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Abstract
While the currently available estimators for the conditional Kendall’s tau measure of association
between truncation and failure are valid for testing the null hypothesis of quasi-independence, they
are biased when the null does not hold. This is because they converge to quantities that depend on
the censoring distribution. The magnitude of the bias relative to the theoretical Kendall’s tau
measure of association between truncation and failure due to censoring has not been studied, and
so its importance in real problems is not known. We quantify this bias in order to assess the
practical usefulness of the estimators. Furthermore, we propose inverse probability weighted
versions of the conditional Kendall’s tau estimators to remove the effects of censoring and provide
asymptotic results for the estimators. In simulations, we demonstrate the decrease in bias achieved
by these inverse probability weighted estimators. We apply the estimators to the Channing House
data set and an AIDS incubation data set.
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1. Introduction
In observational studies, subjects are often followed from an initiating event to a failure
event, and the lag time between these two events, the failure time, is of primary interest.
Truncated survival data arise when the failure time is observed only if it falls within a
subject specific region, known as the truncation set. The lower and upper limits of the
truncation set are termed the left and right truncation times, respectively. This mechanism
differs from censoring in that truncated subjects from the reference population are not
observed at all, whereas censored observations are sampled, though their data are
incomplete, as their exact failure times are unknown. One well known example of truncated
data is an AIDS incubation cohort study of HIV positive subjects with AIDS (Lagakos et al.,
1988). The failure time is the lag time between HIV infection and AIDS onset, which was
observed only if it was less than the lag time between HIV infection and study recruitment.
Thus, the lag time between HIV infection and AIDS onset is right truncated by the lag time

© 2013 Elsevier B.V. All rights reserved.
*Corresponding author: Tel.: 617-432-2821; fax: 617-432-5619. austmatt@gmail.com (Matthew D. Austin),
betensky@hsph.harvard.edu (Rebecca A. Betensky).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Stat Data Anal. Author manuscript; available in PMC 2015 May 14.

Published in final edited form as:
Comput Stat Data Anal. 2014 May 14; 73: 16–26. doi:10.1016/j.csda.2013.11.018.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between HIV infection and the end of recruitment. A second, well known example of left
truncated, right censored data is the Channing House data (Hyde, 1977), in which 97 male
residents of the Channing House retirement home were observed until death, or end of study
or departure from the community. The failure time of interest is the age at death of the
subjects, with age at entry into the retirement community as the left truncation time, as
subjects were sampled only if their ages at death exceeded their ages at entry into the
Channing House, and age at end of study or departure from the community as the right
censoring time.

Quasi-independence of truncation and failure refers to their independence in the observable
region (Tsai, 1990). Quasi-independence allows the joint density of the truncation time and
the failure time over the observable region to be factored into a product that is proportional
to the product of the marginal densities of each variable. Under quasi-independence, the
distribution of the failure time can be consistently estimated by the risk set adjusted product
limit estimator of Kaplan and Meier (1958) or the self-consistency algorithm of Turnbull
(1976). Unlike the requisite and unidentifiable assumption of independence of failure and
censoring (Tsiatis, 1981) for application of standard survival analysis methods to censored
failure time data, quasi-independence can be tested using the observed data (Tsai, 1990). A
popular nonparametric statistic that is used to quantify dependence is Kendall’s tau
(Kendall, 1938), although it is a measure of association and not statistical dependence. Thus,
while a non-zero Kendall’s tau implies dependence, the converse is not true, and so a
Kendall’s tau test is most useful when it rejects the null. Tsai (1990) and Martin and
Betensky (2005) proposed modified versions of Kendall’s tau that account for various types
of truncation in the presence of censoring. While the estimators for the conditional Kendall’s
tau are valid for testing the null hypothesis of quasi-independence (i.e., they are constructed
to have expectation zero under the null hypothesis), they are biased for the “true” Kendall’s
tau measure of association between the failure time and the truncation time when the null
does not hold. This is because they converge to quantities that depend on the censoring
distribution.

