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Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the

effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation

also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population

size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated

mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness

change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find

that Fisher’s geometrical model can account for the observed patterns of fitness change and infer the parameters of this model

that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for

fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of −0.01, and an effective

number of traits nine in mutS− E. coli. This framework can be extended to confront a broader range of models with data and test

different classes of fitness landscape models.
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The distribution of effects of new mutations and how their in-

teractions cause changes in fitness are fundamental quantities in

our understanding of evolution. It is generally acknowledged that

the genetic background has a strong influence on the phenotypic

effect of mutations (De Visser et al. 2011). If the phenotype is

relevant for fitness, natural selection will act differently on the

mutation depending on its genomic background. Throughout this

article, a mutation is said to be epistatic if its fitness effect, and

thus ultimately its fate in the population, depends on the genetic

background where it appears.

Numerous population genetics models have been built as-

suming that mutations affect fitness independently, that is,

epistasis is absent. In the most classical experiment designed to

determine the distribution of fitness effects of mutations, epistasis

is typically ignored. In this type of experiment, populations are

propagated at the lowest possible population size, minimizing the

effect of natural selection and allowing deleterious mutations to

accumulate close to the rate at which they appear (Bateman 1959;

Mukai 1964). Interestingly, the results of these mutation accu-

mulation (MA) experiments have been continuously reanalyzed

using different methods (Bataillon 2000; Halligan and Keightley

2009), but usually under the same model. The rate and mean effect

of mutations are assumed constant and independent of the current

fitness of the genotype hit by a new mutation. However, empir-

ical work suggests that epistasis for fitness might be pervasive,

with positive or negative mean depending on the organism studied

(Sanjuán and Elena 2006). Many studies are focused on delete-

rious mutations, as these are the most common. However recent
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experiments, focusing on discrete sets of beneficial mutations un-

derlying fitness changes observed in experimental populations,

support the notion that beneficial mutations may generally inter-

act in an antagonistic way in microbes (Chou et al. 2011; Khan

et al. 2011; Rokyta et al. 2011). Other studies show mean levels

of epistasis ranging from antagonistic to nearly neutral in bacteria

(Trindade et al. 2009; Ward et al. 2009).

Understanding the type of epistasis underlying fitness has

important consequences for a number of evolutionary ques-

tions. For example, it is expected that sexual reproduction will

be favored if most deleterious mutations interact synergistically

(Kondrashov 1988). One important type of epistasis is sign epis-

tasis, in which a mutation is deleterious or beneficial depending

on the background. If it is common, then the number of paths

that can be taken during adaptation might be severely constrained

(Weinreich et al. 2005). The pattern of epistasis is often thought

to be specific to a given species. However, recurrent observa-

tions suggest an interesting empirical rule: genotypes with lower

fitness in a given environment adapt faster to that environment.

This is observed across very diverse organisms: phage (Silander

et al. 2007), Escherichia coli (Moore and Woods 2006; Khan

et al. 2011), Saccharomyces cerevisiae (Murphy and Zeyl 2012),

Aspergillus nidulans (Gifford et al. 2011), and Caenorhabditis el-

egans (Estes and Lynch 2003). All of these studies are focused on

the fitness effects of beneficial mutations in diverse backgrounds.

An open question is whether the same rule applies to other types

of mutations.

Many experiments, particularly those aimed at studying

adaptation, can only detect the effects of mutations that survive

genetic drift. Because the probability of escaping stochastic loss

depends itself on the selection coefficient of mutations, estimat-

ing how fitness effects depend on genetic background requires

taking into account the effect of natural selection. Three main

factors affect the efficiency of selection and thus the probability

of empirically detecting a beneficial mutation: population size,

spatial structure, and recombination. In small or fragmented pop-

ulations, selection will be relatively inefficient both at purging

deleterious and at fixing beneficial mutations. In very large pop-

ulations, deleterious mutations will have little chance of fixing,

whereas beneficial mutations enjoy a fixation probability directly

proportional to their effect on fitness (Haldane 1927), assuming

weak selection. In the absence of recombination, the efficiency of

selection is also reduced because mutations are locked together

in the same genotype. For example, if a beneficial mutation ap-

pears in a background that already harbors a deleterious mutation,

it will only have a good chance of fixing if its effect outweighs

the deleterious effect of the first mutation (Charlesworth et al.

1993; Bachtrog and Gordo 2004). In the same manner, if two

beneficial mutations appear in a population on different genetic

backgrounds, they will compete for fixation and one will be lost

(Gerrish and Lenski 1998; Gerrish et al. 2007). This interference

also occurs in the presence of small amounts of recombination

(Barton 1995).

Here we analyze the results of two laboratory experiments,

where population size is manipulated to modulate the efficiency of

natural selection. Specifically, we reanalyze the results of an MA

experiment using a strain of E. coli that exhibits a mutator phe-

notype (mutS−). In this experiment E. coli evolved under drastic

periodic bottlenecks consisting of a single cell. We also com-

plement this MA study with a readaptation experiment. In this

experiment several independent genotypes, stemming from the

MA experiment, are allowed to evolve under large effective pop-

ulation size. We explore how fitness changes (decreases in small

populations and increases in large populations) depend on the

genetic background. We show that the fitness change is strongly

correlated with initial fitness in both experiments, suggesting that

epistasis is very common.

