
Roadmaps through free energy landscapes calculated using the
multi-dimensional vFEP approach

Tai-Sung Lee†, Brian K. Radak†,‡, Ming Huang†,¶, Kin-Yiu Wong§, and Darrin M. York†

Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology,
Rutgers University, Piscataway, NJ 08854, USA, Department of Chemistry, University of
Minnesota, Minneapolis, MN 55455, USA, Scientific Computation Program, University of
Minnesota, Minneapolis, MN 55455, USA, and Department of Physics, High Performance Cluster
Computing Centre, and Institute of Computational and Theoretical Studies, Hong Kong Baptist
University, Kowloon Tong, Hong Kong
Tai-Sung Lee: taisung@biomaps.rutgers.edu; Darrin M. York: york@biomaps.rutgers.edu

Abstract
The variational free energy profile (vFEP) method is extended to two dimensions and tested with
molecular simulation applications. The proposed 2D-vFEP approach effectively addresses the two
major obstacles to constructing free energy profiles from simulation data using traditional
methods: the need for overlap in the re-weighting procedure and the problem of data
representation. This is especially evident as these problems are shown to be more severe in two
dimensions. The vFEP method is demonstrated to be highly robust and able to provide stable,
analytic free energy profiles with only a paucity of sampled data. The analytic profiles can be
analyzed with conventional search methods to easily identify stationary points (e.g. minima and
first-order saddle points) as well as the pathways that connect these points. These “roadmaps”
through the free energy surface are useful not only as a post-processing tool to characterize
mechanisms, but can also serve as a basis from which to direct more focused “on-the-fly”
sampling or adaptive force biasing. Test cases demonstrate that 2D-vFEP outperforms other
methods in terms of the amount and sparsity of the data needed to construct stable, converged
analytic free energy profiles. In a classic test case, the two dimensional free energy profile of the
backbone torsion angles of alanine dipeptide, 2D-vFEP needs less than 1% of the original data set
to reach a sampling accuracy of 0.5 kcal/mol in free energy shifts between windows. A new
software tool for performing one and two dimensional vFEP calculations is herein described and
made publicly available.

Introduction
Free energy is a key concept in modern physical science and offers a wealth of insights into
complex molecular problems.1 One dimensional free energy profiles are routinely employed
to study various molecular systems with respect to a certain variable/coordinate and many
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enhanced sampling methods for accurately accomplishing this task have been developed in
the past decades.2 Some of the most widespread include multistage/stratified sampling,3

statically4–6 and adaptively7–9 biased sampling, self-guided dynamics,10 constrained
dynamics,11,12 as well as multicanonical13,14 and replica exchange15 algorithms. In addition,
a number of simulation protocols based on non-equilibrium sampling16–19 have also been
recently proposed as well as hybrid algorithms.20,21

One of the most widely used methods for determining free energy surfaces for chemical
reactions, where often there are geometric coordinates that are known to be aligned with the
overall reaction coordinate, is the “umbrella sampling” technique.5,22 Combining
stratification with equilibrium and statically biased sampling, umbrella sampling is
particularly amenable to parallel execution, especially in high performance distributed
environments,23–25 as well as extension or combination with replica exchange26,27 and
alchemical simulation techniques.28

There are numerous well-developed and widely used methods for constructing one
dimensional free energy profiles from umbrella sampling simulations, such as the weighted
histogram analysis method,29,30 umbrella integration (UI),31 the multistate Bennett
acceptance ratio method (MBAR,32,33 which can be seen as a binless extension of
WHAM34), and others.35–38 However, publicly available implementations/programs for two
dimensional cases are still very limited. Most notably, both WHAM39 and MBAR33

implementations have been made available, while two dimensional UI40 and GAMUS37,41

implementations have been reported but are not publicly available. Nevertheless, due to the
two key difficulties in umbrella sampling methods, the problem of “data re-weighting” and
of “data representation”, the cost and complexity of such calculations can still be quite
prohibitive. Here we briefly review these two major problems.