When quasi-independence of failure and truncation does not hold, estimation of the failure
distribution requires a model for its dependence on truncation. This model dictates the
nature of the dependence estimator that is required. A semi-parametric model, such as a
transformation model (Efron and Petrosian, 1994; Austin and Betensky, 2012) requires a
nonparametric estimator of dependence, and thus a Kendall’s tau type measure is
appropriate. The transformation model operates by transforming the truncation variable to a
latent, unobserved truncation time that would have been observed in the absence of
dependence on the failure time, and then uses it in a standard estimator for the failure
distribution that assumes quasi-independence of truncation and failure. The transformation
requires an estimate of a dependence parameter, and it is desirable for this estimate to be
free of the censoring distribution; this was shown in simulation studies conducted by Austin
and Betensky (2012). In particular, there was considerably less bias for the transformation
models that were based on the censoring-adjusted Kendalls tau as compared to the
unadjusted Kendalls tau. Thus, an estimator of the conditional Kendall’s tau that does not
depend on the underlying censoring is needed; the derivation of such a measure is the topic
of this paper. An alternative approach is to use a copula model for the dependence between
failure and truncation (Chaieb et al., 2006). This approach requires input of the copula-based
dependence parameter that does not contain information on the censoring distribution; this is
a parametric measure that depends on the selection of the particular copula family. The
copula dependence estimator does not depend on the marginal distributions of failure and
truncation, whereas the Kendall’s tau estimators do. For the ultimate purpose of estimation
of the failure distribution, however, there is no advantage to this independence, while there
is a downside to the parametric assumptions required for the copula estimator.
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Beaudoin et al. (2007) reviewed the conditions for consistency of several existing estimation
procedures for Kendall’s tau when one variable is subject to right censoring. All of these
estimators either suffer from computational complexity, or are not consistent for the true
Kendall’s tau under dependence. The computational complexities arise from kernel density
estimation, permutation, or complex imputation for the censored observations. Oakes (2008)
presented conditions for consistency of Kendall’s tau for bivariate random variables that are
potentially subject to truncation, but like Beaudoin et al. (2007), did not allow for the case in
which one variable truncates the observation of the other. Thus, for our setting of quasi-
independence testing, if there is censoring, these estimators are biased for the true Kendall’s
tau, and should not be used.

The magnitude of the bias due to censoring in the presence of truncation has not been
studied, although it was recognized by Martin and Betensky (2005), and so its importance is
not known. In this paper, we examine this issue and quantify this bias in order to assess the
practical usefulness of the estimators. Furthermore, we propose inverse probability weighted
versions of the conditional Kendall’s tau statistics to remove the effects of censoring. This
follows the approach of Uno et al. (2009), who derived an inverse probability weighted C-
statistic for assessing concordance between a failure time and a continuous marker in the
context of right censoring, where the same problem arises. This problem was also addressed
for Kendall’s tau in the presence of bivariate censoring (Lakhal et al., 2009). Through use of
inverse probability weighting, we are able to eliminate the bias due to censoring up to the
upper limit of the support of the censoring variable. We consider two commonly used
sampling models, and derive corrected tau estimators for each. We also provide asymptotic
results for the estimators.

In Section 2 we introduce notation, both sampling models, and provide an overview of the
conditional Kendall’s tau estimators. In Sections 3 and 4 we derive our proposed estimators,
prove their consistency and provide associated asymptotic results. In Section 5 we report
simulation results, and results from the Channing House and AIDS studies. In Section 6 we
conclude.