Not accounting for epistasis fails to uncover the salient fea-

tures of the fitness trajectories observed in each experiment.

Therefore, we should consider models where epistasis is per-

vasive. One widely used phenotype-based model of evolution is

Fisher’s geometrical model, hereafter referred to as FGM (Fisher

1930). This model has been used to interpret patterns of adapta-

tion in large populations and to derive theoretical distributions of

fitness effects of mutations and epistasis (Martin et al. 2007). It

has also been invoked to help understanding the evolutionary tra-

jectory of small populations (Tenaillon et al. 2007). So far, it has

rarely been used to explain the fitness decay typically observed

during evolution of very small populations, in particular of MA

experiments (but see Poon and Otto 2000; Martin and Lenormand

2006). Under FGM, one can derive the distribution of fitness ef-

fects, s, of a single mutation depending on the current background

and pairwise epistasis <ε> between random mutations (Martin

et al. 2007). The first is expected to follow a shifted gamma distri-

bution with a given mean, E(s), and the latter is predicted to be a

normal distribution with mean E<ε> = 0. Both E(s) and <ε> do

not depend on the genetic background, although the variances do

in the simplest version of FGM. Other versions of the FGM where

<ε> is nonzero have also been proposed (Gros et al. 2009). The

simplest model pictures evolution as a walk in a geometric space

of n phenotypic traits. It assumes that, within a given constant en-

vironment, a single value for each of the n traits is optimal, with

fitness decreasing smoothly for phenotypes away from that opti-

mum. When a population is located at the optimum, any random

mutation, irrespective of its size or direction, will cause a devi-

ation from the optimum and so will necessarily be deleterious.

FGM incorporates naturally a dependence of the rate of evolu-

tion on the initial phenotype. Importantly, this model can account

for several empirical patterns (Tenaillon et al. 2007; Gordo and

Campos 2012) including the fitness effects of mutations
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(Schoustra et al. 2009; Bataillon et al. 2011; Sousa et al. 2012;

Trindade et al. 2012) and pairwise epistasis (Martin et al. 2007).

Here, we use FGM to analyze the results of the measured fitness

change, under both small and large population sizes. We intro-

duce a statistical framework that allows combining information

from both experiments to estimate the parameters underlying this

model. We show that patterns of fitness change in both experi-

ments can be quantitatively captured under FGM.

Materials and Methods
BACTERIAL STRAINS AND GROWTH CONDITIONS

The strains and growth conditions used in this study were as

described in Trindade et al. (2010). Briefly, for the MA experiment

and its analysis, the two strains used were E. coli K12 MG1655

srl::Tn10 mutS and K12 MG1655 srl::Tn10 �ara mutS. The first

strain was the ancestor for the MA experiment, and the second

was used as the reference strain for the competition assays in the

fitness measurements. The deletion in the arabinose operon is a

phenotypic marker that allows distinguishing the two strains in

competition, because these mutants give rise to red colonies when

plated in Tetrazolium agar (TA; Lenski et al. 1991).

For the recovery experiment, 23 clones derived from the MA

lines were studied. These clones cover a range of initial fitnesses

from 0.77 to 0.99 and include 16 clones from the 50th bottleneck,

six clones from the 20th bottleneck, and one clone from the 70th

bottleneck.

To allow the clones to readapt, evolution under large popula-

tion sizes was performed. In the first day, each experimental line

was started with 10 mL of LB medium seeded with ∼1.5 × 104

individuals and incubated at 37◦C with agitation for 24 h. This

period allowed for ∼20 generations after which appropriate di-

lutions were made from each culture and another ∼1.5 × 104

individuals were used to seed the next passage. This procedure

was repeated for ∼240 generations after which fitness from all

the lines was measured. One of the clones was propagated in three

independent replicates and five were propagated in two replicates.

The remaining clones were propagated once, yielding in total 30

adapted populations.

MUTATION RATE AND FITNESS ESTIMATION

Because it is possible for the mutation rate to evolve, we looked

for a phenotypic signature of a change in mutation rate, by esti-

mating the frequency of Rifampicin resistance with a fluctuation

assay. We tested 34 lines, these comprised the 23 lines used as

the ancestors of the recovery experiment and 11 lines after the

recovery experiment (Fig. S1).

The fitness assays of the MA lines are described in Trindade

et al. (2010). Fitness of the recovery lines (after readaptation for

120 and 240 generations) was assayed in the same way as the MA

lines. Briefly, competitor and reference strains were mixed in a

proportion of 1:1 and used to seed 10 mL of LB. The competition

tube was then incubated for 24 h at 37◦C with agitation. Appropri-

ate dilutions, of both initial and final bacterial populations, were

plated in TA to access the ratio between competitor and reference

strains.

Selective coefficients were estimated as the difference in

growth between the test strain and the reference strain, normalized

by the number of generations elapsed for the reference strain

(Chevin 2011). For each competition replicate, the difference in

growth between the test strain (a) and the reference strain (b) is

given by:

�rab = ln(Nfa/Nia) − ln(Nfb/Nib),

where Nfa and Nfb are the number of test and reference bacteria,

respectively, after the competition, and Nia and Nib are the number

of test and reference bacteria, respectively, before the competi-

tion. The relative growth rate estimated this way refers to a 24-h

growth cycle and must be normalized by the generation time of the

reference to be comparable with the population genetics model

we use. The number of generations (G) elapsed for the reference

was estimated for each competition replicate, assuming no death,

as follows:

G= log2(Nfb/Nib).

