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Abstract
Large-scale sequencing, copy number, mRNA, and protein data have given great promise to the
biomedical research, while posing great challenges to data management and data analysis.
Integrating different types of high-throughput data from diverse sources can increase the statistical
power of data analysis and provide deeper biological understanding. This chapter uses two
biomedical research examples to illustrate why there is an urgent need to develop reliable and
robust methods for integrating the heterogeneous data. We then introduce and review some
recently developed statistical methods for integrative analysis for both statistical inference and
classification purposes. Finally, we present some useful public access databases and program code
to facilitate the integrative analysis in practice.
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1. Introduction
With the unprecedented amount of information from high-throughput experiments, such as
gene expression microarrays, protein–protein interactions, large-scale sequencing, genome-
wide copy number information, and genome–wide DNA–protein binding maps, there is an
urgent need to develop reliable and robust methods for integrating these heterogeneous data
to generate systematic biological insights into states of cells, mechanisms of disease, and
treatments. Integrating diverse sources of data can not only increase statistical power of data
analysis, but also provide deeper biological understanding. Concrete efforts have been made
to study the best ways to collect, store, and distribute these data. This chapter will focus on
the statistical methods to improve the power of identifying meaningful biological findings
by integrating different types of data efficiently. We will introduce the problem by giving
two examples and then discuss several statistical methods.

2. Examples
2.1. Gene Expression Regulation

Gene expression is a process of “the full use of the information in a gene via transcription
and translation leading to production of a protein and hence the appearance of the phenotype
determined by that gene” (1). The gene expression process determines the intra-cellular
concentration of proteins, which play an important role in many biological systems. On the
other hand, the gene expression procedure is controlled by certain proteins (regulators) in an
organized way. Transcriptional control is a critical step in regulation of gene expression.
Understanding such a control on a genomic level involves deciphering the mechanisms and
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structures of regulatory programs and networks, which will facilitate understanding the ways
organisms function and respond to environmental signals. Answers to these questions will
facilitate basic biology and medical research, leading to applications in clinical diagnosis
and finding new treatments for diseases.

Gene regulation is a complicated biology process, and we will describe some basic steps of
the process. First, cells get input signals from their environment. Second, through many
signaling pathways, some transcription factors (TFs) are activated. Third, the TFs bind to the
target genes’ cis-regulatory DNA sequence. Finally, the binding of TFs and their cis-
regulatory DNA sequence control the expression level of the target genes. A critical element
of understanding the gene regulation is to identify which genes are target genes of a specific
TF. There are two ways to answer this question: (1) A direct way is to investigate which
DNA sequences that a TF is binding to. A chromatin immunoprecipitation microarray
experiment (CHIP-chip or genome-wide location experiment) (2, 3) could be used to detect
the genome-wide target DNA sequences that are bound by specific proteins. (2) An indirect
way is to investigate which genes express differently under the condition of with and
without the appearance of TFs. Global expression profiles by microarray experiments could
be used for this purpose. DNA sequence information is also very important to identify the
target genes.

All of global expression profiles (indirect way), genome-wide location data (direct way),
and DNA sequence data play important roles in constructing regulatory networks, but none
of them can accurately get the whole picture alone. Using expression profiles alone cannot
discriminate direct targets of the transcription factors from indirect downstream effects, all
of which are observed if expression profiles alone are analyzed (4). On the other hand, using
genome-wide location data, we can identify the binding sites of a (TF), suggesting the
transcription factor may have regulatory effects on the gene, but it is possible that the (TF)
does not fully or even partially regulate the gene at the time (5). Also, DNA sequence data
can provide information about potential binding affinities of each gene to the TF, but
potential binding does not necessarily mean that sequence will be bound and regulated by
TF in vivo. More importantly, because of the high noise–signal ratio nature of the high-
throughput data, there is limited statistical power to identify the TF binding targets using
only one source of data alone. Thus, integrating these heterogeneous and independently
obtained data can improve the detection power and is a key step to understand the complete
mechanism of transcriptional regulation and the form of regulatory networks (2-6).

