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ABSTRACT
Objective A comprehensive and machine-
understandable cancer drug–side effect (drug–SE)
relationship knowledge base is important for in silico
cancer drug target discovery, drug repurposing, and
toxicity predication, and for personalized risk–benefit
decisions by cancer patients. While US Food and Drug
Administration (FDA) drug labels capture well-known
cancer drug SE information, much cancer drug SE
knowledge remains buried the published biomedical
literature. We present a relationship extraction approach
to extract cancer drug–SE pairs from the literature.
Data and methods We used 21 354 075 MEDLINE
records as the text corpus. We extracted drug–SE co-
occurrence pairs using a cancer drug lexicon and a clean
SE lexicon that we created. We then developed two
filtering approaches to remove drug–disease treatment
pairs and subsequently a ranking scheme to further
prioritize filtered pairs. Finally, we analyzed relationships
among SEs, gene targets, and indications.
Results We extracted 56 602 cancer drug–SE pairs.
The filtering algorithms improved the precision of
extracted pairs from 0.252 at baseline to 0.426,
representing a 69% improvement in precision with no
decrease in recall. The ranking algorithm further
prioritized filtered pairs and achieved a precision of
0.778 for top-ranked pairs. We showed that cancer
drugs that share SEs tend to have overlapping gene
targets and overlapping indications.
Conclusions The relationship extraction approach is
effective in extracting many cancer drug–SE pairs from
the literature. This unique knowledge base, when
combined with existing cancer drug SE knowledge, can
facilitate drug target discovery, drug repurposing, and
toxicity prediction.

BACKGROUND
Cancer drugs can have potentially severe or even
fatal side effects (SEs). The effectiveness of many
cancer drugs is greatly limited by their level of tox-
icity.1 The majority of cytotoxic cancer drugs are
not cancer cell-specific, which leads to many
common severe SEs such as neutropenia, anemia,
and thrombocytopenia. Newer classes of biological
agents affect tumors selectively and can cause dis-
tinctive drug-specific SEs. Accurate knowledge of
the possible SEs of cancer drugs plays a major role
in clinician and patient decisions regarding treat-
ment options.2 For example, cancer patients treated
with cisplatin may experience serious adverse
events affecting hearing, the nervous system, and
the kidneys, but such toxicities may be acceptable if
the benefit–risk ratio is high and if a given patient

can tolerate such severe SEs. The biological cancer
drug cetuximab for the treatment of metastatic
colorectal cancer produces an acne-like rash, which
may be tolerable for many patients. In contrast, the
biological agent rituximab (for treating
chemotherapy-refractory B-cell non-Hodgkin
lymphomas) can cause death, cardiac arrest, and
acute kidney failure, a fact that would make this
treatment unappealing to all but the most advanced
cancer patients. Due to the nature of most cancer
drug therapies, drug SEs are often inevitable and
cancer treatments frequently involve maintaining a
delicate balance between therapeutic benefits and
risks. Therefore, the development of a comprehen-
sive and accurate cancer drug–SE relationship
knowledge base is important for both patients and
physicians because it will make informed and per-
sonalized medical decision-making clearer, easier,
and more accurate.3

A comprehensive, accurate, and machine-under-
standable cancer drug–SE relationship knowledge base
is also important for computational approaches for
cancer drug target discovery, drug repurposing, and
toxicity prediction. Using text-mining methods, Kuhn
et al4 have compiled from US Food and Drug
Administration (FDA) package inserts, a drug SE
resource called SIDER (Side Effect Resource) which
contains information on FDA-approved drugs only.
This computable drug SE information integrated with
drug chemical and biological data has been used in
both drug target discovery and repurposing5 and drug
adverse event prediction.6 In addition to drug SE
information on FDA drug labels, a large amount of
drug–SE relationship information is also available in
other data sources such as FDA spontaneous post-
marketing drug safety reporting systems, patient elec-
tronic health records (EHRs), and the large body of
published biomedical literature. These drug SE knowl-
edge sources overlap with, as well as complement,
each other. While the FDA drug labels, spontaneous
post-marketing drug safety reporting systems, and
EHRs mainly contain SE information on
FDA-approved drugs, the published biomedical litera-
ture contains SE information on investigational,
approved, and even failed drugs. For systems
approaches to studying phenotypic relationships
among drugs, drug–SE association information from
all these sources is necessary to mitigate the data
incompleteness problems inherent in many biomedical
networks.7