Fitness of strain a relative to the reference b (Wa) is then

given by:

Wa = 1 + Sab, where Sab = �rab/G.

The fitness of the ancestor of the MA was measured in the

same way and all fitness values were then standardized such that

the fitness of this ancestor was 1. We compared two models for the

relation between the decrease in fitness with increasing number

of bottlenecks: a linear and a quadratic model, using the func-

tion LinearModelFit in Mathematica 8.0 (Wolfram Research, Inc.

2010).

SIMULATIONS OF THE EVOLUTION PROCESS UNDER

FGM

To simulate data sets under FGM that are directly comparable

with our observed empirical data, we performed individual-based

Monte Carlo simulations.

As the MA experiment involves bottlenecks of one cell every

day, in the simulations of MA lines we assumed discrete gen-

erations and a demography that reflects this periodic fluctuation

in population size. Accordingly, we crashed the populations to a

size N = 1, every 23 generations. After these crashes the popu-

lation expanded, doubling in size every generation, until the next
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crash occurred. Therefore, the harmonic mean of the population

size was 23, which was taken as the effective population size Ne

(Wahl et al. 2002).

In our MA experiment, the founding clone was highly fit, so

we expect the vast majority of new mutations to be deleterious. We

started the simulations of the MA experiment with a unique geno-

type residing at the phenotypic multivariate optimum, i.e. with a

maximum fitness of 1. Given these conditions we simulated the

mutation-selection-drift process under FGM. FGM assumes that

n phenotypic traits underlie fitness differences among individuals

and each trait is under stabilizing (optimizing) selection. With-

out loss of generality we assumed that the optimum phenotypic

value was zero for each trait. A special case of FGM was assumed

by considering a Gaussian fitness landscape, whereby each in-

dividual is represented by a vector of n phenotypic trait values

x = (x1, x2, . . . , xn) and has fitness W = exp(−∑
i x2

i ). Muta-

tions are fully pleiotropic and occur each generation. The FGM

we considered here is an isotropic version of the ones in Martin

and Lenormand (2006) and Waxman and Welch (2005).

We assumed that the number of new mutations in each in-

dividual was Poisson distributed with rate U per individual per

generation. In addition, each mutation is fully pleiotropic and

changes all traits (xi) and thus ultimately fitness. Each mutation

therefore causes a change in each value of xi, which is normally

distributed with mean 0 and variance σ2. Individuals are then se-

lected to the next generation according to their fitness. In this

model, the mean fitness effect of a mutation “hitting” a geno-

type initially residing at the multivariate phenotypic optimum is

E(s) = −nσ2.

For the recovery experiment, we assumed a constant effec-

tive population size, and three different initial starting fitnesses,

covering the range of variation observed in the experiment. Ne

was approximated by the harmonic mean of the population size

N in the actual recovery experiment. We then let the population

evolve for 240 generations and recorded the values of fitness in-

crease after 120 and 240 generations, for each starting fitness

(Fig. S2). The slope of a linear regression of the fitness change, at

each of these time points, as a function of initial fitness was then

measured. As these simulations, involving a large Ne, are com-

putationally very intensive, we did not follow all of the possible

starting fitnesses considered in the actual experiment.

For the simulations in Figure 3, the same model was

used, except only one mutation per run was recorded. The

probability of each mutation surviving drift was estimated by

(1 − e−2s)/(1 − e−2Nes) (Kimura 1968). The Ne used was 23

for the MA simulations (Fig. 3) and 105 for the fitness recovery

simulations.

Finally, under the Gaussian FGM assumed here, the increase

in fitness when close to the optimum is expected to be linear with

initial fitness (Martin and Lenormand 2008), and we have checked

this assumption with a small subset of simulations performed with

many starting fitnesses (not shown).

ESTIMATION OF PARAMETERS BY APPROXIMATE

BAYESIAN COMPUTATION (ABC)

Our goal was to estimate jointly the genomic mutation rate for

fitness (U) and the parameters underlying FGM (i.e., n the number

of independent phenotypic traits under stabilizing selection and σ

the scaled mean phenotypic effect of a mutation) from empirical

data (collectively termed D). Hereafter we “collect” the three

parameters in a vector θ = (U, n , σ).

Empirical data available to us were of two distinct kinds:

fitness measurement of MA lines at regular time intervals and

fitness measurement during the fitness recovery experiment.

To estimate θ, we note that the likelihood of our data D cannot

be obtained in a closed form under FGM given the complications

introduced jointly by demographics and selection. However, this

likelihood can be defined implicitly because we can simulate data

sets fully comparable to D under FGM. We therefore used an

approximate Bayesian framework where the likelihood of the full

data D was approximated by replacing the likelihood of D by the

likelihood of a vector of summary statistics, SD, that summarizes

our data D. Note that SD comprises 39 statistics summarizing

both the MA experiment and the fitness recovery experiment

(Table 1).

Rejection sampling was then used to approximate the pos-

terior distribution of θ given SD. To conduct rejection sampling,

we simulated M “composite” data sets comprising data from both

MA and fitness recovery lines under FGM. Each simulation gen-

erating an MA + recovery data set was “seeded” by first drawing

parameters from a joint prior distribution π(θ).