On the other hand, how to integrate diverse types of genomic data in an efficient way is still
a challenge problem in the current bioinformatics research. In this chapter, we will review
some existing methods to address this question.

2.2. Cancer Prognosis
Cancer prognosis predicts the course and outcome of cancer, that is, the chance that a patient
will recover or have a recurrence (return of the cancer). Traditionally, cancer prognosis
largely depends on clinical information such as the type and location of the cancer, the stage
and grade of the disease, the patient’s age and general health. Recently, patient’s molecular
profiles have been increasingly used to predict cancer prognosis. Shedden et al. (7) showed
that genome-wide expression profile can improve the prediction of lung cancer recurrence
compared to clinical prognostic factors. The molecular profiles used for cancer prognosis
will be extended to protein expression profiling, miRNA profiling, DNA copy number
profiling, potentially large-scale tumor genomic sequencing such as for specific oncogene
mutations. This information will be coupled with germ line DNA polymorphism analysis
which now can evaluate about 106 polymorphisms at one time, some of which identify inter-
individual variation that could provide prognostic information as well as response to therapy
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and toxicity prediction. Also some groups are using serum proteomic and antibody profiles
for early cancer detection, prognosis, and predicting response to specific therapies. Xie and
Minna (8) described how to use molecular profiles to facilitate the prediction for lung cancer
patients. With such large amounts of high-throughput data, there is an urgent need for
statistical methods to integrate these information for cancer prognosis.

3. Integrative Approach for Statistical Inference
3.1. Using Shrinkage Approach to Incorporate Prior Information

Shrinkage methods have been widely used in classification and prediction (9-11). The
motivation is more from the point of a better bias-variance trade-off. It serves as a “de-
noising” procedure that reduces the variance (with a possible increase of bias) and therefore
results in the improved prediction performance. Besides the good empirical performance,
shrinkage methods can be also justified from a Bayesian point of view (12, 13). Xie et al.
(14) considered a use of shrinkage in the context of hypothesis testing, such as detecting
differential gene expression for expression data or DNA–protein binding sites for genome-
wide location data. An advantage of the method is that we can incorporate prior biological
knowledge, for example, in detecting differential gene expression for thousands of genes, in
many applications we know a priori that most of the genes will be equally expressed (EE);
use of this prior knowledge can be accomplished by shrinking the test statistics of those
genes believed a priori to be EE toward their null values (i.e., expected values under the null
hypothesis of EE). Furthermore, we can also take advantage of the existence of other
sources of data.

To illustrate the shrinkage method, Xie et al. (14) used a SAM-t (statistical analysis of
microarray) statistic to analyze microarray data (15, 16), but other more elaborate statistical
methods, such as the nonparametric empirical Bayes method (17), SAM (18), and the
mixture model method (16), can be also implemented. A statistical analysis method can be
similarly applied to either genome-wide location data or gene expression data. A difference
is that we are only interested in the enriched spots in location data whereas both up and
down expressed genes are of interest in gene expression data. Hence, we will use a one-
sided test for genome-wide location data, rather than a two-sided test commonly taken for
gene expression data. Specifically, for any given d > 0, we claim any gene i satisfying Zi > d
to be significant, and we estimate the total positive (TP) numbers as

If there are total G1 genes with true positives, the sensitivity and specificity are

where TP and FP are the numbers of total positives and true false positives, respectively.