The need of overlap in data re-weighting
Re-weighting from one sampled distribution to another can, in principle, be solved exactly
by the free energy perturbation/Zwanzig relation and the related expression for mechanical
observables.5,42,43 However, WHAM and MBAR based methods to construct free energy
profiles were developed with the understanding that this is not true in practice, since the
overlap between distributions must be high in order to obtain reliable results.29,33 An
alternative approach is to assume smoothness of the free energy profile between nearby
windows. Kästner’s UI approach uses a Gaussian distribution to model the un-weighted
probability density for each umbrella window (or, equivalently, quadratic functions for the
free energy profile), from which the analytic derivatives are calculated and integrated in
order to recover the global probability density.40,44,45 Hence, no explicit re-weighting is
necessary. This approach is equivalent to assuming continuous first derivatives of the free
energy profile between windows. Instead of quadratic functions centered on data-based
parameters, the 1D-vFEP method46 utilizes cubic spline functions to model the free energy
profile, equivalent to assuming continuous first and second derivatives of the free energy
profile between windows. It has been demonstrated in one dimensional cases that UI and
1D-vFEP require less of a degree of overlap between windows compared to WHAM and a
histogram-based MBAR estimator.46

Data representation
In order to extract a distribution function from a set of data, it is often necessary to employ a
certain type of representation of that function. This is commonly formulated as the density
estimation problem.47,48 Perhaps the simplest method of data representation is to use a
histogram estimator of the probability density.28,29,49 However, this approach is frequently
not numerically stable, especially when the data is too sparse such that the width of
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histogram bins cannot be made sufficiently small. A useful alternative approach can be to
apply a more robust kernel density estimator, but this too will fail with extremely sparse data
sets. A completely different type of approach is to fit the overall density distribution through
a pre-defined model37,44,50 by optimizing the model parameters according to a merit
function. Maragakis, et al. suggested a maximum likelihood approach utilizing the
Gaussian-Mixture Model on umbrella sampling (GAMUS) for the global probability density
based on the re-weighted data.37,51 Similarly, Basner and Jarzynski proposed a binless
estimator based upon the optimal correction to an arbitrary reference distribution.52

UI40,44,45 uses Gaussian models for the un-weighted probability densities and has also
recently been extended to higher order densities (i.e. skewed Gaussians).53 It is well known
that such parametric approaches lead to a significant reduction in the number of data points
needed to obtain a converged result. However this often comes at the expense of increased
bias depending on the inherent accuracy of the parameteric form. For example, the
approximations/assumptions of UI require near-quadratic (or near quartic) behavior of the
local free energy surface for individual windows and this has been demonstrated to be
inaccurate in simulations with weak biasing potentials.46 This problem may be reduced by
imposing stronger harmonic biasing potentials but this often leads to lower overlap between
windows and hence the same kind of failures associated with sparsely populated histogram
estimators.22 GAMUS has also been shown not to be ideal for quantitatively describing
details of the free energy surface.37

The vFEP implementation46 for one-dimensional free energy profiles was demonstrated to
be able to effectively address the above difficulties and outperform other methods in terms
of the amount and sparsity of the data needed to construct the overall free energy profiles.
The vFEP method uses higher-order (beyond quadratic) locally-compact functions to
accurately model the free energy profile within each window. At the same time, it exploits
the presumed smoothness of the profile in the interstitial regions that connect nearby
windows. Nevertheless, its advantage is not greatly impressive since, in most cases,
significant computational resources are not required when constructing one dimensional free
energy profiles, even with large numbers of windows and data points. On the other hand,
many more windows are needed to construct free energy profiles in two dimensions than in
one. Furthermore, for each window, many more data points are required to represent the
local two dimensional density distribution. This problem can effectively limit the practical
applications of two dimensional umbrella sampling simulations.

In the present work we report the two dimensional extension of the vFEP method. Test cases
demonstrate that vFEP is able to produce converged two dimensional free energy profiles in
a more robust fashion (fewer and more sparse data points) than several other methods in
common use. In addition, the resulting analytic form of free energy profiles allow the facile
identification of stationary points and pathways that can be used for analysis, focused
sampling, or adaptive biasing.

Theory
The theory of the maximum likelihood method utilized in vFEP has been already described
in detail elsewhere.46 Since the formulation is virtually identical in any number of
dimensions, the key points are outlined here specifically for the two dimensional case. The
maximum likelihood method, or maximum likelihood estimation (MLE),54,55 is a procedure
for finding the optimal set of model parameters that maximize the likelihood of a probability
distribution function used to represent a given set of observed data.
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Here we consider the two dimensional probability density, p(x, y), for observing a molecular
system near a particular point with a generalized coordinates (x, y). This probability density
is given by

(1)

where F(x, y) ≡ F(x, y)/(kBT) is the unitless scaled free energy profile, F(x, y) is the free
energy profile, kB is the Boltzmann constant and T is the absolute temperature. Considering
a set of umbrella sampling simulations in which a biasing potential Wα(x, y) is applied in the
αth window, the probability of finding the system near a certain coordinate value (x, y) is:

(2)

Suppose that, for the simulation of the αth window, there are Nα points observed with
coordinate values {( )}. Since they are observed points, the probability of each point is
equal with value 1/Nα. The likelihood of the whole system with an overall free energy
profile F(x, y) can be expressed as the combination of the likelihood of individual windows
as:46

(3)

Note that in the above equation the term  is constant with respect to F and does
not need to be evaluated if the goal is to maximize ℓ̂(F). It is also worth noting that the term
−lnZα is equivalent to the relative free energies between windows in other re-weighting
schemes. In the present vFEP approach, the “re-weighting” procedure is implicitly
accomplished through the normalization against the global trial function F.