In this study, we aimed to build a cancer drug–SE
relationship knowledge base from the published
biomedical literature. Currently, more than
22 million biomedical records are available on
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MEDLINE, making it a rich knowledge source of cancer drug–
SE relationships. However, the richness of this source, arising
from the sheer volume of published articles, limits its usability
because much of the important knowledge it contains is buried
in free text with limited machine-understandability. Automatic
extraction of biomedical relationships from MEDLINE is a
highly active area. Common approaches for relationship extrac-
tion use rule-based, statistical approaches, machine learning, or
natural language processing techniques. Many of these efforts
have focused on extracting relationships among drugs, proteins,
and genes.8–13 Compared to other biomedical relationship
extraction tasks, extracting drug–SE relationships from
MEDLINE has been less explored. Recently, Shetty et al14 pro-
totyped a process for applying information mining to discover
major drug adverse events associations among 38 drugs and 55
SEs from MEDLINE. The researchers first developed a statistical
document classifier (using MeSH index terms) to identify rele-
vant articles and used disproportionality analysis to find signals
of disproportionate reporting. Similarly, Wang et al15 reported
on a prototype study in which a statistical text classifier trained
on MeSH terms was developed in order to automatically deter-
mine drug–neutropenia associations. The classifiers in those two
studies were constructed based on a set of manually selected
ontological and textual features and MeSH terms. Avillach
et al16 used MeSH terms (ie, ‘chemically-induced,’ ‘adverse
events’) to automate the MEDLINE search to determine if a
give drug–SE association was already reported in the literature.
There are two perceived limitations in using MeSH terms alone
in cancer drug SE extraction: first, cancer drug SE information
often appears together with drug–disease treatment information
in the same articles. Using MeSH subheadings such as ‘adverse
effects’ may retrieve articles containing drug SE information,
however, these articles also contain drug treatment information.
Since one of the key issues in cancer drug–SE relationship
extraction is to differentiate drug–SE pairs from drug–treatment
pairs, using MeSH subheadings alone may not be sufficient for
such task. Second, it is not clear how sensitive the MeSH terms
are in capturing articles that reported any drug adverse events.
It is possible that free text abstracts contain drug–SE associations
but are not assigned the relevant MeSH terms. Recently,
Gurulingappa et al17 developed a machine learning approach
trained on a manually annotated corpus to automatically iden-
tify adverse drug event assertive sentences in case reports. The
system then identified the co-occurring drugs and conditions
from positively classified sentences over pre-selected drugs. All
of the above mentioned approaches depend on training statis-
tical classifiers in order to remove articles not related to adverse
events.

There are three main challenges in automatically extracting
cancer drug–SE relationships from the published literature: (1)
we need to differentiate cancer drug-specific pairs from non-
cancer drug-related pairs; (2) we need to differentiate drug–
disease ‘TREAT’ pairs from drug–SE ‘CAUSE’ pairs; and (3) we
need to differentiate cancer drug–SE semantic pairs from pure
co-occurrence (non-semantic) pairs. To address these challenges,
we first built a cancer drug list leveraging known cancer drug
treatments and on biomedical ontologies, and identified drug–
SE co-occurrence pairs that were cancer drug-related. We then
developed a filtering approach to remove drug–disease ‘TREAT’
pairs from extracted cancer drug–SE co-occurrence pairs.
Finally, we developed a ranking scheme to further improve the
precision of filtered pairs by ranking semantic pairs high and
spurious (pure co-occurrence) pairs low. To demonstrate the
potential of the constructed knowledge base in cancer drug

target discovery and drug repurposing, we analyzed the associa-
tions of SEs with drug gene targets and indications. With the
knowledge base we created and integrated with existing cancer
drug SE knowledge sources, it will be possible to develop
phenotype-driven network-based approaches by systematically
studying drug SE profile similarities to identify drugs with sig-
nificant overlap in SEs but different indications or gene targets.

DATA AND METHODS
The entire process is depicted in figure 1 and consists of the fol-
lowing steps: (1) obtaining MEDLINE data; (2) building a
cancer-specific drug lexicon; (3) building a clean SE lexicon; (4)
extracting cancer drug–SE co-occurrence pairs from MEDLINE;
(5) filtering extracted drug–SE pairs by automatically removing
drug–disease treatment pairs; (6) ranking filtered pairs based on
MEDLINE frequency to differentiate true drug–SE pairs from
potentially pure co-occurrence pairs; and (7) analyzing the asso-
ciation of SEs with drug gene targets and indications.