We chose the following priors for our parameters: log10(U)

is uniform in [−3.5, −0–5] and encompasses very broadly the

range of genome wide mutation rates previously reported in E.

coli; we chose a very flat exponential prior for σ (Fig. 4); and a

uniform discrete distribution on [1, 30] that covers broadly the

range of previously estimated values for this parameter (Martin

and Lenormand 2006; Bataillon et al. 2011; Sousa et al. 2012;

Trindade et al. 2012).

We implemented rejection sampling by retaining the fraction

tol of parameters that seeded simulations that yielded the set of

summary statistics closest to the vector of observed summary

statistics SD. In practice, we used M = 1,500,000 simulations

and conducted rejection sampling by keeping the closest 1500

simulations (tol = 0.001). The set of parameters yielding these

1500 accepted data sets was used to approximate �∗(θ) the joint

posterior distribution of the parameters.

We used a Monte Carlo approach to choose a tolerance level

tol and study the statistical performance of our ABC estimators

by rejection sampling. One data set was drawn at random
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Table 1. Overview of the set of summary statistics used for ABC

inference.

Summary statistic Observed Experiment

<0.771 0 Bot 10
[0.77 – 0.81[ 0
[0.81 – 0.85[ 1
[0.85 – 0.89[ 1
[0.89 – 0.93[ 3
[0.93 – 0.97[ 20
>0.97 25
<0.77 0 Bot 20
[0.77 – 0.81[ 0
[0.81 – 0.85[ 4
[0.85 – 0.89[ 2
[0.89 – 0.93[ 12
[0.93 – 0.97[ 24
>0.97 8
<0.77 0 Bot 30
[0.77 – 0.81[ 0
[0.81 – 0.85[ 2
[0.85 – 0.89[ 10
[0.89 – 0.93[ 10
[0.93 – 0.97[ 21
>0.97 7
<0.77 0 Bot 40
[0.77 – 0.81[ 2
[0.81 – 0.85[ 5
[0.85 – 0.89[ 8
[0.89 – 0.93[ 16
[0.93 – 0.97[ 13
>0.97 6
<0.77 0 Bot 50
[0.77 – 0.81[ 4
[0.81 – 0.85[ 10
[0.85 – 0.89[ 9
[0.89 – 0.93[ 15
[0.93 – 0.97[ 11
>0.97 1
Slope 1202 − 0.7986 Fitness recovery

experiment
Intercept 120 0.7585
Slope 240 − 0.8873
Intercept 240 0.8647

1Observed distribution fitness values in the mutation accumulation exper-

iment. Distributions at each time point (Bottleneck 10, 20, 30, 40, 50) are

summarized using counts in seven classes of fitness values (all counts sum

to 50 at each time point).
2The observed slope and intercept of the regression line describing the

fitness recovery (after 120 or 240 generations) as a function of initial fitness.

from a pool of 106 simulated data sets, rejection sampling was

then performed using three tolerance levels on the remaining

data sets to obtain ABC parameter estimates. Prediction error

was calculated by adding mean (squared) bias and variance as

MSE = ∑
i (θabc

i − θP
i )2/Var(θP), where θabc

i (i = 1, . . . , 50) are

the ABC estimates and θP
i are the true values of the parameters

use for simulating data.

Preliminary results based on 50 simulated data sets exploring

three different tolerance levels (tol = 0.1%, 1%, 10%) suggested

that the lowest tolerance (tol = 0.1%) yielded the best predic-

tion errors for the ABC estimates (not shown). We cannot ex-

clude that ABC estimators with even lower MSE can be devised

by using alternative weighting and/or sets of summary statistics

but this is beyond the scope of the present study. Moreover, we

showed via simulation that at tol = 0.1% and with the set of sum-

mary statistics we used, ABC estimates do not err systematically

(Fig. S3).

All rejection sampling, posterior approximations and Monte

Carlo simulations for evaluating the performance of the ABC

estimator were conducted with the statistical software R and using

the package abc (Csilléry et al. 2012).

Results
INITIAL FITNESS AS A PREDICTOR OF RATES

OF FITNESS CHANGE THROUGH TIME

Initial fitness predicts the decrease in fitness in
populations experiencing intense genetic drift
We reanalyzed the data of an MA experiment in E. coli previ-

ously reported (Trindade et al. 2010) to test the extent to which

initial fitness of genotypes can influence subsequent changes in

fitness due to MA. In this experiment, 50 lines of a mutator strain

were propagated by daily transfer. Each transfer consisted of a

bottleneck down to a single cell (Methods in Trindade et al. 2010)

and mean fitness was measured every 10 bottlenecks, that is,

approximately every 230 generations. During the course of this

experiment, mean fitness was reduced by 10% on average, and

some of the lines reached a fitness level as low as 0.78 (relative

to the ancestor). The decline in mean fitness and increase in vari-

ance between MA lines through time allowed the estimation of

the deleterious mutation rate (Ud) and the mean effect of dele-

terious mutations (E(sd)), using a variant of the Bateman–Mukai

(BM) method, which accounts for the effects of natural selection

between bottlenecks (Gordo and Dionisio 2005; Trindade et al.