The search for the optimal trial F can be implemented in different ways. The present work
utilizes two dimensional cubic spline functions to model F and searches for the optimal
spline coefficients that maximize the likelihood function ℓ̂(F). Using two dimensional cubic
splines is equivalent to assuming that the free energy profile varies slower than a cubic
polynomial between windows or that the first and second derivatives of the free energy
profile are continuous between windows for both of the coordinates.

Results
Implementation

The vFEP program has been modified and extended to two dimensions. However, due to the
constraints of spline functions in the AlgLib package (v3.7, http://www.alglib.net), only two
dimensional regular cubic spline (bicubic spline) functions are employed. Consequently, in
addition to the interpolation algorithms originally utilized for 1D-vFEP,56,57 one and two
dimensional regular cubic spline algorithms were added. The vFEP program was written
completely in C++ and compiled and tested with Microsoft Visual C++ 2008 on Window 7
and CMake 2.8.10.2 with Gnu C/C++ 4.7.2 on Fedora 16 and 18.
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The main computationally intensive work is the numerical evaluation of Equation (3), which
consists of two parts: 1) the integration of the exponential of the trial free energy profile and
the biasing potential for each window; 2) the calculation of the trial free energy profile on all
sampling points. The Gauss-Hermite quadrature rules are utilized to perform the integration
of Equation (3) with the exponential of the biasing potential, a Gaussian function, as the
background weighting function. For each window, a set of Gauss-Hermite quadrature rules
(N=48) are set up for each dimension and those rules with positions outside the sampling
data range are ignored, resulting, on average, in 15–20 rules remaining in each dimension
for each window.

For large data sets, the evaluation of the trial free energy function on all sample points
would be extremely time consuming if done directly in each optimization iteration. Since the
free energy profile is modeled by a bicubic spline, in a rectangular region enclosed by four
spline nodes the free energy profile can be described as products of third order polynomials
of two dimensions. Hence, the second part of Equation (3), the summation of all function
values over all sampling points, can be re-arranged and calculated as follows: In a region
enclosed by four nearby spline nodes, summations of all 16 possible polynomial products
over all sampling points can be pre-calculated when sampling data are read-in. The second
term of Equation (3) can thus be calculated from the summation of all products of the spline
coefficients and the pre-calculated terms from each regions. Since there is no need to do any
calculations involving the sample data points except in the initial stage, the cost to evaluate
Equation (3) is independent of the sample data size.

Four different methods are compared in analyzing free energy profiles: 1) the WHAM-2d
approach, 2) the MBAR approach with a Gaussian kernel density estimator (gKDE), 3) the
MBAR approach with a histogram estimator, and 4) the present 2D-vFEP approach. The
results of WHAM were calculated by the wham-2d program from Grossfield39 (v2.0.6,
http://membrane.urmc.rochester.edu/content/wham). The results of MBAR were calculated
using the pymbar library of Shirts and Chodera33 (v2.0b, http://simtk.org/home/pymbar)
with an in-house implementation of multi-dimensional kernel density estimation. Histogram
calculations employed a fixed bin width and boundaries inferred from the data range, while
gKDE calculations used bandwidths obtained with the multivariate form of the method of
Silverman,58 with the covariance matrices taken from each window. Where indicated, these
bandwidths were uniformly scaled by a multiplicative constant. The MBAR library does not
currently provide results when any histogram bins contain no data points. Due to this
limitation, the MBAR approach with histogram analysis failed in all cases reported here,
except in the case of alanine dipeptide with 576 windows, 10,000 data points per window,
and 180 bins per dimension. In our implementation, this MBAR/histogram case accepted by
the MBAR library requires more memory than any local workstations posses and cannot be
performed. Hence no results from MBAR/histogram could be reported and all MBAR
results in the subsequent sections refer to MBAR/gKDE.

All calculations were performed on a Linux (Fedora 16) workstation with an Intel i7 970
3.2GHz CPU (6-core) and 24 GB memory. WHAM-2d and 2D-vFEP did not utilize any
multiple-core ability while the MBAR implementation utilized some multiple-thread
functionality in the MBAR library. The results from WHAM-2d, MBAR/gKDE, and 2D-
vFEP are reported in the following sections.