MEDLINE data
We used 21 354 075 MEDLINE records (119 085 682 sen-
tences) published between 1965 and 2012 as the text corpus.
The 2012 MEDLINE/PubMed XML files were downloaded
from NLM’s anonymous FTP server at ftp://ftp.nlm.nih.gov/
nlmdata/. The MEDLINE XML files were then parsed, and the
abstracts (including titles) and PMIDs were extracted from the
XML files. Abstracts were then split into sentences.

Cancer drug lexicon
We built a cancer drug list based on drug–disease treatment
pairs from ClinicalTrials.gov, the registry of federally and pri-
vately supported clinical trials conducted in the USA and
around the world. Each trial listed at ClinicalTrials.gov is asso-
ciated with corresponding medical conditions and drug treat-
ments. We downloaded a total of 115 026 clinical trial XML
files from Clinicaltrials.gov.18 A total of 196 002 drug–disease
pairs were extracted from the downloaded XML files. After
drug and disease named entity recognition, mapping, cleaning
and normalization, we obtained a total of 52 066 unique drug–
disease pairs. Of these, 17 386 pairs were related to cancers as
determined by the semantic type (‘Neoplastic Process’) of the
disease terms derived from the Unified Medical Language
System.19 Not all drug–disease pairs extracted from
ClinicalTrials.gov proved to be valid pairs. For example, if m
drugs and n diseases were listed in one single clinical report, we
extracted a total of m × n drug–disease pairs, some of which
did not have valid semantic relationships. We then filtered these
drug–cancer pairs by their MEDLINE co-occurrence in order to
remove spurious associations. Since our task was to extract cancer
drug–SE pairs from MEDLINE, this filtering step was important
in creating a MEDLINE-specific cancer drug list. After this
MEDLINE-based filtering step, we obtained a list of 358 potential
cancer drug names. We then ranked these potential cancer drugs
based on their frequencies in ClinicalTrial.gov and manually
selected 100 cancer drugs from the top-ranked drugs.

SE lexicon
For drug–SE relationship extraction tasks, the two critical inputs
are the drug lexicon and SE lexicon. We have built a cancer-
specific drug lexicon as shown above. For the SE lexicon, we
manually created a clean SE lexicon based on MedDRA (the
Medical Dictionary for Regulatory Activities). MedDRA is a
medical terminology used to classify adverse event information
by health authorities and the biopharmaceutical industry.20
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However, many terms in MedDRA by themselves are not SE
terms. For instance, the MedDRA lexicon contains thousands of
medical procedure or laboratory test terms such as ‘abdomen
scan,’ ‘abdominal cat,’ ‘vasectomy,’ ‘acupuncture,’ and ‘allergy
test.’ In addition, the names of many chemicals and proteins are
included such as ‘ACTH,’ ‘Aldolase,’ ‘aldosterone,’ ‘alphaglobu-
lin,’ and ‘aluminum.’ We manually curated all the terms in
MedDRA. After manual curation, the final clean SE lexicon con-
sisted of a total of 49 625 terms, a significant reduction from
the original 70 177 terms.

Drug–SE pair extraction
We tagged MEDLINE sentences with the entities from the
cancer drug lexicon and the clean SE lexicon. The tagging was
based on case-insensitive extract string matching for high preci-
sion and efficiency. Drug–SE co-occurrence pairs were then
extracted from both sentences and abstracts.

Drug–SE pair filtering
We filtered the extracted co-occurrence pairs by removing
known drug–disease treatment pairs (derived from
ClinicalTrials.gov), and by removing drug–SE pairs that con-
tained cancer terms as determined by semantic type ‘Neoplastic
Process.’ We compared the precision, recall, and F1 score of
pairs before and after filtering using two complementary evalu-
ation datasets (discussed later).