The true/observed false discovery rate (FDR) (19, 20) and its estimate are

where  is the estimated false positive number. A standard way to estimate FP is
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where  is the test statistic calculated from the bth permutated data set and B is the total
number of permutations. This standard method may overestimate FP (16), and furthermore,
the magnitude of induced bias may depend on the test statistic being used (21). Hence, it is
not appropriate to use the resulting FDR estimates to evaluate different statistics. In this
chapter, we will use a modified method proposed by Xie et al. (21) to estimate FP. The idea
is quite simple: the overestimation of the standard method is mainly caused by the existence
of target genes; if we use only the predicted non-target genes to estimate the null
distribution, it will reduce the impact of target genes and improve the estimation of FP.
Specifically, we use only non-significant genes to estimate FP:

Xie et al. (21) gave more detailed descriptions and justifications for this method. In testing a
null hypothesis, a false rejection occurs because just by chance the test statistic value (or its
absolute value) is too large. Hence, if we know a priori that the null hypothesis is likely to
be true, we can shrink the test statistic (or its absolute value) toward zero, which will reduce
the chance of making a false positive. In the current context, among all the genes, suppose
that based on some prior information we can specify a list of genes for which the null
hypothesis is likely to hold, thus their test and null statistics are to be shrunken. If gene i is
in the list, then for a given threshold value s, its test and null statistics are shrunken:

where f+ = f if f > 0 and f+ = 0 if f ≤ 0. On the other hand, if gene i is not in the list, then Zi(s)

= Zi and .

We proceed as before to draw statistical inference using Zi(s) and . The shrinkage
method we use is called soft thresholding (22, 23), in contrast to the usual hard thresholding.
In the hard thresholding, when |Zi| is larger than s, the new statistic will remain unchanged,
rather than be shrunken toward zero by the amount of s as the soft thresholding does. This
property makes the statistics generated by the hard thresholding “jumpy,” since as the
threshold s increases, the statistics of some genes may suddenly jump from zero to their
original values.

How many genes to shrink and how much to shrink are important parameters to be
determined in data analysis. Xie et al. (14) proposed taking multiple trials using various
parameter values and then using estimated FDR as a criterion to choose the optimal
parameter values. It has been shown to work well. In practice, we suggest to use area under
curve (AUC) as a measurement to compare estimated FDRs and tune the parameter.
Specifically, we try different s values, for example, s = 0, 0.2, 0.4, and 0.6. For each s value,
we estimate FDRs for different number of total positive genes and then make a plot of FDR
vs. the number of total positive genes. So we can get one curve for each s value, and then
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calculate AUC for each curve. We will choose s value with lowest AUC as the optimal
parameter value.

The idea of using shrinkage to combine two data sets is simple: in the example with gene
expression data and DNA–protein binding data, first, we use the expression data to generate
a prior gene list where the genes are more likely to be “non-target” of the protein; and then
we shrink the statistics of these genes toward null values in the binding data analysis. We
treat all the genes in the gene list equally; this simplicity makes the shrinkage method
flexible and thus applicable to combining various types of data or prior knowledge. For
example, if we can generate a list of genes for which the null hypothesis is more likely to
hold based on a literature review or some relevant databases, such as Gene Ontology (GO),
then we can incorporate this prior information into the following analysis by using our
proposed shrinkage method. An alternative way of a combined analysis is to make the
amount of shrinkage for each gene depend on the probability of that gene in the gene list (or
equivalently, on the amount of statistical evidence of rejecting the null hypothesis for the
gene based on prior information): the higher probability, the more we will shrink it toward
zero. This method can possibly use the prior information more efficiently, but it also
requires a stronger link and association between the two sources of data; otherwise, it may
not perform well.

Xie et al. (14) illustrated that the quality of the prior gene list influenced the amount of
shrinkage we should have and the final performance of the shrinkage method. The more the
gene list agrees with the truth, the larger amount of shrinkage should be taken, and the better
the shrinkage method performs. On the other hand, when the gene list is very unreliable, any
shrinking does not help. This phenomenon is consistent with the general Bayesian logic:
how much information we should use from the prior knowledge (i.e., the gene list here)
depends on the quality of the prior knowledge; if the prior knowledge is very vague, then we
should use flat prior (here s = 0) so that the posterior information comes largely or only from
the data itself.