Alanine Dipeptide
The classic test case of a two dimensional free energy profile, the (φ, ψ) torsion free energy
map of terminally blocked alanine peptide (sequence Ace-Ala-Nme) in explicit solvent, is
treated as the benchmark system. The system is relatively simple and has been extensively
studied.59–64 A model Ace-Ala-Nme sequence peptide was generated by the tleap utility in
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the Amber12 package65 and subsequently put in a 30 Å cube of TIP3P66 water (540
molecules). A biasing potential of 0.02 kcal/mol-deg.2 was applied to both dimensions for
each window. The NAMD package (v 2.9)67 was used with the Amber FF99SB-IDLN force
field68 under periodic boundary conditions in the NpT ensemble at 300 K and 1 atm
(NAMD uses a modified Nosé-Hoover method69,70 in which Langevin dynamics is used to
control fluctuations in the barostat). Each window was simulated for 0.5 ns equilibration and
1 ns of data collection with sampling frequency of 100 fs (10,000 data points per window).

The peptide backbone torsion angles, φ and ψ, are defined as the relevant coordinates.
Umbrella sampling simulations were performed by placing biasing potentials at evenly-
spaced coordinates. Both φ and ψ were scanned from −180° to 180° with a step size of 15°,
resulting in a set of 24×24 (576) umbrella sampling windows. Sets of 4×4 window data and
8×8 window data were extracted from the original 24×24 window data set using larger
spacing (90° spacing for the 4×4 window set and 45° spacing for the 8×8 window set).

Variation in number of umbrella windows—The (φ, ψ) free energy profiles of alanine
dipeptide from different numbers of windows (4×4 (16), 8×8 (64), and 24×24 (576)) are first
calculated and compared. Figure 1 shows the results using the same data sets with different
methods: WHAM (upper row), MBAR/gKDE (middle row), and the vFEP (bottom row).
The figure suggests that WHAM and MBAR/gKDE need 576 windows to deliver reasonable
results while vFEP can give a rough estimation of the free energy profile with only 16
windows. In addition, the fact that, with 16 or 64 windows, WHAM cannot converge in a
large number of areas (the white space/spots) and MBAR/gKDE cannot produce
qualitatively correct results, demonstrates the strong requirement of overlapping between
windows in the traditional approaches such as WHAM and MBAR.

Variation in the number of sampling points per window—As previously
mentioned, parametric approaches such as Gaussian kernel density estimation methods,
compared to the histogram approaches, much reduce the number of data points required to
construct the free energy profile. Figure 2 clearly shows such advantage. The original data
sets (10,000 points per window) were stripped randomly to 100, 200, 1000 points per
window. The results from those reduced data sets using WHAM are not able to deliver
meaningful results with only 64 windows. Nevertheless better results are shown with more
data points. On the other hand, although MBAR/gKDE cannot deliver good results with 64
windows, Figure 2 demonstrates the advantage of using smooth functions to represent
sampling data distribution over the histogram approach utilized in WHAM: only 200 points
per window are sufficient to deliver correct results compared to results from 10,000 points
per window (Figure 1). 2D-vFEP not only is able to give good results with 64 windows but
also only needs 200 points per window to reach more or less the same accuracy.

With large numbers of windows, WHAM and MBAR do not suffer from the overlap
problem. Figure 3 shows the simulation results with 576 windows but reduced data sets
similar to Figure 2. Results obtained from different numbers of data points per window are
shown and suggest that, with 576 windows, MBAR/gKDE is able to deliver good results
while WHAM still has difficulty to converge in every region even with 1,000 points per
window. 2D-vFEP only needs 100 to 200 points per window to deliver qualitatively correct
results.

Identification of stationary points and pathways through the analytic free
energy surface—In the current vFEP implementation bicubic spline functions are used to
represent the model free energy profile. Such a representation provides a simple and easy
way to locate stationary points, since, given a certain value of one dimension, the zero
gradient points of the other dimension can be calculated analytically along with the analytic
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first and second gradients of both dimensions at the zero gradient points of the second
dimension. Hence, by searching all zero gradient points of each dimension and calculating
the analytic first and second gradients (i.e. the Hessian) of the other dimension, the extrema
and saddle points can be located.

