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Summary
The outcome of Stage II melanoma is uncertain. Despite that 10-year melanoma-specific survival
can approach 50% following curative-intent wide local excision and negative sentinel lymph node
biopsy, the adverse risk-benefit ratio of interferon-based adjuvant regimens precludes their use in
most patients. The discovery and translation of protein-based prognostic biomarkers into the clinic
offers the promise for residual risk stratification of Stage II melanoma patients beyond
conventional clinicopathologic criteria to identify an additional subset of patients who, based upon
tumor molecular profiles, might also derive benefit from adjuvant regimens. Despite incorporation
of Ki-67 assays into clinical practice, systematic review of REMARK-compliant, immunostain-
based prognostic biomarker assays in melanoma suggests that residual risk of recurrence might be
best explained by a composite score derived from a small panel of proteins representing
independent features of melanoma biology. Reflecting this trend, to date, 5 such multi-parameter
melanoma prognostic models have been published. Here, we review these 5 models and provide
detailed protocols for discovering and validating multi-parameter models including: appropriate
cohort recruitment strategies, comprehensive laboratory protocols supporting fully quantitative
chromogenic or fluorescent immunostaining platforms, statistical approaches to create composite
prognostic indices recommended steps for model validation in independent cohorts.
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1. Introduction
The prognosis for Stage II melanoma is uncertain. Despite curative-intent wide local
excision and negative sentinel lymph node dissection, the 10-year melanoma-specific
survival ranges from 65% in Stage IIA to 40% for Stage IIC [1]. Yet, due to the morbidity
associated with currently approved interferon-based therapeutic regimens, adjuvant therapy
is only recommended for Stage IIB/C patients with ‘high-risk’ features such as ulceration
and/or in-transit metastases [2] with active surveillance as the standard of care for the
remaining patients. To maximize the potential benefit of adjuvant treatment among Stage II
melanoma patients, current melanoma research priorities include the identification of
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complementary biomarkers that can stratify additional Stage II patients as high-risk with the
overall goal of reducing melanoma mortality among patients for whom cure is possible. In
addition to the consideration of mitotic index, which has recently been shown to be
independently prognostic among Stage II melanomas [3], a significant focus surrounds the
adjudication of in situ expression of candidate proteins, as assessed by immunostaining on
paraffin-embedded tissues, to identify signatures corresponding to melanomas with poor
melanoma-specific survival.

To identify those protein candidates with potential for translation into the clinic as
prognostic indicators from among the vast literature of evaluated candidates, we published a
systematic review and meta-analysis critically evaluating the body of published melanoma
immunostaining data through January 2008 [4]. Of the 455 identified manuscripts that
reported immunostaining data on melanoma samples, only 37 manuscripts reported
multivariable survival estimates across either prospective or retrospective cohorts while
meeting REMARK criteria [5] for immunostaining assay rigor for 62 unique individual
protein candidates. Schramm and Mann updated our review through December 2009,
identifying an additional eligible 14 studies and bringing the total number of rigorously
evaluated proteins to 86 [6]. For this report, we extended our systematic review search
criteria through August 15th, 2012 and identified an additional 15 eligible manuscripts
collectively evaluating 12 proteins including 9 candidates not previously considered in prior
reports [7–21].

The incremental value of molecular markers added to clinicopathologic prognostic models is
dependent on both the magnitude of the effect size and the inverse of the correlation with the
clinicopathologic parameters already in the model [22]. Altogether, across the 66 included
studies, statistically significant (p<0.05) multivariable adjusted Cox Proportional Hazards
results were reported for 14/49 protein associations with overall survival, 25/47 for
melanoma-specific survival and 20/31 for melanoma-free survival [10,4,7,9,6,8,11–21].
Interestingly, of the 58 significant associations, only 20 results representing 17 markers,
including Ki-67, achieved a hazard ratio ≥3.0 with 13 of these based upon total sample sizes
of <100 (Table 1). Furthermore, only metallothionein was independently validated with just
the disease-free survival association repeated in an independent cohort [23,24]. None of the
other extreme values were independently recapitulated. By comparison, individual proteins
whose significant prognostic hazard ratios were independently recapitulated across multiple
cohorts (e.g., p16/INK4A, Matrix metalloproteinase-2) displayed more modest, but
consistent, p-values in each of these studies (Table 2). Taken together, these data suggest
that the independent marginal gain in risk prediction over the base clinicopathologic
prognostic models for most independent markers might not be of substantial clinical benefit
to warrant further translation.

Consequently, one alternate strategy with the potential for augmenting the clinical relevance
of melanoma-related molecular predictors is to assemble a portfolio of orthogonally
prognostic proteins that, when combined as a single parameter, yield a high-magnitude
independently prognostic measure. Creation of multi-marker prognostic models from
differential transcriptome profiling is well-established with both the Oncotype DX [25,26]
and MammaPrint [27,28] tests approved for breast cancer prognostic stratification and,
similarly, the Oncotype Dx Colon Cancer [29] and ColoPrint [30] offer risk stratification for
patients with Stage II colorectal cancer. Moreover, the immunohistochemistry-based 5-
protein Mammostrat panel to identify estrogen receptor-positive breast cancer patients at
high risk for relapse despite estrogen-modulating adjuvant therapy has recently been
validated in a prospective, randomized clinical trial [31]. Similarly, in melanoma, multi-
parameter-based approaches for prognostic biomarkers are beginning to emerge as our
updated systematic review identified 5 manuscripts that each proposes a prognostic index
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based upon the combination of 3 to 7 individual biomarkers with the potential for translation
into the clinic (Table 3) [32,33,7,34,8]. Eighteen unique proteins were included across the 5
models with only 3 proteins – p16/INK4A, p53 and β-catenin – included in multiple models.
Altogether, the 5 models highlight the diversity of both laboratory and statistical
methodologies as well as the breadth of protein combinations. Although the most
straightforward approaches leverage standard semi-quantitative chromogenic
immunostaining, build a composite model from the subset of protein candidates that yield
significant univariate survival relationships and create an index score reflecting the number
of markers that exceed a specified threshold, more objective approaches that integrate fully
quantitative measures of protein expression or more complex, parameterized statistical
models are beginning to emerge.