3.2. Incorporate Gene Pathway and Network Information for Statistical Inference
Gene functional groups and pathways, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (24), play critical roles in biomedical research. Recently,
genome-wide gene networks, represented by undirected graphs with genes as nodes and
gene–gene interactions as edges, have been constructed using high-throughput data. Lee et
al. (25) constructed functional networks for the yeast genome using a probabilistic approach.
Franke et al. (26) constructed a human protein–protein interaction network. It is reasonable
to assume that the neighboring genes in a network are more likely to share biological
functions and thus to participate in the same biological processes, therefore, their expression
levels are more likely to be similar to each other. Some recent work has attempted to
incorporate genome-wide gene network information into statistical analysis of microarray
data to increase the analysis power. Wei and Li (27) proposed integrating KEGG pathways
or other gene networks into analysis of differential gene expression via a Markov random
field (MRF) model. In their model, the state of each gene was directly modeled via a MRF.

Spatial statistical models have been increasingly used to incorporate other information into
microarray data analysis. Xiao et al. (28) applied a hidden Markov model to incorporate
gene chromosome location information into gene expression data analysis. Broet et al. (29)
applied a spatial mixture mode to introduce gene-specific prior probabilities to analyze
comparative genomic hybridization (CGH) data. Wei and Pan (30) extended the work of
Broet et al. from incorporating one-dimensional chromosome locations to two-dimensional
gene network. They utilized existing biological knowledge databases, such as KEGG
pathways, or computationally predicted gene networks from integrated analysis (25), to
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construct gene functional neighborhoods and incorporating them into a spatially correlated
normal mixture model. The basic rationale for their model is that functionally linked genes
tend to be co-regulated and co-expressed, which is thus incorporated into analysis. This is an
efficient way to incorporate network information into statistical inference and we will
introduce their method in this section.

3.2.1. Standard Normal Mixture Model—We want to identify binding targets or
differentially expressed genes in this analysis. We will use latent variable Ti to indicate
whether gene i is true binding target (or differently expressed) gene. Suppose that the
distribution functions of the data (e.g., Z-score) for the genes with Ti = 1 and Ti = 0 are f1
and f0, respectively. Assuming that a priori all the genes are independently and identically
distributed (iid), we have a marginal distribution of Zi as a standard mixture model:

[1]

where π0 is the prior probability that H0,i (null hypothesis) holds. It is worth noting that the
prior probabilities are the same for all genes. The standard mixture model has been widely
used in microarray data analysis (17, 31-33).

The null and non-null distributions f0 and f1 can be approximated by finite normal mixtures:

 and , where ϕ(μ, σ2) is the density
function for a Normal distribution with mean μ and variance σ2. For Z-score, using Kj = 1
often suffices (33). Wei and Pan (30) demonstrated that K0 = 2 and K1 = 1 worked well in
most cases. The standard mixture model can be fitted via maximum likelihood with the
Expectation-Maximization (EM) algorithm (34). Once the parameter estimates are obtained,
statistical inference is based on the posterior probability that H1,i (alternative hypothesis)
holds: Pr(Ti = 1∣zi) = π1f1(zi)/f(zi).

3.2.2. Spatial Normal Mixture Model—In a spatial normal mixture model, Wei and Pan
(30) introduced gene-specific prior probabilities πi,j = Pr(Ti = j) for i = 1,…, G and j = 0, 1.
The marginal distribution of zi is

[2]

where f0(zi) and f1 (zi) represent density distributions under null and alternative hypotheses,
respectively. Note that the prior probability specification in a stratified mixture model (35,
36) is a special case of Equation [2]: a group of the genes with the same function share a
common prior probability while different groups have possibly varying prior probabilities;
in fact, a partition of the genes by their functions can be regarded as a special gene network.