2. Notation and Kendall’s tau
Let X denote failure time, T denote truncation time, and C denote censoring time. We
observe data of the form (T, Y, δ), where δ = I(X < C) and Y = min(X,C), and for which T <
Y. These data are both left truncated and right censored. For the first sampling model, we
define the residual failure and censoring times as: R = X − T and D = C − T. We assume that
R ⊥ D|T, D ⊥ T, and P(T < C) = 1. We refer to this model as the residual censoring model,
as the censoring variable independent of the failure time on the residual (i.e., post-
truncation) time scale. This model was considered by Vardi and Stockmeyer (1985), Wang
(1991) and Mandel and Betensky (2008). The second sampling model assumes that (T,X) ⊥
C|T < X, T < C; we refer to this model as the independent censoring model. This model
was considered by Sun and Zhu (2000), De Uña-álvarez (2004), and Chaieb et al. (2006).

For both of these models, if quasi-independence of X and T holds, the product limit
estimator or the Turnbull algorithm can be used to estimate the failure time distribution.
Unfortunately, it is not possible to identify these models from the data alone. However, the
context and sampling and drop-out of particular study may be informative regarding the
censoring model. For the residual censoring model, we show that these estimators are valid
under quasi-independence in the Appendix. For the independent censoring model, this is
obvious from the derivations of the estimators given in Wang (1989), Wang (1991), Vardi
and Stockmeyer (1985), Tsai (1990), Turnbull (1976) and Woodroofe (1985). A U-statistic
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test for quasi-independence was proposed by Martin and Betensky (2005), based on a
conditional Kendall’s tau,

where Ω12 = {max(T1, T2) ≤ min(X1,X2)} is the event of comparability of the pair of
observations. This construction is necessary so that under H0 : X ⊥ T|X > T, τc = 0.
However, in the presence of right censoring, τc is not directly estimable. Instead, the
parameter

is easily estimated, where Λ12 = {max(T1, T2) ≤ min(Y1, Y2) ∩ δ(1) = 1} and δ(1) is the failure
indicator for min(Y1, Y2). Λ12 is the event of comparability and orderability of the pair of
observations (Martin and Betensky, 2005). We note that a comparable pair, (T1, Y1), (T2, Y2)
is orderable if min(Y1, Y2) = min(X1,X2). Martin and Betensky (2005) proposed a consistent
estimator of this parameter, for the independent censoring model, using a ratio of U
statistics,

where  is the number of comparable and orderable pairs. The U-
statistics, Uc and UM, have expected values of  and P(Λ12) = μ, respectively. Martin and
Betensky (2005) also showed that under the null hypothesis, H0 : τc = 0, it follows that

. In the Appendix, we extend this result to the residual censoring model, so that the test
based on the theoretical quantity, , is valid for both models. That is, for testing purposes, it
is sufficient to estimate , instead of τc.

3. Model 1: residual censoring model
Model 1 assumes that R ⊥ D|T, D ⊥ T, and P(T < C) = 1, where R = X − T and D = C − T,
and the sampling requires that T < X. We further define Q(s) = P(C − T > s). We must
establish H0 : X ⊥ T|T < X, so that we may apply standard survival analysis techniques to
estimate FX(·). We propose to estimate τc with a new, inverse probability weighted
estimator, τ̂c1 = Uc1/UM1, where

, and Q̂(u) = P̂(C − T > u). Applying the asymptotic theory for U-statistics
(Randles and Wolfe, 1979) and assuming Q(·) to be known, the asymptotic variance of Uc1
is given by
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where μ = P(Ω12). Upon substitution of Q by its consistent estimator, Q̂, a computationally
efficient estimator for γ1 is given by Martin and Betensky (2005). We evaluate the impact of
not inflating the variance estimator for insertion of the estimator Q̂ in place of Q in our
simulation studies. Alternatively, the approach taken by Datta et al. (2010) for the variance
of a U-statistic with inverse probability of censoring weighting might be applied to this
setting with truncation. Furthermore, it follows that n−1/2(Uc1 − τcμ) is approximately
distributed as N(0, 4γ1), and thus n−1/2(τ̂c1 − τc) is approximately N(0, 4γ1/μ2). Under the

null, H0 : X ⊥ T|T < X,  is approximately .