In this review, we present a stepwise approach for discovering and validating novel multi-
parameter biomarker-based prognostic models. We outline appropriate cohort recruitment
strategies, comprehensively describe laboratory protocols supporting fully quantitative
assessment of protein expression using either chromogenic or immunofluorescent platforms
and present a suite of innovative statistical approaches for combining the assayed markers.
Finally, we present recommended steps for validating the model in an independent cohort,
necessary to support potential generalizability to the greater melanoma population.

2. MATERIALS
2.1. Tissue microarray (TMA) construction

1. Paraffin blocks from each of the index primary melanomas of all eligible
individuals accessioned in the Discovery and Validation cohorts.

2. Paraffin blocks from tissue reference controls and cell line reference controls.

3. Stainless steel coring needle (Estigen OÜ, Tartu, Estonia).

4. Tape transfer system (Leica Microsystems, Buffalo Grove, IL).

5. Nitrogen chamber/dessicator (Terra Universal, Fullerton, CA).

2.2 Antigen retrieval
1. 60 °C hybridization oven (we use an HB-1000 hybridization oven (UVP, Upland,

CA)).

2. Stainless steel, 30-slide staining dish (500 mL) and racks (Mopec, Oak Park, MI).

3. Xylene.

4. 100% ethanol and 75% ethanol.

5. Antigen Retrieval Buffer: (6.5 mM sodium citrate (3.84 g sodium citrate in 2L
ddH2O)), pH 6.0 or 1.3 mM EDTA (0.76 g EDTA in 2 L ddH2O), pH=8.0.

6. Pre-Treatment (PT) Module automated dewaxing and epitope recovery device (Lab
Vision, Fremont, CA).

7. 0.75% hydrogen peroxide in absolute methanol.

8. Tris-buffered saline (TBS, 1X, 8.76 g sodium chloride and 2.42 g trizma base/L,
pH=8.0)

9. TBS with 0.5% Tween-20.

10. 0.3% bovine serum albumin (BSA) in TBS/0.5% Tween-20 (1.5 g BSA dissolved
in 500 mL 1X TBS with 0.5% TWEEN-20).
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2.3. Quantitative chromogenic immunohistochemistry (IHC) using the Aperio ScanScope™

CS brightfield platform
1. Anti-target primary mouse/rabbit monoclonal antibodies.

2. PAP pen (Kiyota International, Elk Grove Village, IL).

3. EnVision™-HRP anti-target species (mouse/rabbit) secondary antibody (DAKO,
Carpenteria, CA).

4. 3,3′-diaminobenzidine (DAB) or3-amino-9-ethylcarbazole (AEC+) substrate
chromogens and Substrate Buffer (DAKO, Carpenteria, CA).

5. TACHA hematoxylin (Biocare Medical, Concord, CA).

6. Cytoseal 60™ mounting medium (Richard-Allan Scientific, Kalamazoo, MI).

7. Aperio ScanScope® CS digital light microscope platform with Console and
Spectrum software platforms (Aperio, Vista, CA).

2.4. Quantitative immunofluorescence (QIF) using the AQUA® technique
1. Anti-target primary mouse/rabbit monoclonal antibodies.

2. Mask antibodies: Rabbit anti-S100 polyclonal antibody (DAKO, Carpenteria, CA)
and anti-gp100 polyclonal antibody (Abcam, Cambridge, MA) or Mouse anti-
S100B monoclonal antibody (clone 15E2E2, Abcam, Cambridge, MA) and
HMB45 monoclonal antibody (Abcam, Cambridge, MA).

3. PAP pen (Kiyota International, Elk Grove Village, IL).

4. AlexaFluor 546-conjugated goat anti-mask species secondary antibody (Life
Technologies, Carlsbad, CA).

5. EnVision™-HRP anti-target species (mouse/rabbit) secondary antibody (DAKO,
Carpenteria, CA).

6. 10x Cy5-tyramide and Amplification Buffer (Perkin-Elmer Life Sciences,
Waltham, MA).

7. Prolong Gold mounting medium with 4′6-diamidino-2-phenylindole (DAPI) (Life
Technologies, Carlsbad, CA).

8. Digital fluorescent image capture platform – Caliper Life Sciences Vectra® 2
(Caliper Life Sciences, Hopkinton, MA) or Aperio ScanScope® FL (Aperio, Vista,
CA).

9. AQUAsition™ image capture and AQUAnalysis™ image analysis software packages
(HistoRx, Branford, CT).

3. METHODS
3.1. Selection of cases for Discovery and Validation cohorts (see Note 1)

1. Obtain institutional review board approval for the use of human tissue specimens
and to obtain their corresponding clinicopathological data and melanoma-related
outcomes.

2. Define the sampling frame for each of the Discovery and Validation cohorts.

3. Define the study inclusion/exclusion criteria (e.g., Stage II melanoma cases only,
exclusion of all new diagnoses in children <18 years of age).
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4. Query the appropriate hospital records or population-based tumor registry to
ascertain the complete list of all potentially eligible melanoma cases according to
the defined inclusion/exclusion criteria.

5. Query the appropriate surgical/dermatopathological tissue repositories to identify
the subset of eligible patients with available residual tissue.

6. Review diagnostic H&E sections and complete medical record abstraction for all
eligible cases, whether residual tissue is available or not.

7. Within each of the Discovery and Validation cohorts, to rule out the potential for
selection bias due to availability of residual tissue, compare the distribution of
clinicopathologic criteria between those cases with and without available tissue.

8. To ensure the comparability of the Discovery and Validation cohorts, compare their
respective distributions of the conventional clinicopathologic parameters planned
for inclusion in multivariable modeling.

3.2. Construction of tissue microarrays (see Note 2)
TMAs are constructed using the standard method [35] and cut sections are adhered to the
glass slides using a tape transfer technique.

1. Retrieve the paraffin blocks and their associated cut H&E slides corresponding to
the primary tumors from all eligible Discovery and Validation cohort members
from the tissue archive (see Note 3)

2. Review the H&E slide to confirm the presence of residual tumor and, using a fine-
tip marker, circle on the H&E slide the region most representative of the primary
tumor for inclusion onto the TMA.

3. To allow for adequate modeling of intra-tumoral heterogeneity and to guard against
missing values, inclusion of 4 0.6 mm histospots per case in melanoma tumors is
recommended (see Note 4).

