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Abstract
Immune signatures in breast tumors differ by estrogen receptor (ER) status. The purpose of this
study was to assess associations between ER phenotypes and circulating levels of cytokines that
co-ordinate cell-mediated [T-helper type 1 (Th1)] and humoral [T-helper type 2 (Th2)] immunity.
We conducted a case–case comparison of 523 women with newly diagnosed breast cancer to
evaluate associations between 27 circulating cytokines, measured using Luminex XMap
technology, and breast cancer phenotypes [ER− vs. ER+; triple negative breast cancer (TNBC) vs.
luminal A (LumA)]. Ratios of Th1 to Th2 cytokines were also evaluated. Levels of interleukin
(IL)-5, a Th-2 cytokine, were higher in ER− than in ER+ tumors. The highest tertile of IL-5 was
more strongly associated with ER− (OR = 2.33, 95 % CI 1.40–3.90) and TNBCs (OR = 2.78, 95 %
CI 1.53–5.06) compared to ER+ and LumA cancers, respectively, particularly among
premenopausal women (OR = 4.17, 95 % CI 1.86–9.34, ER− vs. ER+; OR = 5.60, 95 % CI 2.09–
15.01, TNBC vs. LumA). Elevated Th1 cytokines were also detected in women with ER− and
TNBCs, with women in the highest tertile of interferon α2 (OR = 2.39, 95 % CI 1.31–4.35) or
tumor necrosis factor-α (OR = 2.27, 95 % CI 1.21–4.26) being twice as likely to have TNBC
versus LumA cancer. When cytokine ratios were examined, women with the highest ratios of Th1
cytokines to IL-5 levels were least likely to have ER− or TNBCs compared to ER+ or LumA
cancers, respectively. The strongest associations were in premenopausal women, who were up to
80 % less likely to have TNBC than LumA cancers (IL-12p40/IL-5, OR = 0.19, 95 % CI 0.07–
0.56). These findings indicate that immune function is associated with ER− and TNBC and may be
most relevant among younger women, who are likely to be diagnosed with these aggressive
phenotypes.
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Introduction
Breast cancer intrinsic subtypes, now characterized by immunohistochemistry (IHC), have
important differences in prognosis, with LumA (ER+ and/or PR+ and HER2−) having better
prognosis and basal-like tumors (ER−, PR−, HER2−, CK5/6+ and/or EGFR+) the poorest [1,
2]. Most breast cancers with a triple negative phenotype (ER−, PR−, HER2−), i.e., 70–90 %,
are also basal-like [3–5]. Younger women, BRCA1 carriers, and women of African or
Hispanic ancestry have higher rates of basal-like and TNBC [6, 7]. Although subtype-
specific risk factors have been understudied, there do appear to be differences in some
reproductive and hormonal factors for ER+ and TNBC [6, 8, 9].

Pro-inflammatory biomarkers and immune-response may be related to breast cancer risk
and/or prognosis [10, 11]. For ER− and TNBC, gene expression studies show that
inflammation and immune-related signatures are quantitatively and qualitatively different
between ER+ and ER− cancers, and important for disease prognosis [12–14]. Therefore, we
hypothesized that cytokines functioning as immune system signaling chemical messengers
could be related to ER− and TNBC.

Cytokines can be classified into broad categories that include T-helper type 1 (Th1) and T-
helper type 2 (Th2), which are generally antagonistic to each other (see Fig. 1). Th1 adaptive
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immunity, important for mounting an effective anti-tumor immune response [15, 16], is
characterized by IFNγ, TNFα, IL-12, GM-CSF, and CXCL10 (IP10), and can activate
macrophages toward a M1 phenotype, further promoting a Th1 response. Th-2 cytokines
include IL-4, IL-5, IL-10, CCL2, CCL7, and CCL11, and are involved in allergy and M2
polarization of macrophages, which are important in mediating humoral immunity and
appear to promote mammary tumor progression [15, 17]. Several cytokines associated with
chronic inflammation, such as CXCL8 and IL-6 [18, 19], have been linked to poorer breast
cancer survival [20], particularly for TNBC [13]. Previous research examining associations
between cytokines and ER− and TNBCs have mostly focused on tumor-associated changes
in the microenvironment. Here we investigate potential associations with circulating
cytokine levels involved in Th-1 and Th-2 immunity and chronic inflammation, which may
provide greater understanding into the role of constitutional host immunity on breast cancer
subtypes. In addition, we also examined several cytokine ratios to reflect the balance
between Th1 and Th2 cell types since these cell subsets are often inversely regulated and
their balance can be influenced by many factors [21–23].