The minimum and saddle points identified by vFEP and Nudged Elastic Band71,72 (NEB)
paths are shown in the bottom rows of Figures 1 to 3. NEB calculations were performed
with the DL-FIND library.73 The results agree well and all of the NEB paths pass through
minima and saddle points identified by vFEP, even though the initial points for the NEB
calculations were not from vFEP results. In the cases with very few data points and
windows, where WHAM and MBAR cannot deliver appropriate free energy profiles
(Figures 1 and 2, left columns), vFEP is still able to identify reasonable minimum and saddle
points, although more false positive points are found due to a higher level of noise.

A model QM/MM phosphoryl transfer reaction
Using the AMBER12 simulation package,65 hybrid quantum mechanical/molecular
mechanical (QM/MM) umbrella sampling simulations were performed for 2-hydroxy ethyl
ethyl phosphate (HEEP, see Figure 4), a model compound for RNA 2′-O-transesterification.
The system was modeled in the same way as in a recent study of this system,74 except that
the periodic box was a 35.7 Å cube of TIP3P rigid water molecules66 and the QM region
Lennard-Jones parameters were taken from the AMBER FF10 force field.75

Two dimensional umbrella sampling was performed using the phosphorus to leaving group
(bond breaking) distance (R1) and nucleophile to phosphorus (bond forming) distance (R2)
(Figure 4). A total of 192 short simulations (400 ps with 50 ps equilibration) were performed
with a harmonic biasing potential,

(4)

where k = 100 kcal/mol-Å2 and the values of the bias centers, R1,0 and R2,0, spanned a grid
of values at 0.25 Å intervals from 1.50 to 4.25 and 1.50 to 5.25, respectively.

The free energy profile results obtained from WHAM, MBAR/gKDE, and vFEP, are shown
in Figure 5. Due to the relatively thin set of data, histrogramming does not produce a
complete surface, even when the number of bins along each axis is reduced considerably
from 200 to 50. In the latter case the largest bin width is 0.075 Å, approaching a point where
the results are dubiously quantiative. This problem can be somewhat mitigated by using a
kernel density estimate to smooth out the regions between areas of low sampling. Using a
simple, data-based choice of smoothing parameter in each window,58 a complete surface can
be generated (Figure 5, upper middle panel), but at the expense of spurious features in the
reactant basin (top left of the surface). This problem is exaggerated further by scaling the
smoothing parameters by a factor of two, a practice previously recommended in one
dimensional cases in order to mitigate the appearance of spurious minima and maxima74

(Figure 5, upper right panel). Unfortunately, decreasing the extent of smoothing leads to the
same kinds of empty regions observed in the WHAM result (Figure 5, dark red spots in the
upper left panel). Although one might reasonably expect that some combination of
smoothing parameters will lead to a more balanced result, it is not at all clear what this
combination will be or what kind of automatic and deterministic procedure could be
followed to obtain it. Once again, however, vFEP provides a single, unique solution for the
surface that maintains all of the features, both coarse and detailed, observed with the other
methods.
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As with alanine dipeptide above, the vFEP minimum and saddle points and the NEB paths
were calculated (Figure 5, bottom right). The results again suggest that the vFEP minima
and saddle points agree well with the NEB paths. The “extra” path found moving right from
the reactant basin is especially interesting as it suggests the possibility of an alternative,
albeit extremely high energy, pathway towards the products (note that the products here are
two solvated anions and thus no proper product basin will be resolved without introducing
periodic boundary artifacts). It is not clear whether or not this extra basin is an artifact of
vFEP, although WHAM and MBAR indicate a similar region (Figure 5). Nonetheless, the
automatic search for zero-gradient points made possible by vFEP provides a simple
mechanism to broadly survey the free energy profile, at least making the user aware of the
additional minima and thus able to assess it on the grounds of chemical intuition.

QM/MM simulations of HHR
We have previously reported a set of large scale (921 windows) QM/MM umbrella sampling
simulations to explore metal-assisted phosphoryl transfer and general acid catalysis in the
extended hammerhead ribozyme (HHR).76 Free energy profiles were constructed with two
reaction coordinates: Z1, the reaction coordinate of the phosphoryl transfer, and Z4, the
Mg2+ binding distance. For each window, data was collected every 1 fs for a total of 10 ps,
resulting in 10,000 data points per window, in order to provide sufficient data points for the
WHAM analysis.

Here, selected data from this set of simulations were used as a realistic test of the
performance of the proposed 2D-vFEP method. WHAM, MBAR/gKDE, and vFEP were
applied to either the full 921 windows or else 100 or 400 windows selected randomly. Tests
were performed with 50, 500, and 5000 data points per window. Since WHAM cannot
converge with fewer than 5000 data points per window and both MBAR and vFEP deliver
similar results with different numbers of data points per window, only the case of 50 data
points per window is shown here (Figure 6). WHAM and MBAR/gKDE need 400 windows
to deliver reasonable results, but some regions are still poorly converged. Conversely, vFEP
can give a rough, but smooth, estimate of the free energy profile with only 100 windows and
50 data points per window.