Drug–SE pair ranking
While the above filtering scheme removed many drug–disease
treatment pairs, many non-semantic drug–SE pairs were still left.
We then ranked the filtered cancer drug–SE pairs based on their
MEDLINE frequency counts. The reasoning behind this ranking
is that if a drug–SE pair co-occurs in MEDLINE many times, it is
likely to have a valid semantic relationship. We used the 11-point
interpolated average precision measures, often used for measur-
ing ranked retrieval results for search engines,21 to evaluate the
drug SE ranking algorithms. The interpolated precision was mea-
sured at the 11 recall levels of 0.0, 0.1, 0.2,…, 1.0.

Evaluation
We created two evaluation datasets for evaluating the precision,
recall, and F1 score at each of the extraction steps. The first one
was based on SIDER, a drug SE knowledge base compiled from
FDA drug labels.4 We downloaded 96 785 drug–SE pairs from
the SIDER database. We filtered these pairs by their MEDLINE
occurrences and by the cancer drug list we created. We derived

an evaluation dataset consisting of 5556 cancer drug–SE pairs.
Since not all cancer drug–SE pairs reported in MEDLINE are
also captured on FDA drug labels, we created a second evalu-
ation dataset by manually curating all MEDLINE articles con-
taining the drug name ‘irinotecan,’ a commonly used
chemotherapy drug. We first retrieved all sentences (10 044 in
total) containing the term ‘irinotecan.’ Three curators then
manually extracted SEs in which irinotecan was implicated from
these sentences. Only the pairs agreed upon by all three curators
were used. The resultant evaluation set consisted of 126 irinote-
can–SE pairs. Standard precision, recall, and F1 measures were
used.

These two evaluation datasets overlap with, as well as com-
plement, each other. For example, 133 irinotecan–SE pairs are
in SIDER and 126 are in the MEDLINE-based ‘irinotecan–SE’
dataset. However, only 30 pairs overlap, demonstrating that
drug SE knowledge on FDA drug labels and in the biomedical
literature complement each other. Each of these two evaluation
datasets has its own limitations and advantages. The
SIDER-based dataset contains pairs for many cancer drugs, but
may underestimate the precision of drug SE extraction from
MEDLINE, since it does not contain all pairs mentioned in the
MEDLINE corpus. The manually curated ‘irinotecan–SE’
dataset captured most of the drug–SE associations in MEDLINE
for irinotecan. However, it is limited to one cancer drug due to
the intense manual curation required. By using both datasets, we
can get a better estimate of both precision and recall than using
either one alone.

Analysis of drug–SE pairs
In this study, we investigated whether cancer drugs with the
same SEs tend to have overlapping gene targets or indications.
Our goals were twofold: first, we aimed to show the effective-
ness of our filtering and ranking methods in removing spurious
pairs; and second, we aimed to demonstrate that the extracted
drug–SE pairs have potential in computational approaches for
predicting unknown drug adverse events as well as in drug
target discovery and drug repurposing. We extracted 10 478
drug–target gene pairs from DrugBank22 and 52 066 drug–
disease pairs from ClinicalTrials.gov. For drug–drug pairs that
share SEs at multiple thresholds, we calculated the average
numbers of shared gene targets as well as shared indications.
More specifically, we calculated the average numbers of shared
gene targets and indications for drug–drug pairs sharing at least
0 SEs (all drug–drug combinations), 10, 20, 30, …, or at least
100 SEs.

Figure 1 Flow chart depicting the process of cancer drug–SE relationship extraction, filtering, ranking, and analysis. SE, side effect.