2010). The inferred mutation rate was U = 0.005 deleterious

mutations per genome per generation with a mean effect of

E(sd) = −0.03. This inference assumes that all mutations are

deleterious with identical fitness effects, and that no epistasis oc-

curs. There are two ways in which we can look for evidence of

epistasis in an MA experiment. One method that has been widely

used is to examine the decrease in fitness, averaged over all MA

lines, through time. If there is no directional epistasis (<ε> = 0),

then the decrease in the logarithm of fitness with time is expected

to be linear. Deviations from linearity indicate some level of mean
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Figure 1. Fitness change as a function of initial fitness during the mutation accumulation (MA). The fitness change of each line over 10

bottlenecks (or 230 generations) is shown as a function of that line’s fitness before that interval: the difference between the 10th and

the 20th bottlenecks is shown as a function of fitness at the 10th bottleneck, the difference between the 20th and the 30th is shown as a

function of fitness at the 20th, and so on. Each MA line is represented four times, once for each interval. The experimental data (shown

as dots) is taken from Trindade et al. (2010). Fifty simulations of data sets under Fisher’s geometrical model (FGM; shown as crosses) were

performed as described in the text, using as parameters n = 9, U = 0.01, and σ = 0.034. In both cases, a significant correlation between

the change in fitness and initial fitness is obtained. For the experimental data, the slope of the linear regression is −0.32 with CI (−0.43

to −0.21) and for the data under FGM the slope is −0.15 with the 95% confidence interval (−0.24 to −0.05).

epistasis, either positive or negative, depending on the curvature

found (De Visser et al. 2011). For this MA, the regression co-

efficient of the logarithm of fitness with time was 0.98 (Akaike

information Criterion [AIC] of −36.3). A quadratic model applied

to this data did not improve the fit (AIC = −36.5). Hence, using

this method, we have no evidence that the mean epistatic effect

was different from zero. However, we note that this approach is

merely regressing the mean fitness of all lines. Independent lines

accumulated different numbers of mutations along time, hence the

mean may not be very sensitive. As a complement, we examined

the change in fitness after a period of 10 bottlenecks as a function

of the initial fitness before these 10 bottlenecks. If epistatic inter-

actions do not exist, no correlation between the fitness of a line

and its decrease in fitness in subsequent bottlenecks is to be ex-

pected. Contrary to this expectation, we observed that lines with a

higher fitness were more likely to show a decrease in fitness than

lines with lower initial fitness. Figure 1 shows that the change

in fitness and initial fitness are correlated (Spearman correlation

coefficient of −0.34, P < 10−7). We conclude that the change

in fitness depends strongly on the initial fitness. This points to

the occurrence of widespread epistasis among spontaneous mu-

tations affecting fitness in E. coli. These findings prompted us to

reanalyze the data under a model that explicitly accounts for the

possibility of widespread epistasis among mutations thus yielding

novel estimates of the rate and effects of mutations in this MA

experiment.

Initial fitness predicts the increase in fitness in large
populations
Fitness changes observed in the course of MA experiments are

generally negative (see Halligan and Keightley 2009 for a review).

We sought to perform a recovery experiment where the change

in fitness is expected to be positive. We also wanted to test if the

rate of fitness increase depends on the genetic background. We

did so by using a subset consisting of 23 MA strains covering a

wide range of relative fitness (from 0.77 to 0.99) to start our fitness

recovery experiment. Among these strains, 16 were obtained from

the 50th bottleneck, 6 were from the 20th bottleneck, and the 23rd

was obtained by propagating one of the MA lines for another 20

bottlenecks.

We adapted these clones to the medium where the com-

petitions were performed, during 240 generations, under serial

dilution thereby imposing an effective population size (Ne) of

3 × 105. We then measured fitness in the same conditions used

for measuring fitness of the MA lines. Figure 2 shows the change

in mean population fitness as a function of the fitness of the

founding clone. Clearly, the rate of adaptation depends on the

genetic background (Spearman correlation coefficient of −0.76,

P < 10−5). In fact, the lower the initial fitness of the clone, the

higher its fitness increase. This relationship was observed for the

clones sampled from the MA at the 20th and at the 50th bottleneck,

as shown in Figure S4. In this experiment, 63% of the variance

in fitness could be predicted by the initial fitness, and only two
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Figure 2. Fitness change as a function of the initial fitness. Fitness change after 12 bottlenecks (shown as dots) as a function of the initial

fitness. Clones with different starting fitness were adapted for 240 generations under a large effective population size (see Methods for

details). The results of Fisher’s geometrical model (FGM) simulations with parameters values set to n = 9, U = 0.01, and σ = 0.034 are

shown as crosses. In both cases, a significant correlation between the change in fitness and initial fitness is obtained. For the experimental

data, the slope of the linear regression is −0.77 with CI (−0.97 to −0.57) and for the data under FGM the slope is −0.84 with the 95%

confidence interval (−0.86, −0.82).

lines exhibited no increase in fitness during the 240 generations

(Fig. 2).

Although not impossible, back mutation is an unlikely ex-

planation for these results, given the estimates of point mutation

rates in E. coli (Drake 1991; Wielgoss et al. 2011). Compensatory

mutations happening at other sites throughout the genome are,

however, expected to be far more common (Poon et al. 2005), al-

though studies addressing their rate and distribution remain rare,

with most studies examining compensation in the context of an-

tibiotic resistance (Schrag et al. 1997; Levin et al. 2000; Sousa

et al. 2012).

