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Abstract
In this Review, we summarize some of the recent work in emerging computational imaging,
sensing and diagnostics techniques, along with some of the complementary non-computational
modalities that can potentially transform the delivery of health care globally. As computational
resources are becoming more and more powerful, while also getting cheaper and more widely
available, traditional imaging, sensing and diagnostic tools will continue to experience a
revolution through simplification of their designs, making them compact, light-weight, cost-
effective, and yet quite powerful in terms of their performance when compared to their bench-top
counterparts.

Introduction
Consumer electronics industry has been experiencing a remarkable revolution, bringing
high-performance computers and various tele-communication devices to users at low cost in
very compact forms. This digital era has also facilitated various emerging opportunities for
the development of advanced computational imaging and sensing platforms. Compared to
traditional designs, these computational schemes can decrease the complexity of optical
hardware, which can be compensated in the digital domain by use of novel theories and
numerical algorithms. This reduction in complexity of components can also lead to light-
weight and cost-effective biomedical imagers and sensors. Toward this end, there has been
considerable effort to develop computational techniques in various research areas, including
super-resolution microscopy[1], holographic microscopy[2**,3**,4*], fluorescence
microscopy[5,6–8*], optical coherence tomography[9], endoscopy[10], spectroscopy[11–
13], integral imaging[14–15], time-coded imaging[16*], giga-pixel imaging[17**,18,19], as
well as magnetic resonance imaging[20*].

In parallel to these advancements in computational imaging approaches, there has been
growing interest in portable and cost-effective biomedical technologies to be used as point
of care (POC) diagnostic devices that can potentially improve and reform healthcare
delivery in both the developed and developing countries. For this ambitious goal, the
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development of affordable medical testing/measurement equipment is essential since
patients might not have routine access to advanced medical laboratory infrastructure in low
resource settings. In developed countries, however, even if such resources are readily
available, overall cost of these medical tests and diagnostic tools might become an obstacle
for some patients, especially in under-represented communities. Therefore, computational
imaging and sensing technologies, with their simplified and cost-effective device
architectures, hold promise as field-deployable diagnostic devices for both the developed
and the developing parts of the world.

To provide an overview of global health related imaging, sensing and diagnostic tools, here
we review various computational imaging and sensing platforms along with some of the
complementary efforts that are based on non-computational, more traditional approaches
tailored for field use and/or telemedicine applications. Starting with the next section, we will
provide a summary of these emerging medical diagnosis and telepathology concepts that
might fundamentally impact health care delivery across the globe by combining various
analog and digital resources/tools.

Computational Imaging for Global Health Applications
Optical imaging has been serving as a well-established tool in biomedical research and
clinical diagnostics for several decades. Particularly over the last two decades optical
microscopy has experienced a fascinating renaissance, with various fundamental advances
made in spatial resolution, depth of field (DOF), field of view (FOV), imaging speed as well
as effective numerical aperture (NA) of optical microscopes. However, despite these rapid
advances, the basic design of conventional microscopes that are used in clinical settings has
not changed much, where they still heavily rely on bulky imaging optics and costly
components, limiting their use to relatively advanced laboratory settings. Therefore, there is
an unmet need for field deployable and cost-effective microscopic imagers, especially for
telemedicine applications.