Patients and methods
Study population and blood collection

Data and plasma samples from 523 non-Hispanic Caucasian women with incident invasive
breast cancer treated at Roswell Park Cancer Institute (RPCI) from December 2003 to June
2010 were obtained from the Institute’s Data Bank and Biorepository (DBBR) [24, 25].
Prior to receipt of treatment (including surgery), newly diagnosed patients consent to
DBBR, to provide non-fasting blood samples, complete an epidemiological questionnaire,
and permit linkage of samples to clinical information. Blood samples are drawn in
phlebotomy and transported via a pneumatic tube system to the laboratory for processing,
where they are centrifuged and automatically aliquoted into chemically inert plastic straws.
The time from blood draw to storage in liquid nitrogen is maintained at 1 h of draw to
minimize variable analyte degradation. For most participants in our study, samples were
obtained prior to surgery (n = 475, 91 %) and adjuvant therapy (n = 519, 99 %). This
research was approved by the Institutional Review Board (IRB) of RPCI.

Clinical information
Samples were linked with clinical data derived from a prospective database of the RPCI
Breast Program by the RPCI Clinical Data Network (CDN). Molecular subtypes were
defined based on ER, PR, and HER2 status determined routinely by IHC or FISH in the
Department of Pathology and classified as LumA (ER+ and/or PR+, HER2−) and triple
negative (ER−, PR−, and HER2−). Because IHC staining of CK 5/6 or EGFR are not
routinely performed in pathology at RPCI, we could not distinguish basal-like and
unclassified subtypes, and both were included in the triple negative group.

Postmenopausal status was defined as 12 consecutive months of amenorrhea and/or a
bilateral salpingo-oophorectomy as reported in a self-administered questionnaire. For
women without self-reported menopausal status, data were abstracted from patient medical
records. Where medical record data were unavailable (n = 9), we used an age cut point, with
premenopausal status defined as 56 years of age or younger.

Luminex xMAP (Multi-Analyte Profiling) immune-bead array assays
Prior to these analyses, we conducted a pilot study with a series of QC experiments to
investigate the effects of various sample processing and storage procedures on the recovery
of cytokines and growth factors, as well as to compare across commercially available
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Luminex® bead-based cytokine kits to identify those with the best reproducibility and
sensitivity.

In the analyses reported herein, plasma samples were used to measure a panel of 27
cytokines. Five analytes were multiplexed (IL-1β, IL-4, IL-6, IL-10, GM-CSF) and assayed
using high sensitivity kits (Millipore, HSCYT-MAG-60SK), and 22 analytes (IFNγ, IFNα2,
TNFα,TNFβ, IL12p40, IL12p70, IL1α, IL1RA, IL2, IL5, IL15, GCSF, CCL2, CCL3,
CCL4, CCL7, CCL11, CCL22, CXCL1, CXCL8, CXCL10, CX3CL1) were assayed using
regular kits (Millipore, HCYTOMAG-60 K). For standard curves, reconstituted top
standards (high sensitivity kits, 2000 pg/ml; cytokine-chemokine kits, 10000 pg/ml) were
serially diluted 1:3 with assay buffer for nine point curves. Assays were assembled using 96-
well plates. Each plate contained samples (in duplicates), standards, and internal quality
controls (QCs 1 and 2). Analyte capture was carried out according to manufacturer’s
instructions (Millipore, Cat # 40–285). Data were acquired using Luminex 100 with
xPONENT version 3.1 software, and concentrations measured using BeadView Analysis
Software. Plate-specific standard curves were generated using the “Best Fit” curve fitting
routine which automatically selects the best curve algorithm for each analyte. When
necessary, obvious outliers were omitted prior to generating standard curves. Intra-plate
coefficient of variations (CVs) ranged from 1.4 to 7.5 %. Interplate CVs of 30 non-blinded
company-supplied control samples varied between 2.7 and 11.9 %, with only four analytes
having CVs greater than 10 % (IL-4, IL-6, IL-10, CX3CL1). The CVs observed in our study
were only slightly higher than those observed with conventional ELISA assays. Thus, we are
confident in the quality of data generated using this method.

