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Cytochrome P450 mRNA Expression in the Rodent Brain:
Species-, Sex-, and Region-Dependent Differences s
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ABSTRACT

Cytochrome P450 (P450) enzymes play a critical role in the activation
and detoxication of many neurotoxic chemicals. Although research
has largely focused on P450-mediatedmetabolism in the liver, emerging
evidence suggests that brain P450s influence neurotoxicity by
modulating local metabolite levels. As a first step toward better
understanding the relative role of brain P450s in determining neu-
rotoxic outcome, we characterized mRNA expression of specific
P450 isoforms in the rodent brain. Adult mice (male and female)
and rats (male) were treated with vehicle, phenobarbital, or dexameth-
asone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan
CYP4X1 and CYP2S1 were quantified in the liver, hippocampus,
cortex, and cerebellum by quantitative (real-time) polymerase chain
reaction. These P450s were all detected in the liver with the exception

of CYP4X1, which was detected in rat but not mouse liver. P450
expression profiles in the brain varied regionally. With the exception of
the hippocampus, there were no sex differences in regional brain P450
expression profiles in mice; however, there were marked species
differences. In the liver, phenobarbital induced CYP2B expression in
both species. Dexamethasone induced hepatic CYP2B and CYP3A in
mice but not rats. In contrast, brain P450s did not respond to these
classic hepatic P450 inducers. Our findings demonstrate that P450
mRNA expression in the brain varies by region, regional brain P450
profiles vary between species, and their induction varies from that of
hepatic P450s. These novel datawill be useful for designingmechanistic
studies to examine the relative role of P450-mediated brain metabolism
in neurotoxicity.

Introduction

The cytochrome P450 (P450) superfamily is a diverse group of
enzymes that catalyze the oxidative metabolism of not only endogenous
substrates but also xenobiotics, including environmental contaminants
of significant public health concern that target the nervous system,
including polychlorinated biphenyls, polybrominated diphenyl ethers,
and organophosphorus pesticides (Ariyoshi et al., 1995; Foxenberg
et al., 2007; Erratico et al., 2013; Feo et al., 2013). Biotransformation of
these compounds by P450s can result in bioactivation or detoxication,
and the balance between these activities influences the bioeffective dose,
and thus the neurotoxic outcome, following environmental exposures,
as shown in studies of humans and animal models (Foxenberg et al.,
2007; Curran et al., 2011; Kim et al., 2011; Crane et al., 2012; Khokhar
and Tyndale, 2012).
Much of the research effort to characterize P450-mediated metabo-

lism of neurotoxic compounds has focused on the liver. However, it is
now evident that P450s are expressed in a number of extrahepatic
tissues, including brain (Ding and Kaminsky, 2003; Ferguson and
Tyndale, 2011). Although total P450 content in the human and rodent
brain is generally significantly lower than that in the liver (Warner et al.,
1988; Bhamre et al., 1992; Volk et al., 1995), recent evidence from rat
studies demonstrates that P450-mediated metabolism in the brain can
contribute significantly to neurotoxicity (Khokhar and Tyndale, 2012;

Zhou et al., 2013). These data coupled with reports that P450 expression
in the brain may vary between anatomic regions of the brain (Warner
et al., 1988; Dutheil et al., 2009) have led to growing interest in the
putative role of brain P450s in determining sensitivity and response to
neurotoxic compounds via modulation of local metabolite levels (Meyer
et al., 2007; Ferguson and Tyndale, 2011; Ravindranath and Strobel,
2013).
Rodents are important models for studying the relative influence of

