we discuss identifies which combina-

tion of enzymes should be manipulated and in what manner in

order to produce a desired glycan distribution. With the

knowledge of how media supplements affect enzyme and sugar

nucleotide concentrations, controllability analysis can be used as a

tool to predict rationally the media formulation required to

achieve a particular glycosylation control objective (or any quality

attribute for that matter) and, as such, guide a more effective

media development process.

Conclusions

In this work, we have developed a methodology for assessing the

controllability of glycosylation, a prototypical example of an

extremely high-dimensional and very non-linear system. The

method involves first obtaining the process gain matrix via

simulation, carried out using a DOE strategy, followed by singular

value decomposition of the process gain matrix from which the

controllability may be assessed. The practical utility of the method

was demonstrated with an illustrative example in which control-

lability was assessed for various classes of glycans as well as specific

glycoforms that are typically found in recombinant biologics

produced with CHO cells.

While the specific results from this study depend on the fidelity

with which the glycosylation process is faithfully represented by the

model, (which may vary by cell line and production process), this

work has provided, for the first time, a systematic method for

determining, in a quantitative manner, the intrinsic controllability

of the glycosylation process. And as noted above, these results also

have implications for rational cellular engineering and media

formulation design. Once the best possible system (rationally

engineered cell-line, combined with the operating conditions

conducive to achieving the desired objective) is obtained through

process design, and the best achievable control is determined

through controllability analysis, the next step is to develop a

control system that can achieve the glycosylation control objectives

consistently and reproducibly.
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