1Correct study design is paramount for developing melanoma prognostic models with translational potential. REMARK criteria
require that biomarker studies rigorously report the method of case selection, including details regarding methods of ascertainment
(prospective or retrospective) and any inclusion/exclusion criteria that lead to stratification or matching as well as the time period from
which cases were taken, then end of the follow-up period and the median follow-up time [5]. In our systematic reviews [4,69], we
have further stipulated that study design must conform to the definition of a prospective or retrospective cohort [70]. The sampling
frame must be defined with recruitment strategies striving for complete source population enrollment and documenting study non-
participation. Convenience samples comprised of a subset of eligible cases (e.g., case series), no matter how large, risk introducing
bias. We also advocate against conducting case-control studies since they do not support survival analysis. Simon et al. [71] advocate
for additional study design rigor, requiring biomarker validation in prospective cohort studies or randomized clinical trials. At a
minimum, two independent cohorts must be identified for the initial model development. A Discovery Cohort is used to explore the
independent prognostic utility of the component markers, to conduct feature selection and to execute the initial multivariable Cox
proportional hazard modeling. A Validation Cohort is required to verify the model’s robustness through its generalizability across
additional cohorts. In anticipation of their synergistic use, it is critical that the Discovery and Validation cohorts have parallel
inclusion/exclusion criteria. For example, if the Discovery cohort is restricted to patients with Stage II melanoma, the correct
Validation cohort would be similarly restricted to Stage II melanoma cases.
2Development of multi-parameter biomarker assays for melanoma prognosis requires a significant initial investment in candidate
protein evaluation. In our experience [32], as well as that of others [7] between 6–10 candidates are triaged through the Training set
for every marker selected for inclusion in the model. As a result, model discovery is most efficiently conducted using TMAs. Not only
do TMAs allow for efficient rationing of small primary melanomas but they also ensure that all tumors are evaluated concurrently
using the same batch of laboratory reagents. However, the risk of using TMAs is that they do not directly translate to patient care and
require further validation cohorts that use conventional sections prior to introduction into laboratories for clinical usage.
3For melanoma patients who have multiple independent primary tumors, inclusion of material from multiple lesions is possible.
However, these data must be summarized such that each patient enters only once into the survival analyses assessing prognosis.
4Although the within- and between-sample variance of expression, the principal determinants of optimized histospot number, is
variable and marker-dependent [72], melanoma TMA validation experiments have shown over 95% concordance between 4 randomly
selected cores and whole slides [73] and this approach has been successfully applied across a series of candidate proteins [74,75].
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4. In addition to the cohort histospots, a series of controls must also be included in the
TMA.

a. Tissue reference controls. These controls allow for the normalization of
the quantitative scores to a single reference point across multiple builds of
a single TMA or between the training and validation TMAs, especially
when these experiments were conducted at separate, distinct time points.
Specifically, these provide the reference standards allowing correction for
any laboratory drift that may occur. These are selected as follows:

i. Three to four benign tissues with anticipated homogeneous
expression are selected. Our group selects liver, kidney
medulla and uterine smooth muscle but other tissue choices
can be made.

ii. Paraffin blocks of each targeted tissue from 8–10 individuals
are retrieved and included in the TMA for a total of 24–30
0.6 mm histospots dedicated to these controls.

b. Cell line controls. Formalin-fixed, paraffin-embedded pellets from 10–12
melanoma cell lines representing the diversity of known somatic mutation
subtypes (e.g., BRAF mutants, NRAS mutants, RAC1 mutants and BRAF/
NRAS/RAC1 wild type cell lines) are prepared (see Moeder et al. Ref.
[36] for complete method) in parallel with a series of cell lysates. Cores
from these pellets are included in duplicate on the TMA to both serve as
known internal positive and negative controls (see Section 3.3.1): Primary
anti-biomarker antibody selection and validation) for the primary antibody
and, among those positively expressing the antigen, to verify within-
sample heterogeneity of expression.

5. To ensure an unbiased array of the tumor samples and random admixture of all the
control samples, TMA row and column location are assigned using a random
number generator. Each planned core is randomly assigned a number between 0
and 1, rank ordered according to that number assignment and then row/column
addresses are sequentially given.

6. Donor blocks are aligned according to row/column assignment and 0.6 mm cores,
created with a stainless steel coring needle (Estigen OÜ, Tartu, Estonia) are arrayed
into the recipient paraffin block to create the microarray [35].

7. The completed TMA block is then faced and cut using the tape-transfer method
(Leica Microsystems, Buffalo Grove, IL). Tape-transfer substantially reduces the
number of lost histospots and distortion of the histospot array that can occur during
sectioning [37] and, in our experience, does not interfere with immunostain quality
or readability.

a. Place an adhesive Tape Window to the block face. The tape supports and
captures the section.

b. The Tape Window is placed section-side-down on corresponding,
complimentary adhesive-coated slides and laminated to the slide using the
included hand roller.

c. Expose the slide to 30–60 sec of 360 nm ultraviolet light to polymerize the
slide adhesive layer into a hard, solvent-resistant plastic that anchors the
section to the slide.
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d. Remove the Tape Window by immersing the section in TPC solvent for 3
min.

e. Dip slide briefly in Xylene to dry and then coat the slide in paraffin and
store in a dessicator (Terra Universal, Fullerton, CA) maintained at 10.5%
relative humidity using nitrogen gas until use to preserve tissue
antigenicity by reducing exposure of the cut face to ambient oxygen and
relative humidity [38].

3.3. Methods for biomarker quantification
Diverse commercial quantitative immunostaining platforms with capabilities for brightfield,
chromogenic immunostaining or quantitative immunofluorescence are available (Table 1).
Brightfield platforms are based upon the visualization of chromogenic stains (e.g., DAB or
AEC) against a hematoxylin counterstain. Machine-learning-based feature extraction
algorithms or other more simple sized based methods can resolve relevant cellular (e.g.,
tumor, stroma, vasculature, inflammatory infiltrates) and subcellular (e.g., nuclear vs.
cytoplasmic) compartments. The definition of these compartments may be dependent on the
counterstain or other methods. Protein expression is then quantified by measuring the levels
of white light absorbance by the chromogenic stain, typically operationalized as the average
intensity of the stain’s color (hue and saturation) across all pixels included in a selected
compartment [39–41]. By comparison, QIF multiplexes the target antibody fluorophore
(typically at or above 650 nm to avoid contamination with tissue autofluorescence) with
fluorophores directed against relevant cellular and subcellular features. In this manner,
cellular and subcellular compartments are resolved through co-localization with the selected
fluorescent signal and protein expression is quantified by measuring the level of light
emission at the appropriate wavelength corresponding to the target fluorophore within the
compartment(s) of interest [42]. Multiplexing of targets can be executed by selecting
fluorophores with non-overlapping emission spectra [43]. By example, we provide detailed
methodologic protocols for quantitative chromogenic IHC optimized for the Aperio
ScanScope CS brightfield platform and its associated Positive Pixel Count Algorithm as
well as QIF using the AQUA® technique.