brain versus liver P450s on neurotoxicity; however, most of our
knowledge of P450 expression in the rodent brain is derived from
studies of whole brain homogenates, and there is a paucity of data on
regional P450 expression in the rodent brain. Additional questions
include whether the well known sex- and species-specific differences
in hepatic P450 expression extend to the brain, and whether P450s in
the brain respond to classic inducers of hepatic P450 expression. Here,
we address these questions by comparing P450 transcript levels in
three distinct regions of the rodent brain relative to expression levels in
the liver under basal conditions and following treatment with phenobar-
bital and dexamethasone, which are classic inducers of hepatic
CYP2B and CYP3A expression (reviewed by Corcos and Berthou,
2008; Greenblatt et al., 2008). We also assessed the influence of sex
and species on P450 expression profiles in the brain using the male
mouse as the reference. We studied CYP2B (mouse CYP2B10/rat
CYP2B1/2), CYP3A (mouse CYP3A11/rat CYP3A2), and CYP1A2
because these isoforms have been implicated in the metabolism of
polychlorinated biphenyls (Kania-Korwel et al., 2008, 2012; Curran
et al., 2011), polybrominated diphenyl ethers (Erratico et al., 2013;
Feo et al., 2013), and organophosphorus pesticides (Tang et al., 2001;
Foxenberg et al., 2007). Two orphan P450s, CYP4X1 and CYP2S1
(Guengerich et al., 2010), were also included in this study because
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CYP2S1 is abundantly expressed in many extrahepatic tissues
(Choudhary et al., 2003) and CYP4X1 is predominantly expressed in
the rodent brain (Bylund et al., 2002; Al-Anizy et al., 2006). The data
reported herein demonstrate brain region–specific expression of P450s
in the rodent brain that is sex- and species-dependent and generally not
altered by the classic inducers phenobarbital and dexamethasone under
conditions that significantly induce P450 expression in the liver.

Materials and Methods

Animals and Treatments. Experiments involving animals were approved
by the Institutional Animal Care and Use Committee at the University of Iowa.
Male and female C57BL/6 mice (7–8 weeks) were obtained from the Jackson
Laboratory (Bar Harbor, ME) and randomly assigned to one of four groups: 1)
phenobarbital (PB; Sigma-Aldrich, St. Louis, MO) at 102 mg/kg/day in saline
or 2) saline at 20 ml/kg/day, i.p., for 3 consecutive days; 3) dexamethasone
(DEX; Sigma-Aldrich) at 50 mg/kg/day in corn oil (CO) or 4) CO (Fisher
Scientific, Pittsburg, PA) at 10 ml/kg/day, i.p., for 4 consecutive days (Kania-
Korwel et al., 2008). Male Sprague-Dawley rats (8 weeks) were purchased
from Harlan, Inc. (Indianapolis, IN), acclimated for 1 week, then randomly
assigned to one of four groups: 1) PB at 102 mg/kg/day in saline or 2) saline at
5 ml/kg/day, i.p., for 3 consecutive days; 3) DEX at 50 mg/kg/day in CO or 4)
CO vehicle control at 5 ml/kg/day, i.p., for 4 consecutive days (Kania-Korwel
et al., 2008). Animals were euthanized 24 hours after the last treatment by CO2

asphyxiation followed by cervical dislocation. Brain regions and livers were
immediately collected on ice, weighed, placed in RNALater (Qiagen, Valencia,
CA) overnight, and then stored at280°C. The effects of treatments on liver and
total body weight are summarized in Supplemental Tables 1–3.

Assessment of mRNA Levels by Quantitative Polymerase Chain Reaction.
Tissue levels of isoform-specific P450 transcripts were quantified using a 7500
Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). P450
mRNA levels were normalized to the reference gene phosphoglycerate kinase
1, and relative expression ratios between treated and vehicle control animals
were calculated by the Pfaffl method (Pfaffl, 2001) using REST 2009 software
(Qiagen, Valencia, CA). Statistical analysis was performed using the built-in
randomization techniques of REST 2009 (detailed descriptions of RNA
isolation and mRNA quantification and analyses are provided in the
Supplemental Material; Supplemental Tables 6 and 7 list primer sequences
and amplification efficiencies of primers sets, respectively).

Results and Discussion

Adult male C57BL/6 mice were used as the reference for comparison
of sex- and species-dependent differences in P450 gene expression. In
male mice, tissue-specific P450 expression patterns were similar be-
tween saline (Fig. 1A) and CO (Fig. 1C) vehicle controls. The liver
expressed CYP2B10, 3A11, 1A2, and 2S1, but not CYP4X1, which is
consistent with previous reports of brain-specific CYP4X1 expression in