With both 400 and 921 windows, the vFEP minima and saddle points agree well with the
NEB paths (Figure 6, bottom row). This is not as clearly true with 100 windows, where the
points and path are qualitatively different. Nonetheless, the basin locations from the two
calculations are in rough agreement and mostly qualitatively accurate in comparison to the
400 and 921 window cases.

Lastly, in the original work,76 WHAM was employed and hence 921 windows along with a
large number of data points in each window were necessary in order to construct a
reasonable free energy profile useful for mechanistic inference. Use of vFEP not only
improves the calculation with the original data set, but can get essentially identical results
with less than half the windows, providing a significant reduction in the necessary
computational resources.

Sampling errors in free energy shifts
While the 2D-vFEP method involves no explicit re-weighting procedure, the −lnZα terms
are equivalent to the relative free energy shifts, Δfα, defined in MBAR and WHAM. In vFEP
they are obtained implicitly through global optimization of the free energy profile, while in
the MBAR and WHAM approaches they are calculated as the results of the re-weighting
procedure. Simple bootstrapping schemes77 were utilized to estimate the statistical sampling
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errors in free energy shifts. The errors were estimated by calculating the standard deviation
between randomly chosen data sets with the same data size.

The calculated bootstrapping errors of the free energy shifts with different numbers of
windows and data points are listed in Table 1. With 8×8 windows and 200 data points, 2D-
vFEP is able to deliver an accuracy of 0.5 kcal.mol when only 0.22% of the original data is
used (24×24 windows; 10,000 points per window).

Timing
To assess the practical usability of the current 2D-vFEP implementation, the time needed to
perform 2D-vFEP of the alanine dipeptide system in a TIP3P water box was measured with
different settings. Measurements were done with a set of 24×24 (576)-window umbrella
sampling simulation and a set of 8×8 (64)-window umbrella sampling data created by
strapping from the 576 window data set, the same procedure as mentioned in the previous
sections. Results with WHAM and MBAR/gKDE were also measured. These programs were
written in different languages (vFEP is written in C++, WHAM in C, MBAR in mixed C
and Python), with different levels of optimization, and different implementations of
underlining theories/algorithms; hence the timing results should not be compared directly.
Rather, our purpose here is to demonstrate the usability of the 2D-vFEP program for realistic
two dimensional free energy profile problems.

Table 2 lists the time needed to complete free energy profiles for alanine dipeptide system.
The setting notations (8×8, 24×24 windows; 100 pt/w, 200 pt/w, etc.) are the same as used
in the previous sections. The MBAR run with 576 windows and 104 data points failed to
allocate enough memory on a 24GB workstation. The results confirm that the computational
cost of 2D-vFEP is more or less independent of the number of data points and is
proportional to the number of windows.

Discussion
There are various strategies to generate free energy profiles from umbrella sampling
simulation data. WHAM and MBAR first model the free energy profiles of individual
windows and then merge them into a global profile through re-weighting. Such an approach
inevitably needs significant overlap between windows so that the combined free energy
profile is sensible.

The approach taken by UI, GAMUS, and the present work is to assume smoothness of the
free energy profile between windows and construct the global free energy profile by finding
the most likely trial profile. However these approaches are different in the way they define
the “best” global free energy profile. The original UI approach assumed that the free energy
profile can be approximated as a combination of quadratic functions centered at umbrella
sampling window centers40,44,45 (this has now been extended to cubic and quartic
functions53). GAMUS utilizes a Gaussian Mixture Model to model the density distribution
with Gaussians with optimal centers and widths, while vFEP approximates the global free
energy profile with local cubic spline functions. Such approaches do not strictly require
significant overlap of data between nearby windows and hence are capable of modeling free
energy profiles with many fewer umbrella simulation windows.