We now establish the consistency of τ̂c1. Recall that we can decompose τc into a sum of its
constituent parts as follows:

(1)

We proceed by deriving a consistent estimator for the first term in (1), from which it is
easily seen how the remaining three terms are estimated and combined to form τ̂c1 = Uc1/
UM1.

(2)

Assuming for now that Q is known, we estimate the numerator of (2) with

(3)

and the denominator with
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We note that the denominator is the same for all four terms in (1) and is estimated by UM1.
The consistency of (3) for the numerator of (2) follows from noting that

After applying the independence assumptions of the model, this final expectation is equal to

which is equal to P(T1 < T2, T2 < X1,X1 < X2), as desired. The consistency of the
denominator of (2) follows analogously. This argument clearly illustrates that without the
inverse weighting by Q, the distribution of C − T, i.e., as in , the estimator converges to a
function of Q, and thus is inconsistent for τc. In practice, we do not know Q, but due to the
model’s assumed independence of C−T and X−T, we are able to estimate it using a Kaplan-
Meier estimator based on (yi−ti, 1−δi), i.e., the residual censoring times, with reversal of the
roles of censoring and failure.

It is important to note that if the support of the random variable X −T contains the support of
C − T, then we cannot estimate τc, but rather are limited to
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where Ω′12 = I{max(T1, T2) ≤ min(X1,X2) ∩ max(X − T) < K} and K is the upper limit of the
support of C − T. Like , this quantity mixes information about the dependence of failure
and truncation with the censoring distribution, and thus is not of clear interest. However, in
this case, inverse weighting will not remove the censoring effects.

4. Model 2: independent censoring model
Model 2 assumes that (T,X) ⊥ C|T < X, T < C and that sampling requires T < min(X,C). We
further define SC(u) = P(C > u). We must establish H0 : X ⊥ T|T < X, so that we may apply
standard survival analysis techniques to estimate FX(·). Under this model, we propose to
estimate τc with a second, new, inverse probability weighted estimator, τ̂c2 = Uc2/UM2,
where

, and ŜC(u) = P̂(C > u). Again, upon substitution of SC by its consistent
estimator, ŜC, a computationally efficient estimator for γ2 is given by Martin and Betensky
(2005). We evaluate the impact of not inflating the variance estimator for insertion of the
estimator ŜC in place of SC in our simulation studies. applying standard U-statistic theory,
the asymptotic variance of Uc2 is given by

where μ = P(Ω12). A consistent estimator of γ2 can be derived as in Martin and Betensky

(2005). Under quasi-independence, H0 : X ⊥ T|T < X, it follows that  is

approximately .

As for Model 1, we establish consistency of our estimator for the numerator of the first term
in τc (1), which is given in (2). This follows from expressing the expectation of each term of
the estimator of the numerator of (2) as an iterated expectation, and then successively
applying the independence assumptions of the model. Again, assuming for now that SC is
known,
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The consistency of the estimator for the denominator of (2) follows similarly, as does
consistency for estimators of the remaining terms in τc (1). As for Model 1, the use of
inverse probability weighting to remove the effects of censoring is effective only if the
support of the failure time variable is contained within that of the censoring time variable.
Otherwise, the estimator for τc remains as a function of the distribution of C.

We also consider a second inverse weighted estimator for τc the under Model 2; this
estimator includes only subjects who are uncensored. It is likely that this estimator will be
less efficient than our first proposal given that it is using fewer observations. We were
motivated to consider this estimator in our extension of the transformation model of Efron
and Petrosian (1994) to handle dependent truncation and failure in the presence of censoring
(Austin and Betensky, 2012). In that setting, due to the nature of the transformation model
for dependency, it is necessary to use the uncensored observations only in certain steps of
the estimation process. Thus, while this tau estimator does not make full use of the available
data, it enables fuller use of the data (i.e., less modeling) for estimation of the failure
distribution (Austin and Betensky, 2012). This new estimator for τc is given by τ̂c3 = Uc3/
UM3, where

and η12 = I{max(T1, T2) ≤ min(Y1, Y2) ∩ δ1δ2 = 1}. The asymptotic variance of Uc3, with SC
assumed known, is given by

where μ = P(Ω12). Under H0 : X ⊥ T|X > T,  is approximately .