Fig. 1. P450 expression profiles in the brains of adult male C57BL/6 mice. Mice were treated for 3 consecutive days with either saline (20 ml/kg/day, i.p.) (A) or an equal
volume of PB in saline (102 mg/kg/day, i.p.) (B), or for 4 consecutive days with either CO (10 ml/kg/day, i.p.) (C) or an equal volume of DEX in CO (50 mg/kg/day, i.p.)
(D). Tissues were harvested 24 hours after the last injection and P450 mRNA quantified by quantitative (real-time) polymerase chain reaction. (A and C) Baseline P450
expression determined by normalizing fractional amplification (cycle number at which fluorescence exceeds a user-defined threshold) (Ct) values for P450 transcripts in
control samples to Ct values for the reference gene [phosphoglycerate kinase 1 (Pgk1)] in the same sample. (B and D) Change in expression of the target gene in PB- or DEX-
treated animals relative to vehicle control (saline for PB and CO for DEX). All data are expressed as the mean relative expression 6 S.E. (n = 4). *P , 0.05; **P , 0.01;
***P , 0.001, significantly different from vehicle control as determined by automated randomization and bootstrapping tests (REST 2009 software). BD, below detection
limit.
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mice (Al-Anizy et al., 2006; Renaud et al., 2011). P450 expression
profiles in the brain were region-specific: all five P450 isoforms were
expressed in the hippocampus; the cerebellum expressed transcripts for

all but CYP1A2, and the cortex expressed only CYP2S1 and CYP4X1
mRNA (Fig. 1, A and C). Treatment with either PB or DEX induced
P450 expression in the liver (Fig. 1, B and D; see also Supplemental

Fig. 2. P450 expression profiles in the brains of adult female C57BL/6 mice. Mice were treated for 3 consecutive days with either saline (20 ml/kg/day, i.p.) (A) or an equal
volume of PB in saline (102 mg/kg/dat, i.p.) (B), or for 4 consecutive days with either CO (10 ml/kg/day, i.p.) (C) or an equal volume of DEX in CO (50 mg/kg/day, i.p.) (D).
Tissues were harvested 24 hours after the last injection and P450 mRNA measured by quantitative (real-time) polymerase chain reaction. (A and C) Baseline P450 expression
determined by normalizing fractional amplification (Ct) values for P450 transcripts in control samples to Ct values for phosphoglycerate kinase 1 (Pgk1) in the same sample.
(B and D) Change in expression of the target gene in PB- or DEX-treated animals relative to vehicle control (saline for PB and CO for DEX). (E) Ct values for hippocampal
CYP2B10, CYP3A11, and CYP1A2 in the PB group (a,b,c) and the DEX group (d,e,f) of individual mice. Data in (A–D) are expressed as the mean 6 S.E. (n = 4–5).
*P , 0.05; **P , 0.01; ***P , 0.001, significantly different from vehicle controls as determined using the REST 2009 software. BD, below detection limit.
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Tables 4 and 5): hepatic CYP2B10 was induced by PB [mean of 35.1;
68% confidence interval (CI): 14.8–75.7] and by DEX (mean of 58.8;
68% CI: 30.6–137.5). DEX also induced hepatic CYP3A11 (mean of
6.9; 68% CI: 3.8–12.2). However, neither PB nor DEX induced
expression of any target P450 in the hippocampus, cerebellum, or
cortex (Fig. 1, B and D).
To explore the influence of sex, we measured P450 transcript levels

in female C57BL/6 mice. Baseline P450 expression in the liver and
cortex was similar between the saline (Fig. 2A) and CO (Fig. 2C)
vehicle controls, and comparable to profiles observed in male vehicle
controls (Fig. 1, A and C). Similar to males, all five P450 isoforms
were expressed in the hippocampus of CO-treated females (Fig. 2C);
however, in contrast to males, only CYP4X1 and CYP2S1 were
detected in the hippocampus of saline-treated females (Fig. 2A). CO
has been previously reported to influence P450 expression in the rat
liver (Yoo et al., 1990), but it is unclear whether our findings reflect
CO-mediated increase in P450 levels in the female mouse hippocam-
pus. Although differences between saline- and CO-treated female mice
could be experimental artifact, this seems unlikely because hippo-
campal expression levels of CYP4X1 and CYP2S1 were comparable
between the two vehicle treatments and between sexes.
As observed in male mice, PB induced hepatic CYP2B10 ex-

pression in female mice by a mean factor of 13.2 (68% CI: 6.6–23.7),

whereas DEX induced hepatic expression of CYP2B10 and CYP3A11
by 48.6 (68% CI: 30.6–91.1) and 8.21 (68% CI: 5.6–11.0), res-
pectively (Fig. 2, B and D). Also consistent with male mice, PB or
DEX did not change P450 expression in the cortex of female mice.
Similarly, DEX had no effect on P450 expression in the female
hippocampus. However, in contrast to males, PB significantly induced
expression of CYP2B10 (mean of 164; 68% CI: 56–529), CYP3A11
(mean of 279; 68% CI: 113–724), and CYP1A2 (mean of 36; 68% CI:
14–94) in the hippocampus of females relative to saline vehicle
controls (Fig. 2B). Data for these three transcripts are shown for in-
dividual female mice in Fig. 2E.
To investigate species-dependent differences, P450 transcripts were

