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ABSTRACT
This study aimed to reduce reliance on large training
datasets in support vector machine (SVM)-based clinical
text analysis by categorizing keyword features. An
enhanced Mayo smoking status detection pipeline was
deployed. We used a corpus of 709 annotated patient
narratives. The pipeline was optimized for local data
entry practice and lexicon. SVM classifier retraining used
a grouped keyword approach for better efficiency.
Accuracy, precision, and F-measure of the unaltered and
optimized pipelines were evaluated using k-fold cross-
validation. Initial accuracy of the clinical Text Analysis
and Knowledge Extraction System (cTAKES) package was
0.69. Localization and keyword grouping improved
system accuracy to 0.9 and 0.92, respectively.
F-measures for current and past smoker classes improved
from 0.43 to 0.81 and 0.71 to 0.91, respectively.
Non-smoker and unknown-class F-measures were
0.96 and 0.98, respectively. Keyword grouping had no
negative effect on performance, and decreased training
time. Grouping keywords is a practical method to reduce
training corpus size.

OBJECTIVE
To explore practical methods to improve support
vector machine (SVM) accuracy in automated
patient smoking status extraction by reducing train-
ing dataset requirements.

BACKGROUND AND SIGNIFICANCE
Tobacco exposure is an important oncologic health
status to determine. It is a known carcinogen,1 and
may also be linked to the development of second
cancers.2–4 Furthermore, it is associated with
poorer outcomes after cancer therapy,5–7 and also
increased long-term side effects.8

Automated smoking detection based upon SVM
techniques has been shown to be a reliable and
accurate method of clinical text analysis.9–12

However, its application to the ‘real world’ is hin-
dered by the magnitude of training data require-
ments. For a given number of training samples, the
number of features considered by the SVM corre-
lates with training time and accuracy.
The clinical Text Analysis and Knowledge

Extraction System (cTAKES) 2.513 smoking status
detection package uses an analysis pipeline first
described by Savova et al9 in response to the 2006
Informatics for Integrating Biology and the Bedside
(i2b2) initiative (see https://www.i2b2.org/) chal-
lenge.14 It has subsequently been released under
the Apache License 2.0, an open-source license.15

The pipeline was implemented at a large Australian
cancer center, to facilitate structured documenta-
tion of smoking status within the electronic
medical record. The aim of this study was to maxi-
mize pipeline performance using a limited number
of training samples by grouping keywords into lex-
ically similar categories.

MATERIALS AND METHODS
The Mayo smoking status detection pipeline and
cTAKES components have been described exten-
sively elsewhere.9 10 16 Sentence-based smoking
status detection first employs a rule-based analytics
layer to detect the presence of smoking-related key-
words. A second layer is applied to any sentence
with smoking information, and detects any neg-
ation terms relating to smoking information based
upon the published NegEX-algorithm.17 A SVM
document classifier then determines whether the
sentence relates to past or current smoking (see
figure 1). Final document-level smoking status is
determined using a rule-based layer to resolve the
classifications of multiple sentence-level classifica-
tions into a single document-level classification.

Dataset
We manually annotated 709 patient narratives to
create a corpus for training and validation. The
patient narrative history generated from first
contact with a patient was used, containing both
unstructured and semistructured data. Narratives
were selected randomly from clinics at Peter
MacCallum Cancer Centre, a specialist cancer hos-
pital. In this instance, the patient narrative relates
to a free-text document dictated by a clinician, with
variable organizational structure which could
include headings. Documents were coded into past
smoker (P), current smoker (C), non-smoker (N) or
unknown (U). The extracted narratives were con-
verted from HTML to UTF-8 format.

Processing optimization
The apostrophe character was not recognized by
the default cTAKES installation, which led to non-
detection of negation contractions (ie, she doesn’t
smoke). We altered the tokenizer to enable detec-
tion of common apostrophe characters used
(Unicode characters \u2019, \u0027, and \u0092).
Sentence-level checking for the subject assertion

was added, to discriminate for smoking-related
information not related to the subject (eg, pertain-
ing to family members). Header detection was also
incorporated to process only relevant sentences.
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For example, the header, ‘Smoking History,’ should not be clas-
sified as past smoker.