3.3.1. Primary anti-biomarker antibody selection and validation—Prior to
initiating any immunostaining assays to assess levels of the candidate biomarker, advance
consideration must be given towards choice of the primary anti-biomarker antibody. First,
where possible, assay development with a monoclonal antibody is preferred. Once
established, monoclonal antibody reagents are synthesized in vitro from an immortalized
lymphocyte cell line which not only ensures a steady, consistent supply of quality reagent
over the complete life cycle of assay development but also, if translation into the clinic is
warranted, the antibody reagent quality and consistency can be validated according to
Clinical Laboratory Improvement Amendments (CLIA) standards to support necessary
clinical trial work. In contrast, while use of polyclonal antibodies can indeed uncover novel
significant and biologically-relevant biomarkers for melanoma prognosis, translating their
use into the clinic is less straightforward and uncertain at best. The most striking
consideration is that, unlike an immortalized, clonal cell line capable of scalable monoclonal
antibody production that is potentially unlimited, the availability of any polyclonal reagent is
limited at any one time by the amount of blood obtained from host organism during the
lifespan of the individual animal. The specific polyclonal mixture is exhausted upon the
host’s death and may never be regenerated in an identical manner due to variability in the
immune systems in the host species, even when challenged with identical antigen. Although
QC metrics for creating similarly effective polyclonal reagents for molecular techniques
such as chromatin immunoprecipitation from across a population of immunized rabbits are
routinely used [44], antibody-based projects requiring a high degree of standardization such
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as the prognostic biomarker assays described here, are best served with monoclonal
antibodies [45].

Next, all selected antibodies must undergo comprehensive validation procedures to verify
that the antibody is both sensitive and specific for its presumed target. The method preferred
by our lab has been recently published [46]. One simple method of antibody validation is to
conduct a Western blot on a spectrum of cell lines including one with previously confirmed
expression of the target protein and one where protein expression is known to be absent. In
this assay, the goal is to verify specific band(s) at the confirmed expected molecular
weight(s) for the target and to rule out visualization of any additional electrophoretic signals
at spurious molecular weights. While a Western blot can eliminate an antibody due to cross-
reactivity, absence of signal does not necessarily mean the antibody will not work in IHC or
QIF applications. When the Western Blot is non-informative due to lack of antibody
reactivity with the denatured antigen, it may still be valuable and specific in the less
denatured conditions seen in tissue sections, so in situ validation methods are recommended.
“Blocking peptide” methods where a soluble peptide expected to adsorb to the antibody are
not recommended since they cannot confirm specificity as they do not rule out binding to
off-target sites on the tissue sections. Rigorous in situ antibody validation is best achieved
using small interfering-RNA (si-RNA) in vitro knockdown experiments on positively
expressing cell lines or progressive induction of target antigen in non-expressing lines. Here,
levels of protein expression on the selected cell line(s) are assayed by IHC or QIF in the
presence/absence of siRNAs. If levels of the protein do not decrease with target knockdown,
cross-reactivity with alternate antigens is suspected and the antibody should be abandoned.
Alternatively, transfection and progressively increased induced expression can also show in
situ specificity [47].

3.3.2. Antigen retrieval—The initial steps of the immunostaining protocol through
application of the primary antibodies are identical for both brightfield and
immunofluorescent techniques as described below:

1. Align slides in a metal slide rack and place the rack in a 60 °C oven for 20 min to
overnight to melt off excess paraffin. For sections not adhered to the glass slides
using an ultraviolet crosslinked tape-transfer method, overnight incubation at 60 °C
is necessary to cure the slides.

2. Deparaffinize the tissues using two exchanges of 400 ml xylene for 20 min each.

3. Rehydrate the tissues through two exchanges of 400 ml 100% ethanol and 1
exchange of 75% ethanol for one min each and then place the slides under running
water for 10 min.

4. Pour 2 L of Antigen Retrieval Buffer (6.5 mM sodium citrate, pH 6.0 or 1.3 mM
EDTA pH=8.0) in the PT Module vessel and preheat the unit to 85 °C.

5. Once the buffer has reached the pre-heating temperature, place the slides in the
Module using the accompanying slide rack, seal the device and set antigen retrieval
at 97 °C for 20 min.

6. Following antigen retrieval, once the PT Module has cooled down to 75 °C, remove
the slides from the Module, place them under cold running water for 10 min and
then submerge the slides in 400 ml absolute methanol containing 0.75% hydrogen
peroxide for 30 min to quench endogenous peroxidase activity.

7. Wash the slides in two exchanges of water for 30 sec and in 1X TBS for 5 min.

8. Blot each slide dry and apply 1 mL of TBS-Tween/0.3% BSA solution to the
exposed tissue section for 30 min to adsorb non-specific binding sites.
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9. Blot off the TBS-Tween/BSA and proceed to 3.3.3.1 (chromogenic
immunostaining for brightfield platforms) or 3.3.3.2 (quantitative
immunofluorescence) to begin with primary antibody application for the desired
platforms.

3.3.3.1. Quantitative chromogenic IHC using the Aperio Scanscope™ CS
brightfield platform (see Note 5)

1. Prepare the desired titer of the validated primary target antibody by diluting it into
TBS-Tween/0.3% BSA to create a final volume of 1 mL.

2. Place the TMA slide in a level humid chamber and pipette the full 1 mL volume of
the primary antibody cocktail onto the TMA section, ensuring that the full surface
of the section is evenly covered with fluid. To create a hydrophobic barrier that
ensures retention of the antibody cocktail on the section, outline the TMA boundary
with a PAP pen.

3. Set the slide to incubate at 4 °C overnight.

4. Wash off the excess primary antibody by placing in 2 10-min exchanges of TBS-
Tween followed by 1 10-min exchange of TBS.