92 Xu R, et al. J Am Med Inform Assoc 2014;21:90–96. doi:10.1136/amiajnl-2012-001584

Research and applications



RESULTS
Filtering out potential drug–disease treatment pairs greatly
improves the performance of cancer drug SE extraction
from MEDLINE
Using the cancer drug lexicon and the clean SE lexicon we
created, we extracted a total of 56 602 drug–SE co-occurrence
pairs from sentences and a total of 134 670 pairs from abstracts.
Since one of the main complicating factors in drug–SE ‘CAUSE’
relationship extraction is the inclusion of drug–disease ‘TREAT’
pairs, we first filtered the extracted co-occurrence pairs by
removing known drug–disease treatment pairs from
ClinicalTrials.gov (‘Filtering1’). Then, we removed pairs that
have SE terms of the semantic type ‘Neoplastic Process’
(‘Filtering2’), which removed additional drug–disease treatment
pairs that were not included in ClinicalTrials.gov. The precision,
recall, and F1 score of the extracted drug–SE co-occurrence
pairs before and after filtering were evaluated and compared. As
shown in table 1, pairs extracted from sentences before any fil-
tering had very low precisions: 0.059 when evaluated using the
SIDER dataset and 0.252 when evaluated using the ‘Irinotecan–
SE’ dataset. By manual examination, it was possible to see that
many of the unfiltered co-occurrence pairs were in fact drug–
disease treatment pairs. After the removal of known drug–
disease treatment pairs from ClinicalTrials.gov (‘Filtering1’),
however, the precision did not improve much. This may be due
to the fact that many of the drug–disease treatment pairs in
MEDLINE are not included in ClinicalTrials.gov. We then fil-
tered out drug–SE co-occurrence pairs whose SE terms were
cancer terms. The precision of the filtered pairs was much
improved, while the recall remained the same. When evaluated
with the SIDER dataset, the precision of filtered pairs was
0.072, representing a 22% increase from the precision of 0.059
for unfiltered pairs. When evaluated with the MEDLINE-based
‘Irinotecan-SE’ dataset, the precision increased from 0.252 to
0.426, representing a 69% increase; the recall did not decrease.
Note that evaluation with the SIDER database may underesti-
mate the actual precision of drug SE extraction from MEDLINE
since many true drug–SE pairs reported in MEDLINE are not
captured in the SIDER dataset. Similar improvement was
observed for abstract-level extraction. Overall, both the preci-
sion and F1 score for abstract-level extraction were lower than
for sentence-level extraction.

The precision improvements achieved by filtering out poten-
tial drug–disease treatment pairs demonstrated that one of the
main complicating factors in cancer drug–SE relationship extrac-
tion from MEDLINE is the inclusion of drug–disease treatment
pairs. By removing potential drug–disease treatment pairs, we
greatly improved the precision without causing a decrease in
recall. The task for cancer drug–SE relationship extraction is
made easier than general drug SE extraction by the fact that we
can largely decide whether a cancer drug–SE pair is a ‘TREAT’
or ‘CAUSE’ pair by the semantic type of SE terms alone. This
filtering scheme may not be generalized to all drug SE extraction
tasks. Even with both filtering steps, the precision of 0.426 for
sentence-level extraction is still low. This demonstrates that
there are still other complicating factors such as the inclusion of
pairs without obvious semantic relationships (pure
co-occurrence pairs). Next we developed a ranking algorithm to
differentiate true cancer drug–SE pairs from pairs without a
strong semantic relationship.

Ranking filtered pairs by frequency further improves
precision
We ranked filtered drug–SE pairs (44 816 in sentence-level
extraction and 113 649 in abstract-level extraction) by their
MEDLINE frequency. Figure 2 shows the ranked precisions at
11 recall values. The evaluation was carried out using the evalu-
ation set ‘Irinotecan–SE’ since the SIDER-based evaluation set
tended to underestimate precisions. As shown in figure 2,
ranking by MEDLINE frequency effectively ranked true posi-
tives highly among all the filtered pairs. For sentence-level
extraction, the precision increased from 0.423 for all filtered
pairs (at a recall of 1.0) to 0.778 for the top-ranked pairs (at a
recall of 0.1). For abstract-level extraction, the precision
increased from 0.139 for all pairs (at a recall of 1.0) to 1.000
for the top-ranked pairs (at a recall of 0.1). The precisions of
ranked pairs at all recalls (except at 0.1 and 0.2) were higher for
sentence-level extraction than for abstract-level extraction.

Ranking by MEDLINE frequency to improve precision only
worked for filtered pairs. Before filtering, the semantic relation-
ships between a drug and a medical condition can be ‘TREAT,’
‘CAUSE,’ or other relationships. Ranking by MEDLINE fre-
quency can differentiate pairs with strong semantic relationships
from spurious pairs, but not ‘CAUSE’ pairs from ‘TREAT’ pairs.

Table 1 The precision, recall, and F1 score for pairs without
filtering (‘No Filtering’), with known drug–disease treatment pairs
filtered out (‘Filtering1’), and with pairs containing cancer terms
filtered out (‘Filtering2’)

Document type Evaluation data Filtering p Value R F1

Sentence SIDER No Filtering 0.059 0.599 0.107
Filtering1 0.059 0.563 0.107
Filtering2 0.072 0.583 0.129

Irinotecan–SE No Filtering 0.252 0.786 0.382
Filtering1 0.288 0.769 0.419
Filtering2 0.426 0.786 0.553

Abstract SIDER No Filtering 0.038 0.927 0.073
Filtering1 0.038 0.890 0.073
Filtering2 0.044 0.908 0.085

Irinotecan–SE No Filtering 0.099 0.786 0.177
Filtering1 0.104 0.769 0.183
Filtering2 0.139 0.786 0.235

SE, side effect.