FISHER GEOMETRICAL MODEL PREDICTS THE

PATTERNS OBSERVED IN THE MA AND IN THE

RECOVERY EXPERIMENT

The patterns of fitness change expected under FGM
The data of both the MA and the recovery experiment show a clear

dependence of fitness change on initial fitness (W0) as illustrated

in Figures 1 and 2. This pattern has been very rarely reported

in previous MA experiments (see Bataillon 2000; Halligan and

Keightley 2009 for a review). We note however that under FGM,

a fitness landscape model that has received a lot of theoretical

attention, the distribution of effects of incoming mutations on a

genotype, changes drastically as a function of its current fitness

relative to the optimum. In particular, under FGM, we expect

that in well-adapted populations new mutations will be mostly

deleterious, whereas in poorly adapted populations a sizeable

fraction of the mutations will be beneficial (compensatory).

We compared the predictions of FGM to the experimental ob-

servations, taking into account the demographic parameters used.

Namely, we modeled the extreme fluctuations in population size in

the MA, and allowed selection to occur during the growth of a line

before it is bottlenecked (see Methods). When simulating FGM

under these conditions, we observed than even with the drastic

bottleneck procedure, the distribution of mutations accumulated

is skewed by selection for beneficial and small effect deleterious

mutations (Fig. 3A and B). Incorporating selection in the MA

lines, FGM could reproduce the patterns seen in the experimental

data, both in the MA (Fig. 1) and fitness recovery (Fig. 2). To

evaluate the importance of selection occurring during the MA, we

simulated MA data sets using FGM with the parameters that best

fit the data (see the next section for the ABC approach we used

to estimate them). In these simulations, mutations drawn from

FGM accumulated with or without selection and we calculated

the slopes of the linear regression of the change in fitness with

starting fitness. Without selection the distribution of slopes was

centered on zero with a small range of negative or positive values,

whereas for MA data simulated with selection an average negative

slope was observed (Fig. 3C).

The linear relation of change in fitness with starting fitness

appears to capture well the pattern of the recovery experiment.

Under FGM, and assuming a Gaussian fitness landscape, Martin

and Lenormand (2008) predicted a linear relation between the

distance to the peak (s0) and the mean effect of beneficial mu-

tations fixed during the first step of adaptation (i.e., E(sb|fix) =
4s0/(4 + n)). This prediction is valid when the starting genotype is
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Figure 3. Distribution of fitness effects of mutations before and after selection. (A) The distribution of spontaneous mutations was

generated by 1000 Monte Carlo simulations of Fisher’s geometrical model (FGM) as described in the text, using as parameters n = 9, U =
0.01, and σ = 0.034. The distribution of mutations that escape genetic drift was estimated as the fraction of spontaneous mutations that

escape drift in a population of effective size of 23 individuals, corresponding to the population expansion occurring in the MA (Gordo

and Dionisio 2005). (B) Mean of the distributions in (A), considering different starting fitnesses and fraction of beneficial and deleterious

mutations. (C) Distribution of slopes of the linear regression of change in fitness with initial fitness under FGM with no selection (black

bars, mean = −0.003) and with selection (gray bars, mean = −0.015) in the MA lines. The dashed line shows the location of slope 0.

Parameter values used are the same as in (A).

close to the optimum and ignoring clonal interference. If we take

the data for the clones with highest starting fitness (Wi > 0.85),

those that start closer to the optimum and those for which clonal

interference is least expected to occur, and if we further assume

that the fitness increase observed (DW) results from the first step

of adaptation, we can calculate the slope of the linear regression

of DW on s0 ∼ 1 − Wi, and get a crude estimate of n. Under these

assumptions n is estimated to be around 3.

Estimating parameters of FGM from experimental data
Given the capacity of FGM to reproduce the pattern present in the

data (Figs. 1, 2), we next sought to estimate jointly the parameters

of this model (n and σ, see Methods for details) as well as the

genomic mutation rate (U) from our experimental data. To do so,

we used an ABC framework where we combined empirical data

from both experiments using several summary statistics (Table 1).

These statistics describe the fitness distribution along bottlenecks

of the MA experiment and the fitness change in two time points of

the recovery experiment (see Methods). We then confronted these

empirically observed summary statistics with those predicted un-

der FGM given a value of U, n, and σ. ABC approaches have been

very popular when analyzing patterns of nucleotide diversity un-

der various demographic models (Robert et al. 2011). However, to

our knowledge, they have never been used systematically to ana-

lyze these types of experiments. Previous studies relied on Monte

Carlo simulations of data sets which were used to “fit” data from

MA experiments with EMS mutagenesis (Davies et al. 1999) or

to estimate fitness effect of two interfering beneficial mutations

from patterns of adaptation over time in experimental populations

(Hegreness 2006).

Here, adopting an ABC approach allowed us to obtain ap-

proximate posterior distributions for the genome-wide mutation

rate and parameters of the FGM model in a case where an explicit

likelihood function cannot be obtained in a closed form for each

experiment due to the need to consider the joint effect of rather

complicated demographics and selection. Our approach also al-

lowed us to integrate data from both experiments (but see also

Fig. S5 for posterior distribution of the parameters inferred sepa-

rately from each experiment). We first evaluated the performance

of our ABC estimator when considering data generated under the

FGM model itself. Using sets of simulated data sets under FGM

that mimic our data, we show that our ABC framework yields

accurate estimates of genomic mutation rates and the FGM land-

scape parameters (Fig. S3).