Certain data fitting procedures need to be performed when constructing free energy profiles
from umbrella sampling data. It is well-known that using parametric analytic functions to
represent the observed data leads to faster and stable convergence at the expense of potential
bias. Hence one would expect more stable results if smooth functions are used to model the
local density distributions or free energy profiles, instead of deriving from non-parametric
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functions such as histograms. This is clearly demonstrated in the test cases in this work.
However, there is no well-accepted way to choose suitable functions to represent the local
density distributions or free energy profiles. Using quadratic functions for free energy
profiles or Gaussians for density distributions requires a theoretically sound procedure to
define the centers and widths of the corresponding Gaussians. Furthermore, these second
order approximations may not be sufficiently accurate to describe the local windows well.
Using third or higher order functions to model the local free energy profiles may encounter
numerical instability before combining them into global free energy profiles, as well as
increased bias in the parameters. On the other hand, in vFEP, the continuous and piece-wise
third-order approximation of the global free energy profiles in vFEP achieves both reduction
of data points needed and numerical stability. The fact that this mathematical assumption is
also physically sound means that it should lead to a minimal bias. That is, it is greatly
expected that the surface and its first two derivatives are piece-wise smooth and therefore it
should not introduce considerable error to impose this from the start.

Kernel density smoothing is a popular way to reduce the noise in non-parametric density
estimation.58 However, the results from kernel density smoothing are critically dependent on
the selection of the optimal smoothing bandwidth. While a complete discussion of this topic
is beyond the scope of this paper, the QM/MM results shown in Figure 5 clearly
demonstrate that kernel density smoothing methods need to be used with caution.
Reasonable results may only be obtained when different bandwidths are used in different
regions and there are, to our knowledge, no obvious methods for accomplishing this in a
simple and general fashion.

The proposed vFEP approach, in both one and two dimensional cases, requires less overlap
between windows compared to WHAM and MBAR and is more accurate compared to UI
and GAMUS. Hence the vFEP approach successfully addresses the two major problems in
constructing free energy profiles from umbrella sampling simulations and significantly
reduces the number of data points needed. The following potential advantages of vFEP
could significantly advance current free energy estimation techniques:

Fast estimate of rough free energy profiles and biasing potentials
In recent years there has been much effort to enhance sampling in MD simulations to more
efficiently construct free energy profiles and/or to extend the effective time scale of
simulations.6–9,78–90 The vFEP method may be integrated with these methods to potentially
enhance their performance in following ways:

To adaptively and iteratively refine free energy profiles, often it is necessary to have a
reasonable initial guess of free energy profile as the starting point. For two or higher
dimensions, it is frequently prohibitively expensive to obtain even an initial rough guess of a
free energy profile using methods such as WHAM, especially when the overall shape of the
surface is unknown. In contrast, vFEP only requires very small amount and sparse data to
deliver a semi-quantitative free energy profile that can serve as an initial rough guess to
direct further simulations to collect data in the most important regions of the free energy
landscape and refile the profile.

As vFEP only requires distribution data derived from simulations that may use any type of
well-behaved biasing potential, or even without biasing potential (Equations (2) and (3)), it
can also be utilized as a robust free energy profile estimator for distribution data from
various types of MD simulations, with or without biasing potentials. Such a strategy would
involve using the unbiased distribution data from accelerated MD simulations as input to
vFEP in order to create an analytic free energy profile for the coordinates of interest. This
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strategy could then, in principle, be integrated into subsequent MD simulations as an added
biasing potential to further flatten the free energy landscape and enhance sampling.

Paths, minimum points, and saddle points in 2D free energy profiles
When using any analytic form of a free energy profile, it is trivial to calculate first and
second derivatives with respect to the relevant reaction coordinates. Although this advantage
is not outstanding compared to other methods for the one dimensional case, the results for
two dimensions demonstrate that vFEP could be significantly beneficial. To our knowledge,
there is no other method capable of calculating the first and second derivatives analytically
and easily. This advantage quickly leads to the efficient identification of the local minima
and saddle points, as well as all zero gradient points, which can serve as candidates for
possible reaction paths.