To provide solutions to this important need, there has been extensive research on the use of
computational approaches to develop field-portable and cost-effective imaging tools. Along
these lines, computational microscopy based on lensfree digital in-line holography[3, 21]
has become an emerging technique that can provide lightweight and compact imaging
devices (see Figure 1a), making them ideal for field use. These lensfree microscopes can
simplify the design of optical imaging by eliminating the need for bulky and costly
components such as objective lenses. Instead, computational methods are used to
compensate for the lack of complexity through the help of digital reconstruction algorithms.
In the holographic on-chip microscope design shown in Figure 1a, the samples are placed
directly on the top of an optoelectronic sensor array (e.g., a complementary metal–oxide–
semiconductor (CMOS) chip) with an object to sensor distance of e.g., 1–5 mm, and are
illuminated with a partially coherent light source, created by e.g., a simple light emitting
diode (LED). This illumination is then scattered from the micro-objects to coherently
interfere with the unperturbed background light, creating in-line holograms of the objects at
the detector plane. Holographic reconstruction and pixel super-resolution approaches are
used to partially undo the effects of diffraction and spatial undersampling occurring due to
the lensfree operation and unit magnification, which can then be used to reconstruct 3D
microscopic images of the specimens. At the core of this reconstruction process lies an
iterative phase-recovery algorithm,[22] which is used to retrieve the 2D optical phase
information that is lost during the intensity recording process at the detector plane. In
addition to iterative phase-recovery, another important computational block involves pixel
super-resolution (SR) [23–26,27**] that combines subpixel shifted lensfree holograms of the
same object to digitally synthesize a higher resolution hologram, which is especially
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important to mitigate undersampling related artifacts in reconstructed holographic images.
The required sub-pixel shifts for this design (Fig. 1a) is achieved through an array of LEDs
that are each butt-coupled to a multi-mode fiber-optic cable with a core-diameter of ~0.1
mm. Together with its compact and light-weight imaging design, such a lensfree on-chip
microscope also decouples the sample FOV from spatial resolution, providing computational
microscopes that can monitor large FOVs (e.g., 24–30 mm2) without a trade-off in spatial
resolution, generating for example >1 billion useful pixels in both the phase and amplitude
images of the objects. The performance of these lensfree computational microscopes has
been tested using e.g., blood smears[21], water-borne parasites[24], pap smears[25], viral
particles[27**] and other biological specimen. Through the use of sequential LED
illumination (i.e., comprising blue, green and red wavelengths), lensfree color imaging [26]
has also been implemented, providing color information of the samples, while also
mitigating rainbow like color artifacts that are commonly observed in holographic
microscopy. Recent results using these computational holographic microscopes achieved
high numerical apertures (e.g., ~ 0.9) across very large FOVs of e.g., ~20 mm2 [3] while
also permitting the detection of sub-100 nm particles or viruses across the same FOV
[27**]. With these rapidly improving performance metrics, these holographic on-chip
microscopes could be useful, providing general-purpose wide-field microscopy and
nanoscopy tools for especially POC offices and telemedicine applications.

Another emerging lensless computational imaging approach is based on contact microscopy
configuration[28] (see Figure 1b), where the samples of interest are brought almost in
contact (i.e., ideally less than 1 μm distance) with the active area of the optoelectronic
sensor array (e.g., a CMOS imager chip). Illuminated by an incoherent light source, these
on-chip samples create shadow/diffraction patterns at the detector plane, providing 2D
representations of the objects. However, these shadow patterns are also under-sampled due
to the physical pixel size of the detector array, limiting the resolution of contact microscopy.
There have been two main stream computational approaches employed to create higher
resolution images in this contact microscopy configuration: (1) an optofluidic imaging
approach[28]; and (2) a pixel SR method[29, 30]. For the first approach, an object flowing
through a microfluidic channel is imaged through a tilted array of submicron metallic
apertures fabricated on the image sensor, creating finely sampled shadows of the specimen
as it flows through the channel. These finely sampled shadows are then used to reconstruct
the 2D structure of the objects with a resolution that is better than the pixel size at the
CMOS chip. Note that holographic implementations of the same opto-fluidic imaging
scheme have also been reported, where the distance between the sample and the sensor-
active area can be significantly increased while also achieving sub-pixel resolution and
tomographic imaging on a chip[31, 32]. In the second approach, following the introduction
of source shifting based pixel super-resolution in holographic on-chip imaging[29], subpixel
shifted images of the same specimen are digitally combined to mitigate undersampling
artifacts, creating higher resolution contact images of the samples. Being a 2D imaging
modality, 3D samples (such as non-adherent cells) introduce spatial artifacts in contact
microscopy, which cannot yet produce tomographic images[32,33] of microscopic samples.
Similar to holographic on chip microscopy techniques discussed earlier, contact microscopy
is also limited to transparent objects, and therefore both of these transmission on-chip
imaging modalities would not be suitable for opaque specimen, unless a specific reflection
imaging design is implemented[34].

Another emerging trend in the development of computational imaging platforms is to
implement various micro-analysis and measurement techniques/designs on consumer grade
electronic devices such as cellphones[35], computer drives[36*], as well as flatbed
scanners[37,38,39*]. For this end, a digital microscopy and cytometry platform has been
demonstrated through the use of an opto-mechanical attachment installed on a consumer
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grade cellphone (see Figure 1c). This cellphone based microscope[35, 40, 41*], achieving
either static imaging or flow based video-rate imaging, can monitor fluorescently labeled
cells or micro-objects over a wide FOV of up to 81 mm2 with a spatial resolution of ~10 μm,
which is further improved to ~2 μm over a smaller FOV of ~1–2 mm2. In this design,
compressive decoding of acquired raw images is the key to boost the spatial resolution of
this fluorescent imager installed on the cellphone. As another example, a computational
microscopy approach has also been implemented on a consumer grade DVD driver[36*] by
modifying the standard DVD architecture with an additional detector (see Figure 1d). The
performance of this platform is validated through the use of surface chemistry protocols to
specifically detect and count CD4+/CD8+ T cells that could be valuable for monitoring of
HIV+ patients. This approach integrates a microfluidic sample handling method with digital
imaging on the same platform, making it highly advantageous for cellular diagnostics testing
in resource limited settings.