Figure 4 shows the approximate posterior distributions ob-

tained by our ABC method. Our estimates (median and 95%
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Figure 4. Approximate posterior densities for parameters of Fisher’s geometrical model. All posterior densities are approximated using

a set 1000 accepted simulations (tolerance rate of 0.001, see Methods for details). Prior densities are in orange. Marginal posteriors

are in blue and regions of highest posterior densities are in gray. (A) Prior and approximate marginal posterior for the genome wide

mutation rate for fitness (U). Note the log10 scale. (B) Prior and approximate marginal posterior for the scaled phenotypic effect of

mutations, σ. (C) Prior and approximate posterior probability distributions for the number of dimensions, n. Note that these are discrete

probability distributions. (D) Bivariate approximate posterior densities for U and σ. A circle depicts the location of the region with highest

posterior density. The regions comprising 0.5, 0.9, 0.95, and 0.99 of the probability mass of the posterior density are depicted using

gray shadings. (E) Bivariate approximate posterior densities for U and n. Legend as in D. Note that for graphical convenience the joint

posterior distribution over n, and U was smoothed by “jittering” the values of n to make them continuous. (F) Bivariate approximate

posterior densities for σ and n. Legend as in D. Note that for graphical convenience the joint posterior distribution over n, and σ was

smoothed by jittering the values of n to make them apparently continuous.
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central posterior intervals) are U= 0.01[0.003 − 0.19],

n = 9[4 − 20], and σ = 0.034[0.01, 0.065]. The latter param-

eter estimate imply that the mean effect of single mutations on

fitness is E(s) = −nσ2 = −9 × 0.0342 = −0.01. This estimate

of U is close to the one obtained using the BM method, and

note that the posterior suggest substantial sampling variance. The

difficulties in obtaining accurate estimates of U are well known

for different methods (Keightley 2004). Our new estimate of the

mean effect of mutations on fitness is smaller than previous BM

estimate. This is not surprising given that it is well known that the

BM method overestimates the mean selection coefficient of mu-

tations when the variance of these effects is significant (Keightley

and Eyre-Walker 1999; Halligan and Keightley 2009; Trindade

et al. 2010).

Discussion
We reanalyzed jointly a traditional MA experiment and a fitness

recovery experiment using genotypes resulting from the MA. The

patterns of fitness degeneration in MA and subsequent recovery

are not new and have been reported in other organisms (Estes and

Lynch 2003). What is new here is the fact that our analysis of

the data also provides strong evidence for the pervasive role of

epistasis among mutations underlying fitness and lends support

to the idea that fitness effects of mutations vary substantially, that

is the variance in mutational fitness effects is large.

Our argument relies first on the observation that patterns of

temporal fitness change in both experiments are strongly depen-

dent on initial fitness levels. We claim that this qualitative pattern

of strong genetic background dependence in the data can hardly

be explained without invoking the existence of epistasis. A plau-

sible alternative explanation to the trend we observe in Figure 1

could be that the MA lines mutation rate went down during the

experiment. For example, if the strains with lower fitness acquired

mutations that compensated their mutator phenotype, this might

explain their slower fitness decrease (but not the increases that

are obvious in Fig. 2). To investigate this possibility, we used a

fluctuation assay for rifampicin resistance (rifR) as a crude proxy

for measuring genome-wide mutation rates in a subset of 34 lines.

Interestingly, the set of lines assayed exhibit overall frequency of

rifR roughly six times lower than the frequency of the ancestral,

and in some lines the decrease in frequency is more than 100-fold

(Fig. S1). Although our measurements are not precise enough to

compare with confidence a particular line with the ancestor, the

data as a whole reject strongly the hypothesis that mutation rates

have not evolved (only four lines of 34 we assayed have estimated

rifR higher than the ancestor, binomial test, P < 0.00001). Note

also that our data—although preliminary—suggest no differences

between MA lines and recovery lines (compare black and blue

points in Fig. S1), suggesting that mutation rate evolved primar-

ily during the MA experiment. We then examined whether there

was any correlation between mutation rate estimates in the subset

of MA lines and the change in fitness in the 10 bottlenecks before

the estimate. We observed no correlation (P > 0.8). Furthermore,

no correlation was found when considering the mutation rate after

the recovery with the fitness increase over 240 generations (P >

0.2). We conclude that a change in mutation rate likely occurred

in several lines but contributed little to the pattern observed in

Figure 1.

Second, we note that the fitness effects of new mutations

theoretically expected under FGM exhibit the salient features we

empirically observed (Figs. 1, 2). This motivates the use of FGM

as a plausible framework for model-based statistical inference in

experimental evolution. FGM has been recently used to derive

quantitative predictions for the marginal distribution of fitness

effects of single mutations and/or the expected patterns of epis-

tasis among pairs of mutations (Martin et al. 2007; Martin and

Lenormand 2008; Bataillon et al. 2011; Rokyta et al 2011). These

predictions have been confronted with a few data sets. In par-

ticular, the distribution of pairwise epistasis between deleterious

mutations, in E. coli, has been found to follow a normal distri-

bution with mean zero, following the expectation of this simple

model. FGM currently stands as an attractive alternative to statis-

tical heuristics based on extreme value theory (Rokyta et al. 2008;

Bataillon et al. 2011). Here we go one step further and demon-

strate that parameters underlying FGM can also be estimated

jointly with genome wide mutation rate from data on temporal

fitness changes in either MA or adaptation experiments.