quantified in male rats. Tissue-specific P450 expression profiles were
similar between saline (Fig. 3A) and CO (Fig. 3C) vehicle controls,
but varied from those observed in the comparable male mouse treatment
groups (Fig. 1, A and C). Specifically, in the male rat, all five P450
isoforms of interest were expressed in the liver, including CYP4X1
(Fig. 3, A and C). Also in contrast to male mice, rat brain expressed
CYP3A2, CYP4X1, and CYP2S1 in the hippocampus, cortex, and
cerebellum, but neither CYP2B1/2 nor CYP1A2 was detected in any
of these three brain regions (Fig. 3, A and C). These findings are
consistent with previous studies of regional P450 expression in rat
brain, with the exception that others have reported the presence of

Fig. 3. P450 expression profiles in the brain of adult male Sprague-Dawley rats. Rats were treated for 3 consecutive days with either saline (5 ml/kg/day, i.p.) (A) or an equal
volume of PB in saline (102 mg/kg/day, i.p.) (B), or for 4 consecutive days with either CO (5 ml/kg/day, i.p.) (C) or an equal volume of DEX in CO (50 mg/kg/day, i.p.) (D).
Tissues were harvested 24 hours after the last injection and P450 mRNA quantified by quantitative (real-time) polymerase chain reaction. (A and C) Baseline P450
expression determined by normalizing fractional amplification (Ct) values for CYP transcripts in vehicle control tissues to Ct values for phosphoglycerate kinase 1 (Pgk1) in
the same sample. (B and D) Change in expression of the target gene in PB- or DEX-treated animals relative to control (saline for PB and CO for DEX). Data are expressed as
the mean6 S.E. (n = 3 except for PB-treated cerebellum, in which n = 2). *P, 0.05; **P , 0.01; ***P , 0.001, significantly different from vehicle controls as determined
by automated randomization and bootstrapping tests (REST 2009 software). BD, below detection limit; NA, not available because of low amplification efficiency.
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CYP2B in rat brain (Schilter and Omiecinski, 1993). Similar to male
mice, PB (Fig. 3B) and DEX (Fig. 3D) induced P450 expression in the
male rat liver but not in any of the three brain regions. However, the
profile of hepatic P450 isoforms induced by these chemical treatments
showed species variation. In the rat, PB induced the expression of not
only CYP2B1/2 (by a mean factor of 504; 68% CI: 298–1044) but
also CYP3A2 (by a mean factor of 3.4; 68% CI: 1.8–7.1). Surprisingly,
DEX did not significantly alter hepatic CYP2B1/2 or CYP3A2 ex-
pression, but instead significantly upregulated CYP4X1 expression
(by a mean factor of 6.5; 68% CI: 1.5–78.8). Although the latter is
a novel finding, given the low fold-induction and the lack of protein
expression data, the functional significance of this upregulation is not
clear.
To further investigate sex- and species-specific differences in hepatic

P450 induction, we compared relative CYP2B and CYP3A induction
in the liver of male versus female mice and between male mice and
male rats. We found no significant sex differences in P450 induction
patterns in mice (Fig. 4A). Conversely, there were significant differ-
ences in hepatic P450 induction between mice and rats (Fig. 4B).
Hepatic CYP2B expression was induced by DEX in mice but not rats,
and CYP3A expression was induced by PB in mice but not rats and by
DEX in rats but not mice.
In summary, these data suggest that P450 mRNA expression in the

brain 1) differs significantly from hepatic P450 transcript profiles in

rodent models; 2) varies between brain regions; 3) exhibits subtle sex-
dependent differences in the C57BL/6 mouse, but significant species-
specific differences between mouse and rat; and 4) with the possible
exception of P450s in the hippocampus of the female mouse, is not
induced by PB or DEX regimens that induce hepatic orthologs. With
respect to the last finding, previous studies of whole brain homogenates
have reported either no P450 induction by these classic inducers (Schilter
et al., 2000; Hedlund et al., 2001; Upadhya et al., 2002; Woodland et al.,
2008) or CYP2B induction by PB (Schilter and Omiecinski, 1993;
Schilter et al., 2000; Upadhya et al., 2002). Discrepancies between studies
likely reflect differences in dose and duration of treatment, species and/or
strain, whole brain versus isolated brain regions, primer specificity, and
methods of mRNA quantification. Although it will be necessary to
confirm protein levels and activity of these P450 isoforms to
corroborate the significance of these findings, emerging evidence
of brain P450-mediated xenobiotic activation strongly suggests that
differences in regional expression of brain P450s may be an important
mechanism contributing to region-selective neurotoxicity (Spencer and
Lein, 2013).
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determined by automated randomization and bootstrapping tests (REST 2009 software).