Statistical analysis
Cytokines were categorized into tertiles corresponding to ‘low, medium, and high’. The
proportion of non-detectable values exceeded one-third for 5 cytokines (TNFβ, IL-1α,
IL-1RA, IL-2, IL-15), which were categorized as “low”, with remaining samples
dichotomized at the median for “medium” and “high” levels. Because different subsets of T
helper cells regulate each other, often inversely, we calculated several cytokine ratios,
primarily to reflect the balance between Th1 and Th2 cell types. If markers were below the
detectable assay limit, the median value between zero and the reliable lower limit was
assigned to enable these calculations. Specific cutpoints and all ratios examined are shown
in Online Resource Table 1, along with detectable assay limits, interplate coefficient of
variations for each cytokine measured, and proportion of samples with non-detectable
cytokine levels.

Odds ratios (OR) and 95 % confidence intervals (CIs) for associations between cytokine
measures and ER− versus ER+ tumors and triple negative versus LumA cancers were
estimated with unconditional logistic regression. Since ER− and TNBCs are more prevalent
in younger women, we also stratified by menopausal status. To test for linear trend,
categorical cytokine levels were assessed in models as a continuous ordinal variable. To test
multiplicative interactions by menopausal status, cross-product terms between menopausal
status and category-specific log transformed median cytokine levels were included in
multivariate models. Using the Wald χ2 test, statistical significance indicated a difference in
slopes associated with cytokine levels between pre- and postmenopausal women. All
analyses were further adjusted for AJCC breast cancer stage, histological grade, age and
season and timing of blood draw in relation to receipt of treatment (see Online Resource
Table 1).

All tests for significance were 2-sided and statistical analyses were conducted using SAS for
Windows, Version 9.3, and a false discovery rate (FDR)-adjusted p value (q) was used to
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correct for multiple comparisons [26]. The significance level of individual cytokines was
corrected for a total of 27 tests, and cytokine ratios were corrected for a total of 37 tests.

Results
Approximately two-thirds of the women were older than 50 years (Table 1), and the
majority had stage I breast cancer; 29 % had ER− breast cancer, and 22 % had TNBCs. As
expected, ER− and TNBCs were of higher AJCC stage, histological grade, and size
compared to ER+ and LumA cancers, respectively.

Association with ER− and TNBCs
As shown in Figs. 2 and 3, both ER− and TNBCs were associated with high levels of
circulating IL-5, a Th2 cytokine. Overall, women in the highest versus lowest tertile had
approximately 2.5-fold increased odds of ER− breast cancer or TNBC compared to ER+ and
LumA cancers, respectively. Associations were strongest among premenopausal women,
with over fourfold increased odds of ER− breast cancer (OR = 4.17, 95 % CI 1.86–9.34; p-
interaction by menopausal status = 0.08) and 5.6-fold increased odds of TNBC (OR = 5.60,
95 % CI 2.09– 15.01; p-interaction by menopausal status = 0.12). Although ORs were above
unity for postmenopausal women, none were significant. High levels of Th1-related
cytokines, IFNα2 and TNFα, were also associated with increased odds of ER− and TNBC.
Compared to women in the lowest tertile, women in the highest tertile were approximately
twice as likely to have ER− versus ER+ cancers or TNBC versus LumA cancers, with
stronger relationships again observed among premenopausal women and not significant
among postmenopausal women. Premenopausal women with high IFNα2 levels, for
instance, were >4 times more likely to be ER− (OR = 4.11, 95 % CI 1.70–9.92) than ER+,
with similar estimates for TNBC versus LumA (OR = 4.55, 95 % CI 1.58–12.34). Tests for
heterogeneity by menopausal status showed a trend towards statistical significance (p-int ≤
0.09). Complete data for all associations examined are shown in Online Resource Tables 2
and 3.

