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Abstract
A highly-conserved binding pocket on HIVgp41 is an important target for development of anti-
viral inhibitors. Holden et al. (Bioorg. Med. Chem. Lett. 2012) recently reported 7 experimentally-
verified leads identified through a computational screen to the gp41 pocket in conjunction with a
new DOCK scoring method (termed FPS scoring) developed in our laboratory. The method
employs molecular footprints based on per-residue van der Waals interactions, electrostatic
interactions, or the sum. In this work, we critically examine the gp41 screening results, prioritized
using different scoring methods, in terms of two main criteria: (1) ligand pose properties which
include footprint and energy score decompositions, MW, number of rotatable bonds, ligand
efficiency, formal charge, and volume overlap, and (2) ligand pose stability which includes
footprint stability (changes in footprint overlap) and rmsd stability (changes in geometry). Relative
to standard DOCK scoring, pose property analyses demonstrate how FPS scoring can be used to
identify ligands that mimic a known reference (derived here from the native gp41 substrate), while
pose stability analyses demonstrate how FPS scoring can be used to enrich for compounds with
greater overall stability during molecular dynamics (MD) simulations. Compellingly, of the 115
compounds tested experimentally, the 7 active compounds, as a group, more closely mimic the
footprints made by the reference and show greater MD stability compared to the inactive group.
Extensive studies using 116 protein-ligand complexes as controls reveal that ligands in their
crystallographic binding pose also maintain higher FPS scores and smaller rmsds than do
accompanying decoys, confirming that native poses are indeed “stable” under the same conditions
and that monitoring FPS variability during compound prioritization is likely to be beneficial.
Overall, the results suggest the new scoring method will complement current virtual screening
approaches for both the identification (FPS-ranking) and prioritization (FPS-stability) of target-
compatible molecules in a quantitative and logical way.
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1. Introduction
The HIV glycoprotein-41 (gp41) represents an important and validated drug target for
agents which inhibit key viral-host membrane fusion events required for infection and
replication.1 Development of the first FDA-approved inhibitor in the membrane fusion class,
a 36 a.a. C-helix peptide termed T20 (enfuvirtide, FUZEON),2 represents an important
milestone in the treatment of HIV/AIDS. However, as a peptide-based drug, T20 is cost
prohibitive (ca. USD $25,000 per person per year) for the majority of persons infected with
HIV and it must be intravenously delivered. T20 efficacy is also negatively affected by gp41
resistance mutations3–8 that arise from continued use. Given these drawbacks, efforts to
identify alternative inhibitors including modified C-peptides,9–11 D-peptides,12,13 and small
organic molecules14–18 have been reported, using a variety of experimental and
computational approaches. In particular, there has been an effort to develop compounds
which target a highly-conserved hydrophobic pocket region on gp41 not exploited by T20,
as described by Chan et al,19 which in principle could lead to drugs less affected by
mutation. Although reported small molecule leads14–18 are presumed to interact within the
gp41 pocket, concrete structural information on binding is lacking. Currently available
crystal structures of gp41 have been limited to complexes containing C- or D-helix peptides.
The fact that the gp41 pocket is highly solvent exposed presents additional challenges.

In terms of lead discovery, a practical dilemma for the computational chemist/biologist in
both industry and academia is efficient prioritization and selection of virtual screening
results derived from docking large ligand databases to the therapeutic target. The procedure
requires careful application of a single or multiple scoring functions, used separately or in
tandem, to filter the results down to manageably-sized sets for further study with the intent
of identifying the most promising leads. Common methods for prioritization include use of
physics-based, empirical, or pharmacophore scoring functions, among others, to rank-order
the predicted ligand binding geometries (poses) for which some top-scoring fraction (i.e.
50–100 compounds) will be experimentally tested for activity. The well-known program
DOCK20–22 employs a simple two-term scoring function consisting of intermolecular van
der Waals and electrostatic interactions. Recently, our group developed a new method for
DOCK termed footprint similarity (FPS) scoring23,24 which can be described as an energy-
based pharmacophore-like approach. Defined as the per-residue breakdown of van der
Waals and electrostatic interactions for a ligand with its target, footprints encode which
groups of residues are most important for binding. Importantly, the overlap between two
footprint patterns can be quantified using metrics such as Euclidian distance (d) or Pearson
correlation (r, r2) which enables large databases to be rank-ordered in terms of similarity to a
known reference. The FPS scoring method was developed through extensive validation and
testing,23,24 using multiple experimental datasets, with regards to three key properties: pose
reproduction, crossdocking, and enrichment. Subsequent application of the method led to the
successful identification of experimentally verified drug-leads targeting both gp4118,25 and
fatty acid binding protein.26

Our development of FPS scoring was motivated by the need to readily identify small organic
molecules capable of mimicking specific footprint patterns (Figure 1b) made by key C-helix
sidechains on gp41 that interact within the conserved hydrophobic pocket region formed at
the interface of two N-helices (Figure 1a). We hypothesized that small molecules with
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sufficient footprint overlap (i.e. favorable FPS score) to key parts of native C-helix would
also be capable of binding to the pocket and thereby inhibit viral replication. The
identification of small molecules capable of mimicking specific protein-protein interactions
has been described by Fry27,28 as molecular mimicry. FPS scoring provides a quantitative
and logical way to computationally approach the problem. In general, compounds which
interact with a binding environment in a similar manner as known drugs, substrates,
cofactors, or as in the present case key side chains along a native protein-protein interface,
are more likely to be inhibitors than molecules selected by other methods or randomly.
Related approaches for scoring and pose selection have been reported by Deng et al29,30

using binary interaction fingerprints and Pfeffer et al31 using per-atom decomposition. As a
visual example of bad vs good footprint overlap relative to a reference, Figure 2 shows two
results from a virtual screen with, in this case, the overall worst (0.135 r) and best (1.975 r)
FPSVDW+ES scores among the top 100,000/500,000 compounds docked to the gp41 target.