Based on a gene network, the prior probabilities πi,j are related to two latent Markov random
fields xj = {xi,j;i = 1,…, G} by a logistic transformation:

Each of the G-dimensional latent vectors xj is distributed according to an intrinsic Gaussian
conditional autoregression model (ICAR) (37). One key feature of ICAR is the Markovian
interpretation of the latent variables’ conditional distributions: the distribution of each
spatial latent variable xi,j, conditional on x(−i),j = {xk,j;k ≠ i}, depends only on its direct
neighbors. More specifically, we have
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where δi is the set of indices for the neighbors of gene i, and mi is the corresponding number
of neighbors. To allow identifiability, they imposed Σi xij = 0 for j = 0, 1. In this model, the

parameter  acts as a smoothing prior for the spatial field and consequently controls the
degree of dependency among the prior probabilities of the genes across the genome: the

smaller  induces more similar πi,j’s for those genes that are neighbors in the network.

3.3. Joint Modeling Approaches for Statistical Inference
Now we will discuss a joint modeling approach to integrate different sources of data. The
benefit of joint modeling is that it can potentially improve the statistical power to detect
target genes. For example, a gene may be supported in each source of data with some but not
overwhelming evidence to be a target gene; in other words, this gene will not be identified
as statistically significant based on either source of data, however, by integrating different
sources of data in a joint model, the gene may be found to be significant. Pan et al. (38)
proposed a nonparametric empirical Bayes approach to joint modeling of DNA–Protein
binding data and gene expression data. The simulated data shows the improved performance
of the proposed joint modeling approach over that of other approaches, including using
binding data or expression data alone, taking an intersection of the results from the two
separate analyses and a sequential Bayesian method that inputs the results of analyzing
expression data as priors for the subsequent analysis of binding data. Application to a real
data example shows the effects of the joint modeling. The nonparametric empirical Bayes
approach is attractive due to its flexibility. Xie (39) proposed a parametric Bayesian
approach to jointly modeling DNA–protein binding data (ChIP-chip data), gene expression
data and DNA sequence data to identify the binding target genes of a transcription factor.
We will focus on this method here.

3.3.1. Analyzing Binding Data Alone—We use a Bayesian mixture model (40) to
analyze binding data. Specifically, suppose Xij is the log ratio of the intensities of test and
control samples in ChIP-chip experiment for gene i (i = 1, …, G) and replicate j (j = 1, …,
K). We specify the model as following:

where μix is the mean of log ratio for gene i; Iix is an indicator variable: Iix = 0 means the
gene i being non-binding target gene and Iix = 1 means gene i being binding target gene. We
assume that the mean log ratios of non-target genes concentrate around 0 with small

variance ( ), while the expected mean log ratios of target genes follow a normal
distribution with a positive mean. The prior distribution for indicator Iix is a Bernoulli
distribution with probability px. The advantage of this hierarchical mixture model is that we
can borrow information across genes to estimate the expected mean intensity, and we can
use the posterior probability of being a binding target gene directly to do inference.
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3.3.2. Joint Modeling—Similar to binding data, we used mixture models to fit expression
data ϒij and sequence data zi. For expression data

where Iiy is a three-level categorical variable: Iiy = 0 indicates an equally expressed gene, Iij
= 1 represents an up-regulated gene, and Iij = 2 means a down-regulated gene. Here we used
conditional probabilities to connect the binding data and the expression data. Intuitively, the
probability of being equally expressed for a non-binding target gene, py00, should be higher
than the probability of being equally expressed for a binding target gene, py01. The
difference between the conditional probabilities measures the correlation between the
binding data and the expression data. If the two data sets are independent, the two sets of
conditional probabilities will be the same. Therefore, this model is flexible to accommodate
the correlations between data.

Similarly, we model the sequence data as

where Iiz = 1 indicates gene i being potential target gene based on sequence data, we will
call it a potential gene; and Iiz = 0 means gene i being a non-potential gene.