As for τ̂c2, the consistency of τ̂c3 follows from the law of large numbers and the
unbiasedness of the components of the U-statistic, as seen in the following steps for one
component of the numerator of the estimator:
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Just as τ̂c1 and τ̂c2 have their associated inconsistent unweighted version , τ̂c3 improves

upon , where

and . This estimator, like , is inconsistent away from the null in
the presence of censoring; we present it for comparison to τ̂c3.

5. Simulations and applications
In simulation studies, we explore the nature of the inconsistency of the standard Kendall’s
tau estimator for left truncated and right censored data, , and confirm the consistency of
our new inverse probability weighted estimators. We also assess the consistency of our new
estimator for the AIDS incubation study, for which there was no censoring, but to which we
artificially impose independent censoring. Finally, we compare tests based on  and τ̂c1 and
τ̂c2 for the Channing House data.

5.1. Simulations: residual censoring model
For investigation of the residual censoring model, we generated T and X as bivariate normal,
with means 0 and 1, respectively, and variance 1, and retained those observations that
satisfied T < X. We varied the correlation parameter, ρ, so that we could investigate how the
estimator behaves under different degrees of dependence between T and X. We generated D
as exponential with rate λ, and set C = T +D. This ensured that P(T < C) = 1 and D ⊥ T.
Also, by construction, R = X −T ⊥ D|T. We varied the rate parameter, λ, to investigate the
effects of heavy (70%) versus light (20%) censoring. In each simulation, we generated 1000
(5000 for the variance estimation) data sets with 500 observations each (after truncation).
For each of the 1000 data sets, we calculated τ̂c1 and , along with their analytical
variances. The variance for  was given by Martin and Betensky (2005). In these
simulations, the support of C − T contains the support of X − T so that there are no residual
effects of censoring after inverse probability weighting.

Table 1 displays the true value of τc, estimated from the simulated data prior to censoring,
the averages across the data sets of the estimators, τc1 and , and their analytical variances,
along with their empirical variances and estimated power for the test of quasi-independence.
It is apparent that under this model, the standard estimator, , displays substantial bias
toward the null. This bias appears to increase with distance from the null. Our new
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estimator, τ̂c1 exhibits much smaller bias. As expected, there is more bias under heavy
censoring than under light censoring. The analytic variances of our new estimator are quite
close to their empirical variances, with small positive bias, confirming the quality and
conservativeness of our variance estimators. Under heavy censoring, the variances of our
new estimator are roughly twice those of ; this is likely due to the additional variability in
our estimator due to the inverse weighting by Q̂ (·). This translates into slightly higher power
for the test of the null of quasi-independence that is based on .

Under this normal copula model, an alternative measure of dependence between T and X is
given by τ = 2 arcsin (ρ) /π. As explained in Section 1, τ and τc are not comparable
measures of dependence, and the copula based τ is not the target of our estimation.
Nonetheless, it is interesting to note that τ and τc are close when the copula model is
correctly specified; they differ by at most 0.10.

5.2. Simulations: independent censoring model
For investigation of the independent censoring model, we generated T and X as for the
residual censoring model. We generated C ~ N(μc, 1), independently of T and X, and
retained only those observations that satisfied T < min(X,C), thereby ensuring that (T,X) ⊥
C|T < C, T < X. We varied the mean parameter, μc, to again create censoring probabilities of
70% and 20%. In each simulation, we generated 1000 data sets (5000 for variance
estimation) with 500 observations each (after truncation). For each of the 1000 data sets, we
calculated τ̂c2, τ̂c3, and , along with their analytical variances. In these simulations, the
support of C contains the support of X so that there are no residual effects of censoring after
inverse probability weighting.