Conventional (Non-Computational) Imaging Techniques for Global Health
Applications

As a complementary effort to computational imaging platforms, there is an ample amount of
literature addressing global health problems through the use of non-computational imaging
designs. Toward this end, a widespread approach is to miniaturize conventional biomedical
imaging architectures into compact units for field-portable micro-analysis. For instance, a
miniaturized fluorescent microscope[42*] is designed through the integration of low-cost
and compact components such as LEDs and CMOS imagers (see Figure 2a). This light-
weight microscope can achieve 0.5 mm2 imaging FOV with ~2.5 μm spatial resolution. The
imaging performance of such a miniature fluorescence microscope is tested by imaging
mouse brain, however, this integrated imaging platform could also be utilized as a portable
biomedical diagnostics tool.

Following the same motivation presented in the previous section, implementation of non-
computational conventional imaging modalities on consumer-grade electronics products has
also gained significant attention recently. For example, a fiber-optic fluorescence
microscope[43**] has been installed on an off-the-shelf digital camera (see Figure 2b) to
perform in-vivo cellular imaging for inspection of tissue samples in low resource settings.
This microscope, achieving ~5 μm spatial resolution over ~0.66 mm FOV in width, has
successfully imaged early neoplastic changes in human epithelial tissues. Furthermore,
bright field and fluorescence microscopic imaging modalities[44**,45] implemented on
cellphone cameras have also been widely explored to perform microscopic investigation of
e.g., blood or tissue specimens (see Figures 2c–d). These non-computational, conventional
imaging and sensing platforms, some of which are highlighted in Figure 2, along with their
computational counterparts could be useful for telemedicine applications in general.

Computational Sensing for Global Health Applications
In parallel to these recent advances in computational imaging techniques that are discussed
earlier, sensing technologies also leverage computation and digital processing approaches,
achieving performance improvements beyond traditional sensor systems. For this end, much
research has been dedicated to develop new computational sensing technologies, including
digital sensors running on cellphones[46*, 47] or computer drives[48–51], as well as sensing
approaches based on digital biochemical assays[52*, 53–56], among others.

In addition to their microscopic imaging capability, as discussed earlier, cellphones can also
be used to build computational sensors to provide cost-effective and field-deployable
diagnostic devices for POC applications. As an example of computational sensing on a
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cellphone, a smart rapid-diagnostic-test (RDT) reader running on Android phones and
iPhone [46*] is demonstrated (see Figure 3a), which can automatically image and analyze
different lateral flow immunoassays using smart-phones. Through the same interface, test
results can be uploaded to central servers, where spatio-temporal maps of various conditions
can be visualized in real time making such a cellphone enabled distributed sensing approach
quite valuable for e.g., disease surveillance and management as well as epidemiologic
studies in general. Another recent emerging computational sensing platform is food allergen
testing on a cellphone[47], which is termed as iTube (see Figure 3b). Installed on the
existing camera unit of an Android phone, this iTube platform images and automatically
analyses colorimetric assays performed in test tubes toward sensitive and specific detection
of allergens (e.g., peanut) in food samples. Similar to the cellphone enabled RDT reader
platform, the test results acquired using the iTube platform can also be uploaded to secure
servers, creating personal and/or public spatio-temporal allergen maps that can be useful for
public health in various settings, including e.g., schools, restaurants, etc.

Along the same lines, a computational sensor employing standard computer drives such as
compact disk (CD) readers [51] has been recently illustrated (see Figure 3c), where
microparticles or live cells loaded into specially designed micro-channels interfere with the
laser beam in the optical pickup apparatus of the computer drive, causing an error signal in
the reading of the digital data previously written on the CD. The total count of error signals
is then used to determine the concentration of the microparticles/cells within the micro-
channel, providing a quantitative sensing capability. This CD-based computational sensor
has been applied to counting of Chinese Hamster Ovarian (CHO) cells for its proof-of-
concept. Such a ubiquitous and cost-effective device could especially be suitable for
biosensing applications in remote and resource poor settings.