Figure 19.1 gives a graphical overview of this model. In summary, the model combines
expression data and sequence data with binding data through the indicator variables. This
model can automatically account for heterogeneity and different specificities of multiple
sources of data. The posterior distribution of being a binding target can be used to explain
how this model integrates different data together. For example, if we combine binding and
expression data, the posterior distribution of being a binding target gene Iix is

where Iix∣· represents the posterior distribution of Iix condition on all other parameters in the

model and the data. We define  and . If the

expression data do not contain information about binding, then , which makes all
the terms containing ϒ in the formula canceled out. In this case, only information contained

Xie and Ahn Page 8

Methods Mol Biol. Author manuscript; available in PMC 2014 February 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in binding data X is used to do inference. On the other hand, the difference between  and

 will be big when expression data contain information about binding. In this case, the
information in expression data Iiϒ will also be used to make inference.

3.3.3. Statistical Inference—Assuming that the binding, expression, and sequence data
are conditionally independent (condition on the indicator Iix), we can get the joint likelihood
for the model. Based on the joint likelihood, we can obtain the closed form of full
conditional posterior distribution for most of the parameters (except λx, λy, and dz). Gibbs
sampler was used to do Markov Chain Monte Carlo simulations for the parameters having
the closed form. For λx, λy, and dz, Metropolis–Hastings algorithm was applied to draw the
simulation samples. The iterations after burn-in samples were used as posterior simulation
samples and were used for statistical inferences.

3.3.4. The Effects of Joint Modeling—Xie (39) illustrated that when using the binding
data alone, the estimated posterior probabilities were positively associated with the mean
binding intensities from binding data. In this model, the posterior probability does not
depend on the expression data or sequence data. On the other hand, after doing the joint
modeling, the posterior probabilities of the genes with high expression values have been
increased compared to using binding data alone, but the sequence score did not have much
influence on the inference for this data. In summary, this model can automatically account
for heterogeneity and different specificity of multiple sources of data. Even if an addition
data type does not contain any information about binding, the model can be approximated to
that of using binding data alone.

4. Integrative Analysis for Classification Problem
Statistical classification methods, such as support vector machine (SVM) (41), random
forest (42) and Prediction Analysis for Microarrays (PAM) (9), have been widely used for
diagnosis and prognosis of breast cancer (10, 43), prostate cancer (44, 45), lung cancer (7,
46), and leukemia (47). Meanwhile, biological functions and relationships of genes have
been explored intensively by the biological research community, and those information has
been stored in databases, such as those with the Gene Ontology annotations (48) and the
Kyoto Encyclopedia of Genes and Genomes (24). In addition, as mentioned before, prior
experiments with similar biological objectives may have generated data that are relevant to
the current study. Hence, integrating information from prior data or biological knowledge
has potential to increase the classification and prediction performance.

The standard classification methods treat all the genes equally a priori in the process of
model building, ignoring biological knowledge of gene functions, which may result in a loss
of their effectiveness. For example, some genes have been identified or hypothesized to be
related to cancer by previous studies; others may be known to have the same function of or
be involved in a pathway with some known/putative cancer-related genes, hence we may
want to treat these genes differently from other genes a priori when choosing genes to
predict cancer-related outcomes.