Cytochrome P450 mRNA Expression in Rodent Brain 243



Department of Molecular
Biosciences, School of Veterinary
Medicine, University of California,
Davis, California (M.S., P.J.L.) and
Department of Occupational and
Environmental Health, College of
Public Health, The University of
Iowa, Iowa City, Iowa (X.W., I.K.-K.,
H.-J.L.)

MARIANNA STAMOU

XIANAI WU

IZABELA KANIA-KORWEL

HANS-JOACHIM LEHMLER

PAMELA J. LEIN

Authorship Contributions
Participated in research design: Stamou, Wu, Kania-Korwel, Lehmler,

Lein.
Conducted experiments: Stamou, Wu, Kania-Korwel.
Performed data analysis: Stamou, Wu.
Wrote or contributed to the writing of the manuscript: Stamou, Wu, Kania-

Korwel, Lehmler, Lein.

References

Al-Anizy M, Horley NJ, Kuo CW, Gillett LC, Laughton CA, Kendall D, Barrett DA, Parker T, and Bell
DR (2006) Cytochrome P450 Cyp4x1 is a major P450 protein in mouse brain. FEBS J 273:936–947.

Ariyoshi N, Oguri K, Koga N, Yoshimura H, and Funae Y (1995) Metabolism of highly persistent
PCB congener, 2,4,5,29,49,59-hexachlorobiphenyl, by human CYP2B6. Biochem Biophys Res
Commun 212:455–460.

Bhamre S, Anandatheerthavarada HK, Shankar SK, and Ravindranath V (1992) Microsomal
cytochrome P450 in human brain regions. Biochem Pharmacol 44:1223–1225.

Bylund J, Zhang C, and Harder DR (2002) Identification of a novel cytochrome P450, CYP4X1,
with unique localization specific to the brain. Biochem Biophys Res Commun 296:677–684.

Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, and Stoilov I (2003) Comparative ex-
pression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch
Biochem Biophys 414:91–100.

Corcos L and Berthou F (2008) The CYP2B subfamily, RSC Publishing, Cambridge.
Crane AL, Klein K, and Olson JR (2012) Bioactivation of chlorpyrifos by CYP2B6 variants.
Xenobiotica 42:1255–1262.

Curran CP, Nebert DW, Genter MB, Patel KV, Schaefer TL, Skelton MR, Williams MT,
and Vorhees CV (2011) In utero and lactational exposure to PCBs in mice: adult offspring
show altered learning and memory depending on Cyp1a2 and Ahr genotypes. Environ Health
Perspect 119:1286–1293.

Ding X and Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic
metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.
Annu Rev Pharmacol Toxicol 43:149–173.

Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, Bièche I, Ingelman-
Sundberg M, Flinois JP, and de Waziers I, et al. (2009) Xenobiotic-metabolizing enzymes and
transporters in the normal human brain: regional and cellular mapping as a basis for putative
roles in cerebral function. Drug Metab Dispos 37:1528–1538.

Erratico CA, Szeitz A, and Bandiera SM (2013) Biotransformation of 2,29,4,49-tetra-
bromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450
2B6 as the major enzyme involved. Chem Res Toxicol 26:721–731.

Feo ML, Gross MS, McGarrigle BP, Eljarrat E, Barcelo D, Aga DS, and Olson JR (2013)
Biotransformation of BDE-47 to potentially toxic metabolites is predominantly mediated by
human CYP2B6. Environ Health Perspect 121:440–446, 446e441–447.

Ferguson CS and Tyndale RF (2011) Cytochrome P450 enzymes in the brain: emerging evidence
of biological significance. Trends Pharmacol Sci 32:708–714.

Foxenberg RJ, McGarrigle BP, Knaak JB, Kostyniak PJ, and Olson JR (2007) Human hepatic
cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos 35:
189–193.