Conclusion
Here we report the extension of the variational free energy profile (vFEP) method to two
dimensions. vFEP utilizes the maximum likelihood principle and bicubic spline functions to
construct global free energy profiles. Test cases show that the vFEP approach efficiently
addresses the major obstacles to constructing free energy profiles encounted by traditional
methods: the need for overlap in the re-weighting procedure and the problem of data
representation. As a result, 2D-vFEP outperforms other methods in terms of the amount and
sparsity of the data needed to construct the overall free energy profile. In the case of alanine
dipeptide, 2D-vFEP only needs 8×8 (64) windows and 200 data points per window, roughly
0.22% of the original data set (576 windows and 10,000 data points per window), to reach a
sampling accuracy of 0.5 kcal/mol in free energy shifts between windows. Additionally, free
energy stationary points, including minimum and saddle points, can be identified
analytically and easily from the 2D-vFEP approach. Overall, the vFEP method is
demonstrated to be highly robust, even with a paucity of sampled windows and data points,
and offers a promising new tool for the construction and analysis of free energy profiles that
can be used to interpret mechanisms and potentially as the foundation for new methods for
adaptive biasing and enhanced sampling.
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Figure 1.
The 2D (φ, ψ) free energy profile of alanine dipeptide calculated from different methods
using the same data sets: WHAM, MBAR/gKDE, and vFEP results are shown in the upper,
middle, and bottom rows respectively. Results obtained from 4×4 (16), 8×8 (64), and 24×24
(576) windows are shown in the left, middle, and right columns respectively. All figures
show results with 10,000 points per simulation window, except for the case of MBAR/
gKDE with 576 windows where our current implementation only can handle 1,000 points
per simulation window. White space in the WHAM results indicate empty histogram bins.
WHAM and MBAR/gKDE need 576 windows to deliver reasonalbe results while vFEP can
give a rough estimate of the profile with only 16 windows. All angles are in degrees. The
color scheme of the free energy profile is shown at the right side color bar with units in kcal/
mol. The black diamonds and the white lines shown in the vFEP contour maps are the
saddle/minimum points and the possible paths found by the NEB method, respectively.
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Figure 2.
The 2D (φ, ψ) free energy profile of alanine dipeptide calculated from different methods
using 8×8 (64) windows: WHAM, MBAR/gKDE, and vFEP results are shown in the upper,
middle, and bottom rows respectively. Results obtained from different 100, 200, and 1000
points per window are shown in the left, middle, and right columns respectively. White
space in the WHAM results indicate empty histogram bins. WHAM and MBAR/gKDE do
not produce clearly meaningful results with any number of points, although the advantage of
gKDE over histograms is evident. Conversely, the 2D-vFEP results with 200 and 1000
points are essentially the same. All angles are in degrees. The color scheme of the free
energy profile is shown at the right side color bar with units in kcal/mol. The black
diamonds and the white lines shown in the vFEP contour maps are the saddle/minimum
points and the possible paths found by the NEB method, respectively.
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Figure 3.
The 2D (φ, ψ) free energy profile of alanine dipeptide calculated from different methods
using 24×24 (576) windows: WHAM, MBAR/gKDE, and vFEP results are shown in the
upper, middle, and bottom rows respectively. Results obtained from different 100, 200, and
1000 points per window are shown in the left, middle, and right columns respectively. White
space in the WHAM results indicate empty histogram bins. MBAR/gKDE is able to deliver
good results while WHAM still cannot converge in all regions, even with 1000 points per
window. The 2D-vFEP results with 200 and 1000 points are essentially the same, and the
results with 100 points per window extremely similar in qualitative terms. All angles are in
degrees. The color scheme of the free energy profile is shown at the right side color bar with
units in kcal/mol. The black diamonds and the white lines shown in the vFEP contour maps
are the saddle/minimum points and the possible paths found by the NEB method,
respectively.
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Figure 4.
Left: Reaction scheme for RNA phosphoryl transfer reaction. Right: The HEEP model
system used in the present work.
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Figure 5.
2D QM/MM free energy profiles of the HEEP system (Figure 4) calculated from different
methods. Upper row: MBAR results with kernel density smoothing schemes with different
scaled Silverman bandwidth settings: Left: scaled by 0.5 (under-smoothed), Middle: no
scaling (normal smoothing), and Right: scaled by 2.0 (over-smoothed). Lower row: WHAM
results with 50 bins (left) and 200 bins along each axis (middle), and the vFEP result (right).
Coordinate values are in Å and energies are in kcal/mol. The black diamonds and the white
lines shown in the vFEP contour maps are the saddle/minimum points and the possible paths
found by the NEB method, respectively.
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Figure 6.
The 2D free energy profile of HHR ribozyme (see Wong et al. 76 for reaction coordinate
definitions). WHAM, MBAR/gKDE, and vFEP results are shown in the upper, middle, and
bottom rows respectively. Results obtained from 100, 400, and 921 windows are shown in
the left, middle, and right columns respectively. For each window data was collected every
100 fs for a total of 5 ps, resulting in 50 data points per window. Calculations with 100 and
400 windows used randomly selections from the original 921 windows. White space in the
WHAM results indicate empty histogram bins. WHAM gives noticeably sparser results
compared to the original data set. Conversely, 2D-vFEP gives a rough, but smooth,
estimation of the free energy profile with only 100 windows. The two coordinates are in Å.
The color scheme of the free energy profile is shown at the right side color bar with units in
kcal/mol. The black diamonds and the white lines shown in the vFEP contour maps are the
saddle/minimum points and the possible paths found by the NEB method, respectively.
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