Some recent research has taken advantages of the prior information for classification
problem. Lottaz and Spang (49) proposed a structured analysis of microarray data (StAM),
which utilized the GO hierarchical structure. Biological functions of genes in GO hierarchal
structure are organized as a directed acyclic graph: each node in the graph represents a
biological function, and a child node has a more specific function while its parent node has a
more general one. StAM first built classifiers for every leaf node based on an existing
method, such as PAM, then propagated their classification results by a weighted sum to their
parent nodes. The weights in StAM are related to the performance of the classifiers and a
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shrinkage scheme is used to shrink the weights toward zero so that a sparse representation is
possible. This process is repeated until the results are propagated to the root node. Because
the final classifier is built based on the GO tree, StAM greatly facilitates the interpretation of
a final result in terms of identifying biological processes that are related to the outcome.
StAM uses only genes that are annotated in the leaf nodes (i.e., with most detailed biological
functions) as predictors, so it may miss some important predictive genes. Wei and Li (27)
proposed a modified boosting method, non-parametric pathway-based regression (NPR), to
incorporate gene pathway information into classification model. NPR assumed that the
genes can be first partitioned into several groups or pathways, and only pathway-specific
new classifiers (i.e., using only the genes in each of the pathways) were built for boosting
procedure. More recently, Tai and Pan (50) proposed a flexible statistical method to
incorporate prior knowledge of genes into prediction models. They adopted group-specific
penalty terms in a penalized method allowing genes from different groups to have different
prior distributions (e.g., different prior probabilities of being related to the cancer). Their
model is similar to NPR with regard to grouping genes, but they apply to any penalized
method through the use of group-specific penalty terms while NPR only applies to boosting.
Garrett-Mayer et al. (51) proposed using meta-analytic approaches to combine several
studies using pooled estimates of effect sizes.

5. Useful Databases and Program Code
5.1. Databases

In order to meet the urgent need of integrated analysis of high-throughput data, the National
Institutes of Health (NIH) and the European Molecular Biology Laboratory (EMBL) have
made concrete effort to build and maintain several large-scale and public-accessible
databases. These databases are very valuable for both biomedical research and methodology
development. We will introduce several of them briefly.

5.1.1. Array Express—Founded by EMBL, ArrayExpress is a public repository for
transcriptomics data. It stores gene-indexed expression profiles from a curated subset of
experiments in the repository. Public data in ArrayExpress are made available for browsing
and querying on experiment properties, submitter, species, etc. Queries return summaries of
experiments, and complete data or subsets can be retrieved. A subset of the public data is re-
annotated to update the array design annotation and curated for consistency. These data are
stored in the ArrayExpress Warehouse and can be queried on gene, sample, and experiment
attributes. Results return graphed gene expression profiles, one graph per experiment.

Complete information about ArrayExpress can be found from the web site http://
www.ebi.ac.uk/Databases/.

5.1.2. Gene Expression Omnibus (GEO)—Founded by National Center for
Biotechnology Information (NCBI), GEO is a gene expression/molecular abundance
repository supporting Minimum Information About a Microarray Experiment (MIAME)
compliant data submissions and a curated, online resource for gene expression data
browsing, query, and retrieval. Currently it has 2,61,425 data including 4,931 platforms
2,47,016 samples and 9,478 series. All data are accessible through the web site http://
www.ncbi.nlm.nih.gov/geo/.

5.1.3. Oncomine—Founded by Drs. Arul Chinnaiyan and Dan Rhodes at the University of
Michigan and currently maintained by Compendia Bioscience Company, the Oncomine
Research Platform is a suite of products for online cancer gene expression analysis dedicated
to the academic and non-profit research community.
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Oncomine combines a rapidly growing compendium of 20,000+ cancer transcriptome
profiles with an analysis engine and a web application for data mining and visualization. It
currently includes over 687 million data points, 25,447 microarrays, 360 studies, and 40
cancer types. Oncomine access is available through the Oncomine Research Edition and the
Oncomine Research Premium Edition. Information is available via the web site http://
www.oncomine.org/main/index.jsp.

5.1.4. The Cancer Genome Atlas (TCGA)—Joint effort by the National Cancer
Institute (NCI) and the National Human Genome Research Institute (NHGRI) of the NIH,
TCGA is a comprehensive and coordinated effort to accelerate our understanding of the
molecular basis of cancer through the application of genome analysis technologies,
including large-scale genome sequencing. TCGA Data Portal provides a platform for
researchers to search, download, and analyze data sets generated by TCGA. This portal
contains all TCGA data pertaining to clinical information associated with cancer tumors and
human subjects, genomic characterization, and high-throughput sequencing analysis of the
tumor genomes. In addition, the Cancer Molecular Analysis Portal provides the ability for
researchers to use analytical tools designed to integrate, visualize, and explore genome
characterization from TCGA data. The following web site will lead to download TCGA data
http://tcga-data.nci.nih.gov/tcga/.