Another recent direction in computational sensing is to employ digital analysis techniques
on biochemical assays that are frequently used to monitor biomolecular interactions or
markers for clinical diagnosis of various diseases. Enzyme-linked immunosorbent assay
(ELISA) or polymerase chain reaction (PCR) techniques are widely employed for specific
and sensitive detection of e.g., protein or nucleic acid bio-markers within large sample
volumes (e.g., microliters to milliliters). An emerging digital biochemical analysis
method[52*, 53–56] distributes the sample volume of interest into smaller separate regions/
volumes such that each droplet of the sample provides “0” or “1” molecules, corresponding
to negative or positive reactions occurring within each droplet, respectively (see Figure 3d).
Assuming a sufficiently large number of droplets exists per test, the computational analysis
of total “0”s and “1”s is expected to follow a Poisson distribution, which in turn can provide
a measurement of the target molecule concentration within the sample volume of interest.
This “digital assay” method, which can for example be applied to PCR tests, can in general
achieve highly sensitive and calibration-free diagnostic measurements, creating a versatile
digital sensing approach for especially POC applications.

Future Outlook for Computational Imaging, Sensing and Diagnostics
The recent advances in computational imaging and sensing technologies, also outlined in
this Review, could potentially flourish a hybrid system/network that integrates unique
physical functions of existing tools (e.g., microscopes, cytometers, biosensors etc.) with
recently emerging computational measurement/test techniques running on various digital
electronics components, including e.g., cellphones or tablet PCs (see Figure 4). Such a
hybrid network of micro-analysis, imaging and sensing tools, which are at the same time
digitally connected to each other through central servers can output and digitally share
massive amounts of high quality and highly relevant biomedical data, forming large scale
spatio-temporal databases/maps for various diseases or micro-organisms, among others [57].
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This cloud-based micro-analysis and diagnostics network might provide new prospects for
e.g., outsourcing medical diagnosis to remote doctors toward building an efficient
telemedicine infrastructure, better analysis and management of epidemics and pandemics, as
well as aiding epidemiology researchers and decision/policy makers on global health and
environmental strategies in general.

On the other hand, we should also emphasize that this massive data to be generated through
such widely distributed computational imaging, sensing and diagnostics tools, will also
contribute to our emerging “Big Data” challenge[58], which can fundamentally be related to
the mismatch between the growth rate of digital electronics devices in general and the
availability of human experts (i.e., trained professionals, in the form of e.g., pathologists,
medical diagnosticians, microscopists or micro-biologists). To address this big data problem
for biomedical image analysis and medical diagnosis, various innovative uses of crowd-
sourcing methods [58,59,60*] can be employed to better handle large scale medical imaging
and sensing data, and to segment, identify, classify, and reach accurate and sensitive
diagnostic conclusions, by e.g., merging machine learning, statistical learning tools with the
intrinsic image recognition and learning capabilities of human experts and medical
professionals (see Figure 4b).

Conclusion
In this Review, we summarized the recent work in computational imaging, sensing and
diagnostics techniques, along with some of the emerging non-computational imaging/
sensing modalities that can provide significantly improved and yet cost-effective alternatives
for global health applications.
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Highlights

• Consumer electronics creates new opportunities for imaging and sensing
technologies.

• We review emerging computational imaging and sensing platforms for global
health.

• Computational imagers and sensors are in general field-portable and cost-
effective.
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Figure 1.
Computational imaging modalities for point of care applications. (a) Lensfree computational
microscopy platform based on pixel super-resolved digital in-line holography. (b) Lensless
contact imaging device. (c) Computational fluorescent imaging and cytometry on a
cellphone. (d) Digital microscopy on a computer drive. Reprinted from refs. 28, 32, 38, and
34 with permission from RSC publishing (a, d), PLoS One (b), ACS publishing (c),
respectively.
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Figure 2.
Non-computational, conventional imaging methods implemented on consumer electronics
devices. (a) Miniaturized fluorescence microscope. (b) Fiber optic fluorescence microscope
on a digital camera for in vivo imaging. (c) Fluorescent microscopy on a cellphone. (d)
Bright field microscopy and spectroscopy on a cellphone. Reprinted from refs. 40, 41, 42,
and 43 with permission from Nature Publishing Group (a) and PLoS One (b–d),
respectively.
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Figure 3.
Computational sensing techniques for telemedicine applications. (a) Integrated rapid
diagnostic test reader on a smart-phone. (b) Personalized food allergen testing on a smart-
phone. (c) Computational sensing on a standard computer drive. (d) Digital analysis on
biochemical assays. (e.g., ELISA or PCR). Reprinted from refs. 44, 45, 49, and 54 with
permission from RSC publishing (a–d).
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Figure 4.
(a) Cloud based micro-analysis and diagnostics devices forming a telemedicine network. (b)
A crowd-sourcing method as described in this schematics can be utilized to better handle the
large-scale bio-medical imaging and sensing data (the red box) by combining the innate
visual recognition and learning capabilities of humans (i.e., medical professionals,
diagnosticians, microscopists, etc.) with machine learning based pre-processing
computational blocks. Reprinted from ref. 60 with permission from PLoS One (a–b).
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