For several cytokines, associations were limited to either pre- or postmenopausal women.
Among premenopausal women, high levels of CX3CL1 were associated with increased
likelihood of ER− versus ER+ breast cancers (OR = 3.32, 95 % CI 1.33–8.28), but were not
significant for TNBC versus LumA cancers (Figs. 2, 3). High levels of IFNγ were associated
with two to threefold increased odds of ER− and TNBCs. Among postmenopausal women,
high levels of pro-inflammatory IL-1β were associated with threefold reduced likelihood of
both ER− cancers (OR = 0.35, 95 % CI 0.17–0.73) and TNBC (OR = 0.32, 95 % CI 0.14–
0.73), compared to ER+ or LumA. Postmenopausal women with high IL-10 levels, had
reduced odds of ER− breast cancer (OR = 0.42, 95 % CI = 0.20–0.86) and TNBC (OR =
0.45, 95 % CI 0.20–1.00).

Several cytokine ratios indicating a high Th1 cytokine to IL-5 ratio (i.e., IL-12-p70/IL-5,
IL-12-p40/IL-5, TNFα/IL-5, IFNγ/IL-5, IFNα2/IL-5, CXCL10/IL-5) were inversely
associated with both ER− and TNBCs (Figs. 2, 3). Compared to women in the lowest tertile,
women in the highest tertiles were approximately 2–2.5 times less likely to have ER− breast
cancer compared to ER+ cancers, and 2.5–3 times less likely to have TNBC compared to
LumA cancers. Associations were strongest among premenopausal women, with women in
the highest tertile approximately three times less likely to have ER− disease and up to five
times less likely to have TNBC (CXCL10/IL-5, OR = 0.18, 95 % CI, 0.07–0.49). Among
postmenopausal women, high Th1cytokine/IL5 ratios were associated with approximately
twofold reduced likelihood of ER− disease and 2.5-fold reduced odds of TNBC compared to
women with low ratios. High CXCL10/CCL7 ratios, an indicator of Th1/Th2 chemokine
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balance, were also inversely associated with ER− and TNBC compared to ER+ and LumA
cancers, respectively, but only among premenopausal women.

The ratio IFNα2/IL-4, also an indicator of Th1/Th2 balance, showed low correlations with
IFNα2/IL-5 (spearmean r = 0.15, see Online Resource Table 4) and IFN γ/IL-5 (spearman r
= 0.02), but was moderately correlated with IFNα2/IL-10 (spearman r = 0.43), IFNα2/IL-6
(spearman r = 0.42), and IFNα2/CCL7 (r = 0.44). Women in the highest tertile of IFNα2/
IL-4, IFNα2/IL-6, IFNα2/IL-10, or IFNα2/CCL7 had a 1.5- to 2.5-fold greater likelihood of
having ER− versus ER+ breast cancer compared to women in the lowest tertile, with
relationships being statistically significant only in premenopausal women, although tests of
heterogeneity by menopausal status were only borderline statistically significant for IFNα2/
IL-6 (p-int = 0.07). Ratios of IFNα2/IL-4, IFNα2/IL-10, IFNα2/IL-6, and IFNα2/TNFα,
IFNα2/CCL7, and IFNα2/CCL11 were all positively associated with triple negative disease
compared to LumA cancers, and high IL-1β/IL-1RA was associated with reduced likelihood,
but only among postmenopausal women.

Discussion
This is the first study to examine relationships between circulating cytokines and breast
cancer subtypes in a relatively large population. Our most significant finding was that high
IL-5 levels, a Th2 cytokine, were associated with increased risk of ER− compared to ER+

cancers and TNBCs compared to LumA cancer, particularly among premenopausal women.
Pronounced Th1 immune activation, coupled with low levels of IL-5, was associated with
the lowest risk of ER− and TNBCs, compared to ER+ and LumA cancers, respectively,
particularly among premenopausal women. High ratios of IFNα2 with other Th2-related
cytokines (IL-4, IL-10, IL-6, CCL2, CCL7, CCL11), and TNFα, however, were associated
with increased odds of ER− and TNBCs compared to ER+ and LumA cancers. These
findings, taken together, support the hypothesis that immune function is associated with
development of ER− and TNBC compared to ER+ and LumA cancers, and that immune
pathways may be physiologically most relevant among younger women who are most likely
to be diagnosed with these aggressive phenotypes.