5.2. WinBUGS Codes for Incorporating Gene Network Information into Statistical Inference
5.2.1. For a Three-Component Standard Normal Mixture Model

model
{
for (i in 1:N){
Z[i] ~dnorm(muR[i], tauR[i]) # z-scores
muR[i] <- mu[T[i]]
tauR[i] <- tau[T[i]]
T[i] ~dcat(pi[ ]) # latent variable (zero/negative/# postive components)
T1[i] <-equals(T[i], 1) ;T2[i] <-equals(T[i],2);
T3[i] <-equals(T[i],3);
}
# prior for mixing proportions
pi[1:3] ~ddirch(alpha[])
# priors (means of normal mixture components)
mu[1] <- 0 # zero component
mu[2] ~dnorm(0, 1.0E-6)I(a,0.0) # negative component
mu[3] ~dnorm(0, 1.0E-6)I(0.0,b) # positive component
# priors (precision/variance of normal mixture # components)
tau[1] ~dgamma(0.1, 0.1)
tau[2] ~dgamma(0.1, 0.1)
tau[3] ~dgamma(0.1, 0.1)
sigma2[1] <-1/tau[1]
sigma2[2] <-1/tau[2]
sigma2[3] <-1/tau[3]
}
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5.2.2. For a Three-Component Spatial Normal Mixture Model

model
{
for(i in 1:N) {
Z[i] ~dnorm(muR[i], tauR[i]) # z-scores
muR[i] <- mu[T[i]]
tauR[i] <- tau[T[i]]
# logistic transformation
pi[i,1] <-1/(1+exp(x2[i]-x1[i])+exp(x3[i]-x1[i]))
pi[i,2] <-1/(1+exp(x1[i]-x2[i])+exp(x3[i]-x2[i]))
pi[i,3] <-1/(1+exp(x1[i]-x3[i])+exp(x2[i]-x3[i]))
T[i] ~dcat(pi[i,1:3]) # latent variable (zero/
# negative/postive components)
T1[i] <-equals(T[i],1) ;T2[i] <-equals(T[i],2);
T3[i] <-equals(T[i],3)
}
# Random Fields specification
x1[1:N] ~car.normal(adj[], weights[], num[], tauC[1])
x2[1:N] ~car.normal(adj[], weights[], num[], tauC[2])
x3[1:N] ~car.normal(adj[], weights[], num[], tauC[3])
# weights specification
for(k in 1:sumNumNeigh) { weights[k] <- 1 }
# priors (precision/variance for MRF)
tauC[1] ~dgamma(0.01, 0.01)I(0.0001,)
tauC[2] ~dgamma(0.01, 0.01)I(0.0001,)
tauC[3] ~dgamma(0.01, 0.01)I(0.0001,)
sigma2C[1] <- 1/tauC[1]
sigma2C[2] <- 1/tauC[2]
sigma2C[3] <- 1/tauC[3]
# priors (means of normal mixture components)
mu[1] <- 0 # zero component
mu[2] ~dnorm(0, 1.0E-6)I(a,0.0) # negative component
mu[3] ~dnorm(0, 1.0E-6)I(0.0,b) # positive component
# priors (precision/variance of normal mixture
# components)
tau[1]~dgamma(0.1, 0.1)
tau[2]~dgamma(0.1, 0.1)
tau[3]~dgamma(0.1, 0.1)
sigma2[1] <- 1/tau[1]
sigma2[2] <- 1/tau[2]
sigma2[3] <- 1/tau[3]
}
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Fig. 19.1.
The graphical overview of the hierarical structure of the joint model.
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