Table 2 displays the true value of τc, estimated from the simulated data, prior to censoring,
the averages across the data sets of the estimators, τ̂c2 and , and their analytical variances,
along with their empirical variances and estimated power for the test of quasi-independence.
It is apparent that under this model, in contrast to the residual censoring model, there is
substantial bias away from the null in the standard estimator, . This bias appears to be
increase with distance from the null. Our new estimator exhibits much smaller bias. As
expected, there is more bias under heavy censoring than under light censoring. The analytic
variances are quite close to the empirical variances, with small positive bias in some cases,
confirming the quality and conservatism of our variance estimators. In contrast to the results
of the simulation for residual censoring model, in this simulation, the variances of the two
estimators are comparable in magnitude, even though the variance estimator for τ̂c2 involves
ŜC(·). There remains slightly higher power for the test of the null of quasi-independence that
is based on  than the test based on τ̂c2; under this model this is due to the positive bias of

 away from the null, rather than a smaller variance.

Tables 3 and 4 display the true value of τc, estimated from the simulated data, prior to

censoring, the averages across the data sets of the estimators, τ̂c3 and , and their analytical
variances, along with their empirical variances and estimated power for the test of quasi-
independence. Table 3 contains results for sample sizes of 500, and Table 4 contains results

for sample sizes of 1000. In Table 3, it is apparent that τ̂c3 is less biased than , especially
under heavy censoring. This behavior is likely due to the loss of information due to the
restriction to the uncensored observations, and is confirmed in Table 4, which reflects
diminished biases for both estimators with sample sizes of 1000.
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5.3. AIDS incubation study
An AIDS incubation cohort study of HIV positive subjects with AIDS was conducted to
estimate the distribution of the time from HIV infection to AIDS onset in individuals who
were infected by contaminated blood transfusions (Lagakos et al., 1988). The failure time is
the lag time between HIV infection and AIDS onset, which was observed only if it was less
than the lag time between HIV infection and study recruitment. Thus, the lag time between
HIV infection and AIDS onset was right truncated by the lag time between HIV infection
and the end of recruitment. Specifically, let T denote the months from January 1978 to the
date of HIV infection (i.e., time of blood transfusion) and let X denote the months from HIV
infection to the date of AIDS onset. The study ended in July 1986, and so subjects were
included only if they were diagnosed with AIDs prior to July 1986, i.e., if X < 102 − T. This
sampling represents right truncation, and so we apply a time reversal to transform this into
left truncation; that is, let X* = 102 − X so that the sampling is defined by T < X*. Since
there is no censoring in this study, the standard estimator of τc, τ̂c (Tsai, 1990; Martin and
Betensky, 2005), is consistent, even under dependence. This offers us the opportunity to
evaluate our estimators in comparison to the standard estimator in the presence of censoring,
which we artificially impose, since we know the true value of τc, up to random variation due
to the finite sample size. From the original data set, we calculate . To impose
censoring, we assumed the residual censoring model, and simulated C − T as exponential
with rate parameter, λ, and varied λ to obtain censoring probabilities of 0.25, 0.50, and 0.75.
For each censoring probability, we simulated 200 new data sets, and for each data set we
calculated τ̂c1 and . Table 5 lists the results of our simulation; these values are to be
compared to the “true” value of 0.322. As expected, the original estimator, , is quite biased
in the presence of censoring; at 50% censoring it is 0.398 and at 75% censoring it is 0.497.
In contrast, our new estimator, τ̂c1, is, at worst, 0.324 at 75% censoring.