Research on the possible role of cytokines in cancer has largely focused on the tumor
microenvironment and their expression in tumor-associated macrophages, which are thought
to play an important role in breast cancer progression [27–30]. Few studies, however, have
examined circulating cytokine levels and breast cancer risk, which are likely to yield
insights into the role of underlying constitutional host immunity on carcinogenesis, and
complement findings associated with tumor-driven immune changes. A limitation of
previous studies [31–35] has been small sample sizes, all involving fewer than 100 patients.
Only one study, with only 53 women, examined relationships between circulating Th1 and
Th2-related cytokines and breast cancer subtypes [36].

Of the 27 cytokines measured, high levels of IL-5 were most strongly associated with
greater odds of ER− and TNBC compared to ER+ and LumA cancers, respectively. IL-5 is
produced by CD4+ Th2 lymphocytes and is specific in driving eosinophil-dependent
inflammatory diseases typically associated with allergic diseases such as asthma and with
parasitic worm (helminth) infections [37–41]. GM-CSF, CCL3, CCL7, CXCL8, but not
CCL11, as other cytokines involved in eosinophil chemotaxis [42] were also related to
increased odds of ER− and TNBC among premenopausal women, but not as strongly as for
IL-5 (Online Resource Tables 2 and 3). Associations were strongest among premenopausal
women, possibly because estrogens stimulate IL-5 production and eosinophil mobilization
[43]. Exacerbation of asthma, for instance, is common during pregnancy [44]. A meta-
analysis of atopic diseases with breast cancer risk, however, did not show any associations
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with asthma or “any allergy”, although effect estimates were not adjusted for effective
management of these conditions as potential confounders that might attenuate risk estimates,
and specific breast cancer subtypes were not considered [45].

Although our study was conducted in a Caucasian population, associations between immune
factors, particularly IL5, and ER− breast cancer could inform a better understanding of the
high prevalence of ER− breast cancer in African-American (AA) women, who also
experience more allergies and asthma [1, 6, 46–48]. The shift towards Th2 immunity among
AAs is thought to be an evolutionary response to endemic exposure to helminths in sub-
Saharan Africa [49, 50]. Previous observations that risk of TNBCs is associated with
increasing parity may also, in part, be mediated by shifts towards Th2 immunity [6, 51–53]
since pregnancy is characterized by lower Th1 cytokines, increased Th2 cytokines, and a
reduction in the Th1/Th2 ratio [54–59]. Restoration to normal Th1/Th2 immunity occurs
postpartum [60]. Interestingly, one study found decreased serum Th1/Th2 ratio, consistent
with continued depressed cellular immunity, among formula-feeding mothers, but not
among women who breastfed, suggesting that lactation may confer some immunological
benefit to mothers [61]. This shift, possibly mediated by prolactin leads to Th1 activation
[62, 63], may explain why lactation ameliorates the increased risk of ER− and TNBC among
African-Americans [6].

In our data, both ER− and TNBCs were associated with higher levels of Th1 cytokines IFNγ,
TNFα, and IFNα2, compared to ER+ and LumA cancers. Pro-inflammatory cytokines
produced by CD4+ T cells enhance killer CD8+ T cells, have direct toxic effects on tumor
cells, and can activate anti-angiogenic mechanisms [17, 64, 65]. These findings indicate a
greater degree of immune activation, likely reflecting the increased disease aggressiveness
of ER− and TNBCs. Consistent with this interpretation, others have found IL-12 levels, the
main cytokine regulating Th1 differentiation, to be higher in breast cancer patients compared
to healthy controls, and correlated with more advanced disease stage [66, 67]. Impaired
IFNα signaling has been observed in stage II or higher breast cancers and is hypothesized to
be a common immune defect in human cancers [68]. As an early response cytokine, IFNα
might be pivotal in cancer control because of its role in priming the host immune response,
increasing natural killer (NK) cell cytotoxicity, and transitioning the immune system from
an innate to an adaptive immune response through a number of mechanisms including
increases in Th1/Th2 balance [69–73].