Feature optimization
Grouping of keyword features by equivalent temporality and
context was implemented, similar to categories employed by the
Penn Treebank tag set18 but with smoking-related application.
This reduced the number of features from 84 to 34, with a cor-
responding decrease in training time, and improved representa-
tion of less frequent keywords. We also added localized
keywords that were not identified in the original North
American feature sets. Table 1 shows a sample of the keyword
list employed, which is included for illustrative purposes. We
did not discard low-frequency keywords. The word ‘nil’ was
added to the list of the negation finite state machine, which is
not included in the initial NegEX algorithm.17

Optimization for local lexicon and data entry
Heading detection was implemented to deal with semistructured
data. Information in the family history that was unlikely to be
related to the patient was discarded. This worked synergistically
with the subject assertion detection we implemented. Several
patterns of heading dictation were seen, such as a heading fol-
lowed by a short phrase (‘Smoking: Nil’) or a heading followed

by several sentences of clinical detail. We corrected the latter
case, in which the heading was detected as a non-negated
smoking-related feature, and generated false-positive results.

SVM retraining and pipeline validation
SVM retraining for classifying past and current smokers was
performed using LIBSVM V.3.17.19 Different kernels for SVM
hyperplane segmentation were tested, including polynomial (the
default kernel), radial basis function (RBF) and sigmoid. We
also tested adjusted current smoker to past smoker weights of
each model (from 1.0 to 2.5) with the intention of fine tuning
the model to predict for more current smokers. To increase
training dataset efficiency, 10-fold validation was performed.
The corpus was first divided into 10 subsamples. Nine subsam-
ples were used as training and one as validation. This process
was repeated 10 times, with each subsample used once as valid-
ation data. Accuracy, precision, and F-measure were reported
with their correspondent Clopper–Pearson 95% CI using the
results from all subsamples.

RESULTS
Our corpus of 709 narratives comprised 16.6% current smokers
(C), 30.4% past smokers (P), 32.8% non-smokers (N), and
20.2% of unknown status (U).

Figure 1 Mayo/Savova Smoking Classification schema.

Table 1 Sample of equivalent keyword list

[Noun (smoker)] smoker
[Noun (past smoker)] exsmoker ex_smoker ex-smoker past_smoker
[Verb base (smoking)] smokes smoke
[Verb base (now smoking)] continues_to still continue_to
[Verb past (past smoker)] smoked
[Verb past (past smoker)] discontinued ceased refrained stopped quit
[Verb past (past smoker)] has_discontinued has_ceased has_quit has_stopped gave_up
[Verb past (past smoker)] stopped gave_up ceased quit
[Verb present singular (future)] will
[Time noun (year)] year years yrs
[Time noun (month)] month months mths mth
[Time noun (week)] week weeks wks wk
[Time noun (day)] day days
[Time adjective (current)] currently now
[Time adjective (past)] previously used_to use_to prior
[Time adjective (used with time noun)] ago

[Time adjective ] remote distant teenager youth
[Adjective (past smoker)] former reformed past previous ex-heavy
[Verb base (past smoker)] refrain reform refrains avoids
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Keyword grouping resulted in 34 feature groups, comprising
84 individual features of interest. The distribution of feature
events is shown in figure 2.

Initial accuracy of the cTAKES 2.5 smoking status package
with 10-fold cross-validation was 0.69. Incorporating localiza-
tion and keyword grouping improved system accuracy to 0.9
and 0.92, respectively. F-measures for C and P classes improved
from 0.43 to 0.81 and 0.71 to 0.91, respectively. We also tested
sigmoid and RBF kernels for SVM hyperplane determination,
but these did not improve system performance in any circum-
stance over the polynomial kernel which is included in the
default package. Adjusting the weights of current to past smoker
classes of each model resulted in poorer performance for each
of the three tested models. Subsequently, we have omitted these
results for the sake of brevity. Overall system accuracy and preci-
sion, recall, and F-measure for SVM retrained classes are shown

in table 2, with 95% CIs given in brackets. The precision, recall,
and F-measure for the N were 0.96, 0.96, and 0.96, respect-
ively. For the U class they were 0.95, 1.0, and 0.98.

DISCUSSION
We were able to achieve 0.92 system accuracy with a corpus of
modest size and localization optimization. Initially, a number of
errors occurred owing to erroneous detection of
smoking-related information included in a thorough family or
social history. We subsequently prioritized subject assertion fil-
tering at a sentence and heading level to deal with this problem.
Apart from this, however, few changes were made to the overall
structure of the pipeline apart from bug fixes related to code
additions.