Greenblatt DJ, He P, von Moltke LL, and Court MH(2008) The CYP3 family, in Cytochromes
P450: Role in the Metabolism and Toxicity of Drugs and Other Xenobiotics, pp 354–383, The
Royal Society of Chemistry, London.

Guengerich FP, Tang Z, Salamanca-Pinzón SG, and Cheng Q (2010) Characterizing proteins of
unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 10:153–163.

Hedlund E, Gustafsson JA, and Warner M (2001) Cytochrome P450 in the brain; a review. Curr
Drug Metab 2:245–263.

Kania-Korwel I, Barnhart CD, Stamou M, Truong KM, El-Komy MH, Lein PJ, Veng-Pedersen P,
and Lehmler HJ (2012) 2,29,3,59,6-Pentachlorobiphenyl (PCB 95) and its hydroxylated
metabolites are enantiomerically enriched in female mice. Environ Sci Technol 46:
11393–11401.

Kania-Korwel I, Hrycay EG, Bandiera SM, and Lehmler H-J (2008) 2,29,3,39,6,69-Hexa-
chlorobiphenyl (PCB 136) atropisomers interact enantioselectively with hepatic microsomal
cytochrome P450 enzymes. Chem Res Toxicol 21:1295–1303.

Khokhar JY and Tyndale RF (2012) Rat brain CYP2B-enzymatic activation of chlorpyrifos to the
oxon mediates cholinergic neurotoxicity. Toxicol Sci 126:325–335.

Kim KH, Bose DD, Ghogha A, Riehl J, Zhang R, Barnhart CD, Lein PJ, and Pessah IN (2011)
Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity
toward ryanodine receptors and neurotoxicity. Environ Health Perspect 119:519–526.

Meyer RP, Gehlhaus M, Knoth R, and Volk B (2007) Expression and function of cytochrome
p450 in brain drug metabolism. Curr Drug Metab 8:297–306.

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR.
Nucleic Acids Res 29:e45.

Ravindranath V and Strobel HW (2013) Cytochrome P450-mediated metabolism in brain:
functional roles and their implications. Expert Opin Drug Metab Toxicol 9:551–558.

Renaud HJ, Cui JY, Khan M, and Klaassen CD (2011) Tissue distribution and gender-divergent
expression of 78 cytochrome P450 mRNAs in mice. Toxicol Sci 124:261–277.

Schilter B, Andersen MR, Acharya C, and Omiecinski CJ (2000) Activation of cytochrome P450
gene expression in the rat brain by phenobarbital-like inducers. J Pharmacol Exp Ther 294:
916–922.

Schilter B and Omiecinski CJ (1993) Regional distribution and expression modulation of cyto-
chrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 44:990–996.

Spencer PS and Lein PJ(2013) Neurotoxicity, in Encyclopedia of Toxicology (Wexler P ed),
Elsevier, Oxford, UK.

Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA, and Hodgson E (2001) Metabolism
of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver
microsomes. Drug Metab Dispos 29:1201–1204.

Upadhya SC, Chinta SJ, Pai HV, Boyd MR, and Ravindranath V (2002) Toxicological con-
sequences of differential regulation of cytochrome p450 isoforms in rat brain regions by
phenobarbital. Arch Biochem Biophys 399:56–65.

Volk B, Meyer RP, von Lintig F, Ibach B, and Knoth R (1995) Localization and characterization
of cytochrome P450 in the brain. In vivo and in vitro investigations on phenytoin- and
phenobarbital-inducible isoforms. Toxicol Lett 82-83:655–662.

Warner M, Köhler C, Hansson T, and Gustafsson J-Å (1988) Regional distribution of cytochrome
P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d.
J Neurochem 50:1057–1065.

Woodland C, Huang TT, Gryz E, Bendayan R, and Fawcett JP (2008) Expression, activity and
regulation of CYP3A in human and rodent brain. Drug Metab Rev 40:149–168.

Yoo JSH, Hong JY, Ning SM, and Yang CS (1990) Roles of dietary corn oil in the regulation of
cytochromes P450 and glutathione S-transferases in rat liver. J Nutr 120:1718–1726.

Zhou K, Khokhar JY, Zhao B, and Tyndale RF (2013) First demonstration that brain CYP2D-
mediated opiate metabolic activation alters analgesia in vivo. Biochem Pharmacol 85:1848–1855.

Address correspondence to: Pamela J. Lein, Department of Molecular Biosciences,
UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
95616. E-mail: pjlein@ucdavis.edu

244 Stamou et al.

mailto:pjlein@ucdavis.edu