5. Apply 1 mL of species-appropriate EnVision™ HRP-labeled polymer secondary
antibody and incubate at room temperature for 1 hour.

6. Wash the EnVision™ by placing in 2 5-min exchanges of TBS followed by 1 5-min
exchange of distilled water.

7. Apply 1 mL of the diluted AEC+ substrate chromogen (20 μL chromagen diluted
into 980 μL Substrate Buffer), incubate for 5 min and then wash off by applying 2
5-min exchanges of TBS and 1 5-min exchange of distilled water.

8. Apply 1 mL TACHA hematoxylin to the TMA and incubate at room temperature
for 1 min. In our experience, as the TACHA hematoxylin does not require a bluing
step, it yields a more consistent color and reduces measurement error during
automated assessment of staining intensity.

9. Rinse the slide in two exchanges of distilled water, dehydrate through an ethanol
gradient of 1-min exchanges at 70%, 85%, 95% and 100% then place in a final
100% ethanol exchange for 5 min.

10. Transfer the slides into xylene for 5 min then remove each slide one at a time from
the xylene, blot dry, apply 1–2 drops of CytoSeal 60™ mounting medium, coverslip
each slide and allow the mounting medium to set.

11. Automated image capture is accomplished on the Aperio ScanScope CS using the
Console application installed with the machine. Briefly, 1–5 stained slides are
loaded into the tray and a photomicrograph snapshot of each slide covering all
magnifications from 10x to 200x is captured.

12. The region of the slide containing the stained tissue is identified and each histospot
is identified within the TMA by engaging the Find focus points algorithm. At this

5Automated quantitative brightfield platforms measure immunostain intensity as the level of white light absorbance in the range of the
particular color of the selected chromogen, defined by its hue and saturation. To avoid possible mismeasurement of the selected
antigen, the color of the chromogen must be distinct from any naturally occurring cellular melanin containing inclusion body.
Recognizing that the range of browns associated with melanin can overlap with the color produced by the DAB chromogen, we
suggest using a red chromogen such as AEC or Vector Red [76,77] to minimize possible target protein measurement error due to
confounding by endogenous melanin pigment.
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step, histospots not automatically identified can be marked by the user and slide
artifacts erroneously tagged can be manually removed.

13. Automated quantification of levels of staining is then executed using the provided
Spectrum software package. The ‘area of interest’, or the region containing the
tumor cells is identified using a two-step process where first a single, closed
polygon is drawn around the entire tumor-containing region of the histospot using
the freehand ‘Pen Tool’ and then the ‘Negative Pen Tool’ is used to exclude
smaller regions of non-tumor areas within the larger encircled region. This step
introduces a level of subjectivity into the analysis. Other software tools like the
Definiens software (Definiens, Parsippany, NJ) or the Genie software (Flagship
Biosciences, Flagstaff, AZ) may be used to make this step more objective.

14. With the tumor region now defined, application of available algorithms allows for
quantitation of immunostain intensity and percent coverage.

a. The Nuclear Algorithm defines included nuclei according to light
absorption according to the counterstain colorization with the subsequent
ability to define levels of chromogen intensity within this segregated
region. Outputted values include: total area covered in the nuclear
analysis, average nuclear size, percent of nuclei with any positive stain
and the average intensity of stain across all included nuclei.

b. The Positive Pixel Count Algorithm identifies all pixels within the
Annotated region and assigns to them a score ranging from 0 to 255
reflecting the chromagen intensity at the pre-selected color. Three user-
defined arbitrary cut-offs along this continuum are then selected to define
the boundaries separating ‘no stain (0)’, ‘weak positive (+1)’, ‘moderate
positive (+2)’ and ‘strong positive (+3)’. Outputted metrics then include:
Average intensity ([Σpixel intensity scores (0–255)]/total number of
included pixels), number of weak positive, moderate positive and strong
positive pixels and percent pixel positivity (number of pixels with any
positivity/total number of pixels). Users may define methods to produce a
continuous scale if desired.

15. Histospot-level data describing all measured parameters are then exported through
the Spectrum software platform into Excel for further integration with the
clinicopathologic and outcomes measures as described below (Section 3.4).

3.3.3.2. Quantitative Immunofluorescence using the AQUA® technique (see Note 6):
The methods for conducting QIF/AQUA® are provided, highlighting its similarities and
differences with the brightfield chromogenic methods outlined above (Section 3.3.3.1).

1. For each TMA slide, prepare 1 mL primary antibody solution in TBS-Tween/0.3%
BSA by adding the desired titer of the validated primary target antibody in addition
to the melanoma ‘mask’ cocktail of S100/gp100 antibodies that will allow for the
discrimination of melanoma cells from surrounding non-melanoma stromal
elements in the absence of counterstain. When non-rabbit anti-target primary
antibodies are selected (e.g., mouse, rat), the preferred rabbit-based mask includes
5 μL (1:200) anti-S100 polyclonal antibody and 40 μL (1:25) anti-gp100 polyclonal

6Quantitative immunofluorescence (QIF)/AQUA® measures levels of protein expression by measuring the intensity of light emitted
by the target Cyanine (Cy) 5 or Cy7 label across the subset of pixels that co-localize to certain cellular and subcellular architectural
compartments, the latter defined by additional, non-overlapping fluorescent labels (e.g., Cy3, Fluorescein isothiocyanate (FITC)/Cy2,
4′6-diamidino-2-phenylindole (DAPI)) that are required in the absence of hematoxylin counterstain [42,36].
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antibody. Using rabbit anti-target primary antibodies necessitates a mouse-based
mask of 10 μL (1:100) anti-S100B clone 15E2E2 and 10 μL (1:100) of HMB45 ).

2. Place the TMA slide in a level humid chamber and pipette the full 1 mL volume of
the primary antibody cocktail onto the TMA section, ensuring that the full surface
of the section is evenly covered with fluid. To create a hydrophobic barrier that
ensures retention of the antibody cocktail on the section, outline the TMA boundary
with a PAP pen.

3. Apply the primary antibody cocktail to each slide and incubate in a humid chamber
at 4 °C overnight.

4. Wash off the excess primary antibody by placing in 2 10-min exchanges of TBS-
TWEEN followed by 1 10-min exchange of TBS.

5. Prepare the secondary antibody cocktail by adding 10 μL of AlexaFluor 546-
conjugated goat anti-mask species into each 1 mL target species-appropriate
EnVision™ HRP-labeled polymer secondary antibody.