The balance of Th1 and Th2 cell populations is implicated in a number of diseases,
including cancer [74–80]. A strong Th1 response is critical for effective antitumor
immunity, whereas Th2 responses mediated by IL-4 can potentiate M2-bioactivity of tumor
associated macrophages, leading to growth promotion and metastasis [17, 81]. In our study,
high ratios of Th1 cytokines to the Th2 cytokine IL-5 (IL12/IL-5, IFNα2/IL-5, TNFα/IL-5,
IFNγ/IL-5, CXCL10/IL-5) were strongly associated with reduced risk of ER− compared to
ER+ cancers or TNBCs compared to LumA cancers, but ratios of IFNα2 to other Th2
cytokines (IL-4, IL-6, IL-10, CCL2, CCL11) went in the opposite direction. The reasons for
this are unclear, but may indicate more nuanced effects of Th2-related immunity on risk of
ER− and TNBC, including potential influences by other modulators of immune function
such as macrophages, regulatory T cells and Th17 cells [81–85]. IL-4, for instance, has
pleiotropic effects and can inhibit basal and estrogen-induced cell proliferation and induce
apoptosis in breast cancer cells [86–89], and in certain situations promote a Th1 immune
response [90–93].

Our findings between circulating cytokines and ER− and TNBCs are unlikely due to tumor-
driven changes in plasma cytokine levels. Previous study on expression of cytokine levels in
breast tumors suggest that Th1 and Th2 cytokines, including IFNγ and IL-5, are not major
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cytokines produced by tumors [94–96], with IL-5 being non-detectable in both breast tumors
and normal breast tissue [94]. Rather, several inflammatory cytokines produced by
monocytes (IL-1β, IL-6, CCL2) or macrophages (such as IL-1β, IL-6, CXCL8, CCL4, and
TNFα) appear to be more highly expressed in tumors [94, 97–99], with inflammatory
cytokines CXCL8, IL-6, and CCL2 levels being more highly expressed in ER− cancers [94,
97, 98, 100, 101]. Nevertheless, given that our study design is cross-sectional, we cannot
rule out the possibility that breast tumors or different breast cancer subtypes can potentially
influence systemic immunity differently. Thus, our findings will need to be confirmed
prospectively in a future study.

Our multivariate models did not adjust for lifestyle factors or comorbidities that are
potentially associated with cytokine levels, such as body mass index and use of anti-
inflammatory medications, because circulating cytokines may be within the causal pathway
of these factors with respect to breast cancer risk. Thus, their inclusion in analytic models
may lead to attenuation of effect estimates. The approach of examining circulating cytokine
levels as a biomarker of immune phenotype without adjustments for factors that can
potentially impact their levels also allowed for examination of “effective” exposure to these
cytokines after accounting for multivariate influences, whether measured or unmeasured.
Because disease-free controls were not included in this study, our findings show immune
differences between ER− and TNBCs in relation to less aggressive ER+ and LumA breast
cancers. Future studies are required to determine if circulating cytokines, as contributors to
immune regulation, are related to increased risk of either ER− and/or ER+ disease compared
to healthy women without breast cancer. A notable strength in our study, was the use of
blood samples from treatment naïve breast cancer patients, which allowed us to examine
differences in host immune phenotype unconfounded by treatment effects.