Figure 2 Filtered drug–SE pairs extracted from sentences
(‘Filtered_Sentence’) and abstracts (‘Filtered_Abstract’) and ranked by
MEDLINE frequency. SE, side effect.
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We compared the ranked precisions of unfiltered pairs using two
evaluation datasets: the set ‘Irinotecan–SE’ for ‘CAUSE’ relationship
evaluation, and drug–disease treatment pairs from ClinicalTrials.gov
for ‘TREAT’ relationship evaluation. As shown in figure 3, ranking
by MEDLINE frequency is not effective in ranking drug–SE pairs
for unfiltered pairs highly (‘Unfiltered_Sentence_Irinotecan_SE’).
Instead, it ranked drug–disease treatment pairs highly
(‘Unfiltered_Sentence_Drug_Disease_ClinicalTrials’). The same is
true for unfiltered pairs extracted from MEDLINE abstracts (data
not shown). In summary, before filtering, ranking by MEDLINE fre-
quency ranks drug–disease treatment pairs highly, but not drug–SE
causal pairs. After filtering out drug–disease treatment pairs,
ranking by MEDLINE frequency was effective in differentiating
causal pairs from pairs without strong semantic associations.
Therefore, this ranking scheme can assist in prioritizing the filtered
cancer drug–SE pairs for further processing.

Cancer drugs with the same SEs tended to have overlapping
gene targets
We analyzed the relationship between the extracted cancer
drug–SE pairs with drug gene targets. A total of 10 478 drug–
gene pairs, representing 3 454 drugs and 88 cancer drugs, were
parsed from DrugBank. The average number of shared gene
targets was 0.041 for all drug–drug combinations and 0.711 for
cancer drug–drug combinations. Among 3828 cancer drug–drug
pairs that shared any gene targets, 3524 (92%) shared at least
10 SEs. The average shared gene targets for these pairs slightly
increased to 0.762 (‘Cancer_Drug_SE’ in figure 4). The number
of shared genes increased as the number of shared SEs
increased, from 0.711 for all cancer drug–drug pairs to 1.076
for pairs sharing 100 or more SEs. We also showed that the
association between drug–SE pairs from the SIDER database
and drug gene targets was weaker (‘SIDER_Drug_SE’). The dif-
ference diminished as drug–drug pairs shared more SEs. In
summary, as the average number of shared SEs increased for
drug–drug pairs, so did the number of shared gene targets. The
trend was stronger for cancer drug–SE pairs extracted from
MEDLINE than for drug–SE pairs from the SIDER database.

Cancer drugs with the same SEs tended to have overlapping
indications
We studied the relationship between SEs and drug indications.
Drug–disease treatment pairs were removed from the set of
drug–SE pairs under consideration during the filtration process.
A total of 52 066 drug–disease pairs were extracted from
ClinicalTrials.gov, representing 2035 unique drugs and 9591
disease names. As shown in figure 5, the number of shared indi-
cations increased from 21.28 for all drug–drug pairs to 37.145
for drug–drug pairs sharing 100 or more SEs
(‘Cancer_Drug_SE’). Drug–SE pairs from the SIDER database
showed a much weaker upward trend (‘SIDER_Drug_SE’): the
number of shared indications increased from 1.022 for all drug–
drug pairs to 3.308 for pairs sharing 100 or more SEs.

DISCUSSION
We have presented a multi-step process to extract cancer drug-
specific SE association knowledge from the biomedical literature
available on MEDLINE. We first built a cancer drug list lever-
aging known cancer drug treatment pairs. We then extracted
cancer drug–SE pairs from MEDLINE using the cancer drug list
and a manually created clean SE lexicon. After filtering out
potential drug–disease treatment pairs, we greatly improved the
precision from 0.252 at baseline to 0.426 without decreasing
the recall. We then developed a ranking algorithm to further
improve the precision from 0.426 to 0.778 for top-ranked
pairs. We demonstrated that as the number of shared SEs
between cancer drugs increased, so did the number of shared
gene targets and disease indications, showing strong associations
between SEs and gene targets, and between SEs and indications.