6. Apply 1 mL of the secondary antibody cocktail to each TMA and incubate at room
temperature for 1 hour.

7. Wash the secondary antibody cocktail by placing in 2 10-min exchanges of TBS-
TWEEN followed by 1 5-min exchange of TBS.

8. Dilute 20 μL of concentrated 10X Cy5-tyramide into 980 μL of the accompanying
Amplification Buffer and add fluorescent label to the Envision™ by applying 1 mL
of 1X Cy5-tyramide to the TMA for 10 min.

9. Wash the excess Cy5 by placing in 2 10-min exchanges of TBS-Tween followed by
1 5-min exchange of TBS.

10. Apply 120 μL of Prolong Gold mounting medium with DAPI, the latter to visualize
the nuclei, and coverslip allowing the mounting medium to set overnight before
commencing automated image capture.

11. Automated image capture is compatible with the Caliper Life Sciences Vectra® 2
or the Aperio ScanScope® FL microscopy instrumentation platforms using the
respective native software platforms. Image capture on the PM-2000™ is executed
with the AQUAsition™ platform (HistoRx, Branford, CT), described in detail in
Ref. [48]. Image analysis is universally executed by the AQUAnalysis™ software
package (HistoRx). The current version of AQUA® is robust to inter-operator
variation [49] and minimizes coefficients of variability through standard instrument
calibration procedures (e.g., calibration cube, light source and Cy5 optical path
factors [50]. The AQUA® method is summarized below.

a. A 4X low-resolution image of the entire slide in the DAPI channel is
captured and used to localize the specific Cartesian coordinates defining
each histospot.

b. A series of 20X images, one image for each fluorescent channel used
(Nuclear (DAPI), Mask (Cy3), Target (Cy5)), is captured for each
histospot. To maximize the dynamic range of the target
immunofluorescent signal, the exposure time is automated for each
channel in each histospot to ensure in yielding only 0.02% saturated pixels
for the selected channel.

c. Global TMA quality assessment is executed using the stack of Mask-
labeled Cy3 images as a reference. Histospots that are devoid of tumor,
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where the histospot has fallen off or where the image is substantially out
of focus should be eliminated outright. Among the included histospots,
specific regions that contain major artifacts such as folded tissue, air
bubbles should be cropped out leaving the remaining, adequately stained
histospot regions available for analysis.

d. The tumor mask is determined as the set of pixels that display a level of
Cy3 staining above a pre-specified minimal threshold (binary gating)
followed by spatial image analysis procedures (e.g., filling holes) to create
multiple continuous regions corresponding to the tumor locations.

e. Subcellular compartments (e.g., nuclear, cytoplasmic) are then defined
within the tumor mask using an unsupervised k-means clustering
algorithm [49]. Each pixel is plotted on a two-dimensional scatter plot
according to the DAPI and Cy3 intensities. The clustering algorithm is
then applied according to three fundamental assumptions: 1) background
pixels will have low intensities for both channels, 2) nuclear pixels will
have high DAPI but low Cy3 intensity and 3) cytoplasmic pixels will have
high Cy3 but low DAPI intensity. Pixels are then assigned to each cluster
according to Euclidean distance from each of the 3 cluster centroids.

f. Levels of target protein expression within the tumor mask and in each
subcellular compartment are reported as a continuous value ranging from
0–33,000 that represents the mean Cy5 channel intensity across the subset
of pixels included in the selected compartment. As high-resolution 8-bit
image capture generates 256 discrete intensity values per pixel, raw pixel
intensity reflects the mean intensity value across the 256 readings. Next, to
account for the spot-to-spot variability in exposure time, pixel power, the
raw pixel intensity/exposure time is calculated. Raw AQUA score is then
calculated as the mean pixel power across all pixels included in the
selected compartment. Finally, corrections reflecting the instrument
calibration standards are applied to yield a normalized AQUA score which
is the product of the raw AQUA score and each of the calibration cube,
light source and optical path factors.

3.4. Computational methods for feature selection, model construction and internal
validation

REMARK stipulates adjudication of individual markers using Cox Proportional Hazards.
But creating a multi-marker model by entering multiple biomarkers into a single Cox model
adjusted for clinicopathologic variables is not effective as the sample size required to allow
for sufficient power to adequately consider not only the main effects of each protein but also
all of their pairwise and higher-order interactions is excessive. An efficient alternative is to
create a single multi-marker parameter that reflects the composite prognostic impact of all
component markers for subsequent evaluation in adjusted survival analyses.

A diversity of statistical approaches exist for dimension reduction and feature selection, the
process of condensing and culling from a larger set of individual protein candidates the
subset that best explain the variance observed in the Discovery Cohort and their subsequent
parameterization within the multi-parameter model including: 1) weighted summation of
individual variables, 2) genetic algorithms, 3) classification and regression trees (CART), 4)
random forest analysis, 5) k nearest neighbors and learning-based methods such as 6)
support vector machines and 7) discriminant analysis. In this section, we provide detailed
methods for the first three approaches as each have been used to define multi-parameter
models with prognostic potential in melanoma. We also outline the steps required for
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internal validation of the results on the Discovery Cohort and provide a strategy for
evaluating their prognostic potential in the Validation Cohort.

3.4.1. Cox univariate regression coefficient-derived summary estimates—Of
the five published multi-parameter models in melanoma, four [33,7,34,8] have their
composite measures derived from the individual marker univariate Cox Proportional
Hazards regression estimate (see Note 7). Here, candidate proteins are selected for the
summary measure based upon their individual univariate prognostic value. The Cox
univariate-based method featured in Meyer et al. is presented in detail (see Note 8) [7].

1. The crude prognostic value of the semi-quantitative score (0–4) captured for each
eligible protein was determined using univariate Cox Proportional Hazards.

2. Markers achieving a p-value of 0.05 in the setting of a False Discovery Rate [51] of
0.15 were included in the multi-parameter model. Altogether, 7 markers, were thus
included in their final model.

3. The risk score is then calculated by summing up the individual products of the
immunostaining score (0–4) and the univariate Cox regression coefficient across all
included markers with available data. To account for the situation of each
individual, due to missing data, can contribute fewer than 7 markers to the
summary score, the raw summary score is normalized through dividing by the
number of included markers, according to the following equation (see Note 8):

where αi = 1 if xi immunostaining for marker xi was successful or 0 if the
experiment failed and the data is missing.