5.4. Channing House study
We illustrate the use of our inverse probability weighted U statistic on the Channing House
data set. This study followed 97 male retirees from their entry to the Channing House
retirement community in Palo Alto, California until death or end of study or departure from
the community. There is a moderate amount of censoring in this study; about 56% of the
observations are censored. The value of  is 0.197 for these data, with associated p-value of
0.041. In comparison, τ̂c1 is 0.185 with associated p-value of 0.064 and τ̂c2 is 0.133, with
associated p-value of 0.153. The analytical variance of τ̂c1 is 0.010 and its simple bootstrap
variance (2000 bootstrap samples) is 0.009. The analytical variance of τ̂c2 is 0.009 and its
bootstrap variance is 0.010. This provides further support for the accuracy of our analytical
variances, even with their substitution of the true distribution functions (Q and SC) by
consistent estimators.

It is noteworthy that there is a qualitative difference between the assumption of the residual
censoring model and the independent censoring model with respect to the important
assessment of quasi-independence. As censoring does not have any real meaning prior to
entry to the retirement home, the residual censoring model, for which P(T < C) = 1, seems
most appropriate. This choice raises the interesting question of how to estimate the survival
distribution given the near-rejection of the null hypothesis of quasi-independence; we
address this in Austin and Betensky (2012).

6. Discussion
Quasi-independence of failure and truncation is a necessary prerequisite for application of
straightforward estimation and regression procedures for truncated and censored data. At the
first level of analysis, a test of quasi-independence is of primary interest. For this purpose,
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the simple  estimator is valid. If this test rejects the null hypothesis of quasi-independence,
a second level of analysis is required. This involves some approach for modeling and
adjusting for the dependence in order to obtain an estimate for the failure time distribution.
For example, a function of an estimate of Kendall’s tau might be used in a copula model for
failure and truncation (Chaieb et al., 2006) or in a transformation model (Efron and
Petrosian, 1994; Austin and Betensky, 2012)). At this level of analysis, the simple  is not
consistent for the true τc, as it converges to a quantity that depends on the underlying
censoring distribution. A similar result was found by Uno et al. (2009) for Kendall’s tau for
censored by non-truncated data. We have addressed this problem by proposing two new
estimators for τc that are consistent away from the null and that apply to two commonly
assumed models for dependent truncation. We also considered a third estimator, but found it
to have poor large sample behavior due to its restriction to uncensored observations. While
our proposed estimators do depend on the marginal distributions of failure and truncation,
they are useful within the context of transformation models for failure in the presence of
dependent truncation (Efron and Petrosian, 1994; Austin and Betensky, 2012). Interestingly,
we found the original estimators to have greater power for detecting deviations from quasi-
independence. This was due to their smaller variances in the case of the residual censoring
model and to their greater bias in the case of the independent censoring model. Thus, it
appears that if these Kendall’s tau measures of association are of interest entirely for the
purpose of hypothesis testing, then the original estimators may suffice. Finally, we note that
our simulations only considered cases in which the support of the (residual) censoring
distribution contained that of the (residual) failure time distribution; in cases in which this
does not occur, even our inverse probability weighted estimators will be functions of the
associated censoring distributions.
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Appendix A. Appendix
We first show that under quasi-independence, the assumptions of the residual censoring
model permit use of the risk set adjusted Kaplan Meier estimator. For simplicity, we express
the likelihood contributions for discrete random variables:
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It is evident that quasi-independence allows for use of the conditional likelihood component
for X for estimation of FX(·) via standard survival analysis estimation procedures.

We now show that under H0 : X ⊥ T|T < X, and the remainder of the residual censoring
model assumptions, :

Under the assumptions X − T ⊥ C − T|T, C − T ⊥ T, and P(T < C) = 1, along with quasi-
independence, it follows that all four terms in  are equivalent and and hence . We
first note that the first and third terms and the second and fourth terms are trivially

equivalent to each other, simply by relabeling the indices. Defining ,
with g(t, c) = P(T = t,C = c), we can express the first term as
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It is easy to see that the second term has exactly this same expression.
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Table 5

This table shows the average value of the estimate for τc for two different estimators at 3 levels of censoring.
Each average was taken over 200 repetitions.

P(C < X*|X* > T) τ̂c1

0.75 0.324 0.497

0.50 0.322 0.398

0.25 0.323 0.351
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