Many aspects of the current method can be improved. (1)
Our approach may only work for cancer drug–SE pair extrac-
tion and may not be generalizable to extract other drug–SE
pairs. We relied on the semantic type (‘Neoplastic Process’) of
SE terms to differentiate ‘CAUSE’ from ‘TREAT’ semantic rela-
tionships. In general, we cannot classify drug–SE pairs by the
semantic types of SE terms alone. (2) The ranking by
MEDLINE co-occurrence frequency ranked drug–disease treat-
ment pairs highly, therefore it only works on filtered drug–SE
co-occurrence pairs where the majority of drug–disease treat-
ment pairs have already been filtered out. For general drug–SE

Figure 3 Unfiltered drug–SE pairs ranked by MEDLINE
frequency and evaluated using dataset ‘Irinotecan–SE’ pairs
(‘Unfiltered_Sentence_Irinotecan_SE’) and drug–disease
treatment pairs from ClinicalTrials.gov
(‘Unfiltered_Sentence_Drug_Disease_ClinicalTrials’). SE, side
effect.

Figure 4 The positive association between drug target genes and
drug–SE pairs: cancer specific drug–SE pairs extracted from MEDLINE
(‘Cancer_Drug_SE’) and all pairs from the SIDER database
(‘SIDER_Drug_SE’). SE, side effect.
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relationship extraction from MEDLINE, one of the key issues is
to differentiate ‘CAUSE’ from ‘TREAT’ pairs. The most intuitive
way is to filter out known drug–disease treatment pairs.
However, we often do not have a comprehensive drug–disease
treatment relationship knowledge base that contains pairs for
both FDA-approved drug indications and pairs that are not
approved but are reported in MEDLINE articles. Automatic
approaches in extracting drug–disease treatment pairs from
MEDLINE can potentially greatly facilitate drug–SE relationship
extraction tasks. (3) We only extracted pairs from MEDLINE
abstracts, not full-text articles. In one of our ongoing studies,
we downloaded all full-text oncology articles from cancer-
specific journals such as the Journal of Clinical Oncology and
are developing methods to extract cancer drug–SE pairs from
these cancer-specific full text articles. We will compare the
cancer drug–SE relationships extracted from MEDLINE abstracts
to those extracted from cancer-specific full text articles. (4) Most
cancer drug therapies are drug combinations consisting of more
than one drug. Our study only considered single drugs, not drug
combinations. In general, it will be a difficult task to automatically
attribute a SE to a specific drug or drug combination. (5) In this
study, we only used free text abstracts and ignored the information
captured in MeSH terms. Currently, there are no studies compar-
ing the advantages of one method over the other in the context of
drug–SE relationship extraction. In our future studies, we will
investigate this interesting topic by comparing and combining free
text abstracts and MeSH terms as well as publication types to
further improve the performance of the drug SE extraction task.
(6) Since the overall precision of the extracted cancer drug–SE
pairs is still low, the data are not yet useful for patients and clini-
cians. We are developing additional approaches (both automatic
and manual) to further improve the coverage and the precision of
the database. However, we believe that this dataset can be used to
increase the data completeness of existing cancer drug SE knowl-
edge sources to facilitate systems approaches for cancer drug target
discovery and drug repurposing.

CONCLUSIONS
We have presented a three-step information extraction approach
to extract cancer drug–SE relationships from over 21 million

published biomedical abstracts available on MEDLINE. After
automatically removing non-cancer drug-related pairs, drug–
disease treatment pairs, and pairs without strong semantic rela-
tionships, we greatly improved the precision from 0.252 at base-
line to 0.778, all without causing a decrease in the recall. We
showed that cancer drugs that have the same SEs tend to have
overlapping gene targets and overlapping indications, indicating
potential value for in silico cancer drug target discovery and
drug repurposing. As the precision and coverage of the cancer
drug–SE relationship knowledge base we have created continues
to improve, it will greatly enhance the ability of practitioners
and patients to make more accurate risk–benefit assessments
with regard to cancer drug treatment options, and increase the
power of SE-based cancer drug target discovery, repurposing,
and toxicity prediction models.
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