4. High vs. low-risk scores were determined by splitting the normalized scores at the
median.

3.4.2. Genetic Algorithm-derived summary estimates—Genetic algorithms
represent an iterative, learning-based approach to model building that exploit the working
principles evolution and natural genetics to allow for an efficient, but comprehensive search
through a large data space to identify the combination of markers from a larger set of
available protein candidates that maximally optimizes prognostic stratification [52].
Beginning with a large panel of candidate proteins with (semi-)quantitative measures of
expression, the algorithm arbitrarily selects a set of markers from which to construct a

7Univariate estimates can be obtained by modeling fully quantitative data as a continuous parameter or after categorization. Splitting
the population, a priori, at the median, by tertiles or by quartiles yields unbiased estimates. If semi-quantitative scores are captured,
dichotomization according to an a priori convention (e.g., <20% cells positive versus ≥20% cells positive) is also acceptable. A third
approach of binarizing semi-quantitative or continuous data according to an ‘optimal cut-point’ that maximizes the survival
differential requires special consideration. Although optimal cut-points may reflect non-intuitive but biologically driven boundaries,
the volume of multiple comparisons required to search the entire space for an optimal cut-point risks selection of falsely positive
values that do not validate in independent populations [78]. Strategies for p-value corrections that account for multiple comparisons
such as applying Monte-Carlo simulations [79] should be applied in this setting.
8Meyer et al. applied several compelling statistical techniques during model discovery. First, rather than equally considering all
component markers in creating the summary risk score, markers are weighted according to the magnitude of their Cox univariate
regression coefficient. Next, component markers are not binarized; their original semi-quantitative immunostaining scores are used
when calculating the summary risk score. Third, they account for the possibility of ‘missing data’ due to failed laboratory experiments
by adjusting the composite scores according to the number of proteins with available data. Finally, when initially triaging among a 70-
gene panel of eligible candidates, they corrected for a false discovery rate of 0.15 to avoid promoting falsely positive markers to the
next steps of model construction [7].
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prognostic model and uses the product-limit log-rank chi-square statistic returned from this
initial assessment as a benchmark. Then, the algorithm attempts to improve on this initial
model by iteratively altering a single parameter in the model (“generation”) either by
modifying the cut-point selected to binarize the (semi-) quantitative expression level
variable for any individual component candidate (“mutation”) or by swapping out one of the
included markers for another choice from the larger dataset (“cross-over”). For each new
model thusly created, the product-limit log-rank chi-square statistic is calculated and
compared to the previous benchmark. If the resulting chi-square statistic exceeds the
benchmark, the model is kept to become the new benchmark; otherwise, this model is
discarded. The algorithm is iterated until ‘convergence’ is reached where no new benchmark
can be established, typically occurring after over 20 million generations. We employed a
genetic algorithm-based approach to generate our 5-marker melanoma prognostic model
selected from 20 available candidates [32]. After marker and cut-point selection, binarized
markers were scored, by convention, as ‘1’ if they indicated “reduced risk” and ‘0’ if they
contrarily indicated “increased risk” with participants tallied according to the sum of
“reduced risk” markers (0–5) which was subsequently used to calculate the benchmark log-
rank score (see Note 9). We seeded our genetic algorithm according to the following
parameters:

1. Cross-over rate – the rate at which a swap of markers will be introduced in
successive generations, selected at 33%.

2. Mutation rate –the rate at which an alteration in marker cut-points is introduced,
selected at 33%.

3. Minimum size of the eligible population – when missing data are present, this sets a
lower bound for the number of individuals with complete data across the selected
markers for model nomination. To ensure sufficient power for multivariable
analyses, we required that a minimum of 100 of the 192 assayed individuals be
included each model.

4. Threshold for the minimum number of individuals to be included in each arm of a
binarized protein expression marker after cut-point selection. Our choice of 10%
helped guard against excessive leverage of extreme observations in defining risk
profiles.

5. Threshold for the minimum number of individuals to be included in category of the
final ordinal score. Our choice of 15% further reduced the risk of extreme data
point leverage and, to further maintain statistical robustness of our final model, we
additionally required that no ordinal category enumerate fewer than 2 melanoma-
related deaths.

6. The minimum and maximum number of parameters to be included in the final
model. To balance maximizing the number of complementary markers with the
desire for simplicity and ease of translation, we constrained our model to include at
least 3 but no more than 8 eligible protein candidates.

9Genetic algorithms are not robust to missing data. Any individual with missing data for one or more selected markers will be
excluded each time that protein is incorporated in a proposed model which can introduce bias if missingness is not completely at
random [80]. In particular, as has been shown in melanoma [32] and in breast cancer [81], missing data on a TMA is more likely
among smaller tumors that are either more difficult to sample or become exhausted among serial cuts such that patients with missing
data tend to have better prognosis than those with complete data. One strategy to overcome this potential weakness is to impute values
for the missing data to create a complete dataset for all available observations and a recent robust simulation study in breast cancer
identified that, among available imputation methods including mean substitution and multiple imputation where survival time was
either omitted (MI−) or included (MI+) in the imputation algorithm, the MI+ calculation yielded the most robust survival estimates
[81] and multiple imputation has been used to develop a breast cancer prognostic model derived from QIF data [82].
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3.4.3. Classification and Regression Tree (CART)-derived summary estimates
—Recursive partitioning is a non-parametric, iterative algorithm that repeatedly splits
subsets of the population into two descendant subsets, beginning with the full population
itself according to the parameter that best optimizes the desired outcome among the subset
Xi [53]. Thus, once the initial population has been split, the optimal variable to subdivide the
left branch of the population might differ from the variable selected to further classify the
right branch. Nested partitioning continues along each branch until endpoint assessment is
no longer statistically feasible, with tree right-sizing accomplished through pruning of
terminal branches to optimize experimental feasibility (e.g., no more than 5 protein assays
required per terminal branch). Binary, ordinal and continuous independent variables can be
included with the CART algorithm selecting the optimal cut-point for non-dichotomous
variables that maximizes the outcome separation between the two sub-classes. Regression
trees modify the baseline classification tree algorithm initially developed for binary
outcomes (e.g., dead/alive) to accommodate time-to-failure data and right-censoring of
observations [54].