In summary, our findings show immune pathways to be important in ER− and TNBCs
particularly among younger women. Future prospective research involving a larger study
population with samples drawn prior to disease diagnosis is needed to validate findings and
determine if circulating cytokine levels are related to differences in immune cell profiles at
the tumor site, and whether these immune-related differences predict response to therapy
and/or disease prognosis. Another important area of investigation will be to determine
whether our findings hold for African-American women, who are more likely to be
diagnosed with ER− and TNBCs. If future research establishes a role for IL-5 in the etiology
of ER− breast cancer, promising adjunct treatment strategies for ER− and TNBC might
include IFNα2, which increase Th1 versus Th2 balance, and have been clinically employed
as antineoplastic therapeutic drugs [69, 72, 73], as well as IL-5-targeted therapies, such as
the monoclonal antibodies that have been developed to neutralize IL-5 or target IL-5 R for
the treatment of eosinophilic diseases [102–105]. Our findings also indicate the possibility
that among women diagnosed with ER− or TNBC, who also have an underlying Th-2 related
disease, such as asthma, an effort to optimally manage these conditions might result in
improvements in breast cancer outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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TNF Tumor necrosis factor
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Fig. 1.
Role of cytokines in Th1 and Th2 differentiation of lymphocytes. CD4+ T-helper
lymphocytes are able to augment both cellular and humoral immune responses. During an
immune response, cytokines as a component of the microenvironment present during T-cell
priming can influence the developmental pathway taken by responding naïve CD4+ T cells.
The Th1 developmental pathway is largely driven by IL-12 activation, producing high levels
of IFNγ and TNFα upon antigen stimulation, and is responsible for regulating cell-mediated
immunity. The Th1 cytokine IFNγ also polarizes macrophages (innate immune cells)
towards the M1 phenotype. Th2 differentiation, in contrast, is largely driven by IL-4 and is
characterized by IL-4, IL-5, IL-10, and IL-13 secretion, which are primarily involved in the
coordination of humoral immunity, eosinophilic inflammation, and control of helminth
infections. The Th2 cytokines IL-4 and IL-13, as well as CCL2 from monocytes, drives
macrophages toward M2 polarization leading to high expression of IL-10 and IL1RA. The
Th1 and Th2 pathways are regulated by a balance of positive and antagonistic feedback
loops. IFNγ enhances further Th1 development and suppresses Th2 differentiation, while
IL-4 and IL-10 supports Th2 differentiation and suppresses Th1 differentiation. In addition,
CD4+ CD25+ Foxp3+ T-regulatory cells (Tregs), a subset of CD4+ T cells, mediate general
immune suppression and can drive macrophages toward “M2-like” phenotypes, which are
important for the prevention of autoimmunity, but can suppress anti-tumor immunity [17,
80, 106, 107]
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Fig. 2.
Statistically significant associations between circulating immune markers and ER− breast
cancer among women with invasive breast cancer. Odds ratios and 95 % CI provided for
tertile 2 ( ) and tertile 3 ( ) of cytokines or cytokine ratios compared to tertile 1 as
the reference group. All logistic regression models were adjusted for age at diagnosis
(continuous), season (Apr-Sept, Oct-Mar), date of blood draw (continuous), timing of blood
draw in relation to surgery and treatment (No prior treatment, postsurgical with no adjuvant
treatment or receipt of neoadjuvant or adjuvant treatment), stage (I, IIA, IIB, IIIa, IIIB/IIIC/
IV), grade (I, II, III, unknown). Full results for all cytokines and ratios are provided in
Online Resource Table 2. *FDR-adjusted p values remain significant or borderline
significant (q-trend ≤ 0.07) after significance for cytokines are corrected for a total of 27
cytokine tests, and cytokine ratios are corrected for a total of 37 tests. †Using the Wald χ2

test, a difference in slopes associated with cytokine levels (as the log-transformed category
specific median value analyzed as a continuous variable) was observed between pre- and
postmenopausal women (p-int ≤ 0.10)
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Fig. 3.
Statistically significant associations between circulating immune markers and risk of triple
negative versus LumA breast cancer. Eight women with undetermined tumor subtype were
excluded from analyses. Odds ratios and 95 % CI provided for tertile 2 ( ) and tertile 3
( ) of cytokines or cytokine ratios compared to tertile 1 as the reference group. All
logistic regression models were adjusted for age at diagnosis (continuous), season (Apr–
Sept, Oct–Mar), date of blood draw (continuous), timing of blood draw in relation to surgery
and treatment (No prior treatment, postsurgical with no adjuvant treatment or receipt of
neoadjuvant or adjuvant treatment), stage (I, IIA, IIB, IIIa, IIIB/IIIC/IV), and tumor grade (I,
II, III, unknown). Full results for all cytokines and ratios are provided in Online Resource
Table 3. *FDR-adjusted p values remain significant or borderline significant (q-trend ≤ 0.07)
after significance for cytokines are corrected for a total of 27 cytokine tests, and cytokine
ratios are corrected for a total of 37 tests. †Using the Wald χ2 test, a difference in slopes
associated with cytokine levels (as the log-transformed category specific median value
analyzed as a continuous variable) was observed between pre- and postmenopausal women
(p-int ≤ 0.10)
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