Most of the adaptation detected in the recovery lines is likely

due to compensatory mutations. Compensatory mutations are

epistatic by definition: they are only beneficial in a specific back-

ground as they allow a mutant strain to revert to the ancestral

phenotype but do not occur at the same nucleotide (Nagaev et al.

2001). They contribute to adaptation by increasing the number

of possible beneficial mutations as fitness decreases. In addition

to strictly compensatory mutations, it is possible that the ances-

tral background was not fully adapted to the medium where the

experiment took place. In that case, there can also be new mu-

tations, which are beneficial irrespective of the background. It is

possible that both changes in the beneficial mutation rate (Ub)

and in the mean effect of beneficial mutations (sb) are contribut-

ing to the pattern observed in Figure 2. As was the case of the

MA, our readaptation experiment supports the view that there is

widespread epistasis between spontaneous mutations in E. coli.

Empirical evidence that the distribution of fitness effects of com-

pensatory mutations depends on the genetic background has been

obtained in several studies examining the cost of antibiotic resis-

tance (MacLean et al. 2010; Gordo et al. 2011). Some of us have

recently used FGM in this context and have found that it could

provide an accurate quantitative description of experimental data
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on the effects of these mutations (Sousa et al. 2012; Trindade

et al. 2012). However, FGM has not been used to jointly study

adaptation of different genotypes, which differ in mutations scat-

tered throughout the whole genome. This is an important test,

because it contributes to the establishment of general patterns.

Using FGM, one can derive how the rate and effects of both

beneficial and deleterious mutations change along the evolution-

ary process, that is, as we walk along the single-peaked fitness

landscape parameterized by the experimental data. Figure 3 il-

lustrates our quantitative predictions, which can be challenged

further by performing jointly several MA experiments and many

replicate adaptation experiments, starting from distinct initial fi-

nesses (see for instance Gifford et al. 2011), a task that is beyond

the scope of this article. One salient qualitative feature of the dis-

tribution of mutations under FGM is that although the mean effect

does not depend on the genetic background, the variance does. In

particular, as fitness goes down, the variance of the distribution

of new mutations increases, with more strongly deleterious and

strongly beneficial mutations. Because of that, the mean effect of

mutations that survive genetic drift is predicted to depend strongly

on initial fitness (Fig. 3).

Our estimate of the genomic mutation rate toward fitness

altering mutations in a mutS− E. coli is 0.01 per generation. Con-

sidering that this mutator has a 60-fold increase in mutation rate

over the wild type, this estimate is similar to previous ones (Kibota

and Lynch 1996; Trindade et al. 2010) but note that the posterior

interval we report U[0.003 − 0.19] is very broad.

Our estimate of the mean selection coefficient of a mutation,

E(s) = −0.01, lies below our previous one (Trindade et al. 2010).

This is not surprising because our estimate is based on a model

that intrinsically assumes a distribution of fitness effects with a

variance larger than zero and explicitly accounts for compensatory

mutations. This new estimate is close to that of Kibota and Lynch

(1996).

Finally, we have estimated a relatively small number of traits

(n = 9) under natural selection, which implies a low level of

phenotypic complexity in this environment. This estimate is close

to comparable measures of phenotypic complexity reported in

other bacterial experiments (Bataillon et al. 2011; Trindade et al.

2012) but clearly more work is needed in that area and having a

single common model to estimate n would help comparisons.

We have emphasized that FGM is an attractive model that

naturally incorporates a number of biological important compo-

nents: epistasis, various degrees of phenotypic complexity un-

derlying fitness, pleiotropic effects of mutations, etc. We have

also shown that FGM can account for patterns of fitness decline

and recovery observed in empirical data. That being said, a num-

ber of alternative fitness models exists. One natural extension of

our work is to consider a broader range of FGM-based models

featuring different forms of pleiotropy (Lourenço et al. 2011),

different patterns of epistasis (Gros et al. 2009), and/or different

types of fixed, moving or “shaking” fitness optima (Kopp and

Hermisson 2009; Gordo and Campos 2012). Another avenue is

to examine radically different fitness landscape models, such as

the mutational landscape model (Gillespie JH 1984), seascape

model (Mustonen and Lässig 2009), or the recently proposed

stickbreaking model (Nagel et al. 2012) and put these in compe-

tition with the various versions of FGM for explaining patterns of

adaptation. We have shown that our ABC approach, although it

is rather brute-force and relies on a large number of simulations,

yields fairly accurate parameter estimates of the classical FGM

(Fig. S3) and this framework can be extended to encompass a

variety of models. Although model selection under ABC requires

caution (see Robert et al. 2011), the methodology is naturally

prone toward such an analysis. Our approach can also be a fruit-

ful starting point to devise novel frameworks for the analysis of

experimental evolution empirical data sets that borrow strength

from both temporal patterns of fitness changes and snapshots of

the genome at various time points of the experiments.
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Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Frequency of bacteria resistant to of rifampicin (100 μg/mL) in mutation accumulation and recovery lines.

Figure S2. Change in fitness after 120 (red symbols) and 240 generations of adaptation (black symbols).

Figure S3. Distribution of ABC estimates for data simulated under FGM and known genomic mutation rates.

Figure S4. Fitness changes as a function of initial fitness for two points in the mutation accumulation experiment.

Figure S5. Posterior distributions obtained by fitting separately mutation accumulation and fitness recovery data sets.
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