While no multi-parameter molecular model has, to date, been constructed using this method,
Gimotty et al. successfully applied the Segal algorithm [55] that employs the two-sample
log-rank test statistic to determine the between-node heterogeneity measures to select each
partitioning variable to refine prognostic strata among patients with thin melanomas (<1.0
mm) using clinicopathologic criteria [56]. Although overall SEER data from 1988–2001
indicate 97.4% and 90.2% 10-year survival rates among Stage IA and IB patients,
respectively, the refined algorithm identified subsets from within each of these populations
(e.g., Stage IA Clark level II/III men with lesions of 0.78–1.00 mm thick; 90.6% 10-year
survival and Stage IB patients with Clark level IV/V, ulcerated melanomas; 69.8% 10-year
survival) with survival estimates outside those generated for the whole population. This
classification was subsequently validated on a second independent cohort to serve as a
paradigm for a multi-parameter model that integrates clinicopathologic and molecular
variables.

3.4.4. Confirmation of the independent prognostic value of the multi-
parameter model in multivariable models—The REMARK criteria [5] require
adjudication of all candidate molecular prognostic markers in a multivariable Cox
Proportional Hazards model that includes all routinely assessed clinicopathologic variables
to confirm the marker’s independent prognostic value. This necessary step recognizes that
these clinicopathologic evaluations reflect the current standard of care and that any
molecular test must supplement this standard to justify the assay. For locoregional cutaneous
melanoma, Breslow thickness (mm), presence of ulceration, number of mitotic figures/mm2,
presence of microsatellite lesions, sentinel lymph node status, age and gender [1,3] are
validated parameters and should be included in the multivariable assessment. Clark level of
invasion, while independently prognostic in the large, multi-center validation of both the
2001 and 2009 AJCC staging systems [57,1], is typically collinear with Breslow thickness in
smaller populations and cannot be included. Additional clinicopathologic characteristics
such as growth phase, histopathologic subtype, anatomic location, tumor vascularity and
presence of regression, tumor-infiltrating lymphocytes, solar keratosis, vascular mimicry
and lymphovascular invasion have all been associated with melanoma outcome [58–65] are
not yet formally validated and their inclusion is optional.

3.4.5. Multi-parameter model internal validation using 10-fold and leave-one-
out cross validation—Internal validation experiments assess the model’s sensitivity to
sample outliers and predict the overall likelihood for generalizability to the general
locoregional melanoma population and guard against Type III or Procrustean Errors where
the proposed model is suggested by the data due to the leverage of selected extreme data
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points [66]. Two common methods for internal cross-validation, 10-fold and leave-one-out
cross-validation are presented [7,67].

10-fold Cross-Validation
1 Divide the entire Discovery Cohort into 10 equally-sized groups.

2 Create ‘training set #1’ by combining groups 1–9, leaving group 10 as the ‘test
set #1’.

3 Using the raw data for ‘training set #1’, rebuild the multi-parameter model,
following all of the steps exactly.

4 Apply the regression parameters obtained for the ‘training set #1’ to the ‘test set
#1’ to obtain their predicted score for the prognostic model.

5 Calculate the univariate and multivariable (if sufficiently powered) melanoma-
specific survival hazard ratio and 95% confidence interval for the individuals in
‘test set #1’.

5 Repeat steps 2–4 nine more times to create training sets 2–10 and test sets 2–10,
each time selecting a different group as the test set to obtain 9 more unique sets
of hazard ratios and confidence intervals.

6 Calculate an aggregate hazard ratio and 95% confidence interval using the 10
‘test set’ values according to the general inverse variance method [68] to obtain
a cross-validated estimate for the hazard ratio and 95% confidence interval for
the proposed multi-parameter model.

Leave-one-out Cross-Validation
1. Starting with the entire Discovery Cohort (total sample size=n), n training sets are

built that include all but one patient such that each patient is included in its own
n=1 ‘test set’ exactly once.

2. For each of the n ‘training sets’, apply the raw data for the included n−1 individuals
to rebuild the multi-parameter model accordingly and then calculate the predicted
value from the acquired regression parameters for the one individual included in
the ‘test set’.

3. Combine the predicted values from all n ‘test set’ iterations into a single dataset
and use these values to conduct the univariate and Cox multivariable analyses to
obtain a cross-validated estimate for the hazard ratio and 95% confidence interval.

3.5. External multi-parameter model validation
Construction concludes with confirmation of model generalizability through demonstrating
prognostic relevance in at least one independent Validation cohort. This is done in two
phases: demonstration of a significant hazard ratio upon multivariable Cox proportional
hazards modeling and assessing the model prediction error. The latter step assesses whether
the prognostic algorithm can prospectively assign an independent set of new cases (i.e., the
Validation cohort) into high- vs. low-risk better than pure chance which would have a 50%
success rate in randomly categorizing new individuals [67].

Delete
Multivariable Cox proportional hazards modeling

1. A TMA or whole-slide sections are prepared from the primary tissue blocks
pertaining to the Validation cohort participants.
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2. All biomarkers are assayed and scored using the exact methods and criteria applied
for model discovery. This can be challenging and methods to standardize scoring
between assays over time elapsed between discovery and validation set are critical,
but beyond the scope of this chapter.

3. To overcome any potential laboratory drift, all quantitative measures must be
normalized to a referent standard to ensure comparability between Discovery and
Validation cohort values.

4. Categorize continuous scores using the same cut-points developed during the
model discovery phase. For example, if the Discovery cohort was dichotomized at
the median of the Discovery cohort scores, the Validation cohort should be divided
at the score corresponding to the Discovery cohort median and not at the median
Validation cohort score.

5. Calculate the prognostic index score for each individual according to the developed
schema.

6. Complete a multivariable Cox proportional hazards model evaluating the
Validation cohort prognostic index scores adjusting for the same conventional
clinicopathologic covariates applied in the Discovery multivariable Cox model.

Prediction error estimation
1. Calculate the prognostic index score and its 95% confidence interval for each

individual using the developed schema.

2. Divide the Validation cohort into “high risk” and “low risk” groups according to
the index score cut-point selected during model discovery.

3. Binarize the Validation cohort based upon their true outcomes at a fixed timepoint
(e.g., 5-year recurrence-free survival, 10-year melanoma-specific survival).

4. Create a 2 × 2 cross-tabular display of the data, calculating the sensitivity,
specificity, positive predictive value and negative predictive values for the table.
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