Feature keyword grouping by Penn Treebank tag set categories
resulted in modest overall improvements in accuracy. This
implies that to construct an equally accurate model using
grouped keywords would require fewer training data. The reduc-
tion in model complexity from grouping keywords did not
impair system performance. Keyword grouping also has several
other practical advantages, the most important of which is limit-
ing the circumstances in which retraining of the SVM model is
required. Specifically, expanding keyword lists with localized key-
words can now be done without retraining the SVM module.
This is pertinent considering that many clinical institutions may
not possess the technical capabilities to perform retraining of the
SVM classifier. The keyword list now expands in a horizontal
fashion rather than vertically. Thus, retraining can be avoided
except when a new keyword group is added. Words are also
grouped by function and temporality, so that adding keywords is
intuitive. Assuming that keyword grouping only groups inter-
changeable words with equivalent meaning, it should result in a
lower reliance on corpus size to achieve the same effect.
Furthermore, reducing the number of effective keywords also
avoids discarding low-frequency, but potentially important, fea-
tures, which is a common practice in SVM feature selection.

The performance of the SVM module improved out of pro-
portion to overall system accuracy. For instance, the SVM
retraining resulted in F-measure improvements for the C class
from 0.71 to 0.81, while accuracy improved from 0.9 to 0.92.
This is because SVM retraining only affects the classification of
smokers into C or P classes (see figure 1 for pipeline schema).
As system accuracy depends on the true positive detection of all
four classes, the absolute gains from SVM retraining are conse-
quently diluted.

Figure 2 Feature frequency by word category.

Table 2 System performance, and results of support vector machine (SVM) retraining using 10-fold validation

SVM retraining results

Model
Overall system
accuracy (95% CI) Class

Precision
(95% CI)

Recall
(95% CI)

F-measure
(95% CI)

Original cTAKES, no changes, polynomial SVM 0.69 (0.65 to 0.72) C 0.3 (0.24 to 0.35) 0.81 (0.72 to 0.89) 0.43 (0.36 to 0.51)
P 0.87 (0.81 to 0.91) 0.6 (0.54 to 0.66) 0.71 (0.64 to 0.77)

Modified cTAKES rules, original keywords, polynomial SVM 0.9 (0.87 to 0.92) C 0.66 (0.57 to 0.75) 0.77 (0.68 to 0.85) 0.71 (0.62 to 0.8)
P 0.92 (0.88 to 0.95) 0.83 (0.78 to 0.88) 0.87 (0.83 to 0.91)

Modified rules, grouped keywords, polynomial SVM default weights 0.92 (0.9 to 0.94) C 0.75 (0.66 to 0.82) 0.89 (0.81 to 0.94) 0.81 (0.72 to 0.88)
P 0.97 (0.93 to 0.99) 0.87 (0.82 to 0.91) 0.91 (0.87 to 0.95)

Modified rules, grouped keywords, RBF SVM, default weights 0.9 (0.88 to 0.92) C 0.81 (0.69 to 0.89) 0.56 (0.45 to 0.66) 0.66 (0.55 to 0.76)
P 0.85 (0.81 to 0.89) 0.93 (0.89 to 0.96) 0.89 (0.85 to 0.92)

Modified rules, grouped keywords, sigmoid SVM, default weights 0.84 (0.81 to 0.87) C 0.49 (0.39 to 0.59) 0.53 (0.42 to 0.63) 0.51 (0.4 to 0.61)
P 0.82 (0.77 to 0.87) 0.77 (0.72 to 0.82) 0.8 (0.74 to 0.84)

C, current smoker; cTAKES, clinical Text Analysis and Knowledge Extraction System; P, past smoker; RBF, radial basis function.
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Our document-level results are similar to those reported in
other publications using this algorithm. Sohn and Savova10

extended the initial i2b2 entry, and reported final F-measures
for detection of P, C, N, and U classes as 0.857, 0.706, 0.961,
and 1.0, respectively. Liu et al12 deployed the Mayo algorithm
on patient data from Vanderbilt University Hospital, and
achieved F-measures for the P, C, and N classes of 0.92, 0.94,
and 0.97. Notably, the datasets used in our study are all free
text generated by human dictation, and are likely to be very dif-
ferent from the datasets used in previous studies.

The final accuracy is acceptable for deployment in a clinical
setting, especially if real-time performance feedback methods
are used to increase the training dataset over time. Interestingly,
when examining incorrect predictions made by the final model,
errors were often related to improper grammar that rendered
the meaning of a sentence ambiguous. This suggests that provid-
ing real-time feedback might have synergistic benefits with text
mining methods from increasing quality of text input as clinical
personnel continually improve their grammar.

Our plan is to implement this pipeline at our clinical organ-
ization, and use live feedback from clinicians to further train the
algorithm. If an acceptably accurate transferrable model can be
developed, live training data could supplement the initial corpus
and facilitate quicker deployment of the SVM-based algorithms
in other centers.

CONCLUSION
Keyword grouping in our dataset can decrease training dataset
requirements without sacrificing accuracy. It has practical advan-
tages of both model expandability and localization.
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