The primary goal of this study is to perform a critical retrospective analysis of the large-
scale virtual screen to gp41 reported by Holden et al18 in which ca. 500,000 commercially
available compounds were docked to the hydrophobic pocket, 115 were purchased, and 7
were identified as having favorable properties in three experimental assays (defined here as
actives). Specifically, we compare results obtained using the standard DOCK energy score
(DCEVDW+ES) with three footprint variants based on van der Waals interactions (FPSVDW),
electrostatic interactions (FPSES), or the combination (FPSVDW+ES). The specific objectives
are to quantify and compare how use of the new FPS method differs from the standard
DOCK method in terms of two main criteria: (1) ligand pose properties and (2) ligand pose
stability. Pose properties compared include DOCK and FPS score distributions, molecular
weight, number of rotatable bonds, ligand efficiency, ligand formal charge, volume overlap,
and footprint comparisons between active and inactive compounds which were tested
experimentally. Pose stability comparisons are based on definitions which enumerate how a
ligand changes relative to the initial docked pose in terms of footprint-stability (changes in
footprint overlap) during a molecular dynamics (MD) simulation of the complex as well as
rmsd-stability (changes in geometry). To verify that pose stability is an inherent property of
experimentally-observed protein-ligand complexes under the same conditions, and therefore
desirable, companion MD validation studies using crystallographic controls were also
performed. Depending on the application, this computational approach that enables
identification of favorably-scored ligands with high footprint overlap to a known reference,
and which remain energetically and geometrically stable in their predicted binding pose,
should be a useful tool to help researchers prioritize compounds for purchase.

2. Methods
2.1 Binding site setup for gp41

The docking setup for gp41 was constructed using coordinates from the trimeric coiled-coil
construct reported by Chan et al32 (PDB code 1AIK) in which the three outer C-helix
peptides (termed C34) were removed to expose the hydrophobic pocket formed at the
interface of two of three inner N-helix peptides (termed N36). Following standard DOCK
setup protocols33 a molecular surface of gp41 was computed (dms program),34 followed by
sphere generation (sphgen program),35 and docking grid generation (grid program).36 The
sphere set was augmented with heavy atom coordinates of the four key gp41 sidechains
(Figure 1) and only one of the three symmetric pockets was targeted (N = 62 spheres total).
The AMBER37 accessory program tleap was used to add hydrogen atoms and assign
FF99SB38 partial charges to the protein, and the resultant structure was saved in mol2
format. Docking grids employed 6–9 Lennard-Jones exponents for intermolecular van der
Waals energies, a ε = 4r distance-dependant dielectric to scale intermolecular Coulombic
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energies, a 0.325 Å grid spacing which extended 10 Å in all directions about the sphere set,
and a 999 Å cutoff to ensure every grid point included all protein atoms.

2.2 Screening protocols
A library for virtual screening of ca. 500,000 molecules (N = 493,066) was derived from a
subset of molecules taken from the ZINC39 database, using the supplied protonation states
(pH = 7) and partial atomic charges (AMSOL), but filtered to remove compounds having a
formal charge greater than ± 2 e−, or with more than 15 rotatable bonds. To optimize
docking performance on the IBM BlueGene platform, the library was sorted in descending
order (low to high) based on the number of ligand rotatable bonds so that at any given time
during docking the compute nodes are receiving ligands of similar rigidity.40 Protocols for
grid-based flexible docking were developed through extensive tests using a large validation
test set (N = 780 systems) developed in our laboratory termed SB2010.33 Briefly, docking
employed multi-anchor ligand scaffold orientation (max_orientations = 1000) followed by
flexible growth (anchor and grow algorithm)41 with on-the-fly pruning and clustering
(max_orients = 1000, clustering_cutoff = 100, conformer_score_cutoff = 100 kcal/mol). The
calculations included a repulsive-only ligand internal energy term and each stage of growth
employed 500 steps of simplex-based energy minimization to optimize poses with allowed
step sizes of 1.0 Å for translational, 0.1π radians (18°) for rotational, and 10.0° for torsional
degrees of freedom. Following docking to the grid, the top-scoring pose retained for each
ligand was energy minimized in Cartesian space in order to compute residue-based
footprints. The final minimizations employed a 6–12 Lennard-Jones intermolecular van der
Waals term, a ε = 4r distance dependant dielectric intermolecular electrostatic term, and a
repulsive-only ligand internal energy term. In addition, a 10 kcal/(mol Å2) harmonic tether
was used to minimize root-mean-square-deviation (rmsd) differences between the original
grid-based and coordinated-based docked poses. The final list of docked molecules was then
rank-ordered using the DOCK Cartesian energy score termed DCEVDW+ES. All docking
calculations employed DOCK6.4.42

2.3 Footprint rescoring and clustering
Per-residue footprints were computed for the top 20% (N = 100,000) Cartesian-minimized
docked ligands and compared with that of the reference to yield van der Waals (FPSVDW),
electrostatic (FPSES), and van der Waals plus electrostatic (FPSVDW+ES) footprint similarity
scores. For this study, Pearson correlation coefficients (r and r2 values) were used to
quantify similarity with values of 1.00 (FPSVDW or FPSES) or 2.00 (FPSVDW+ES) indicating
perfect footprint overlap. Other methods, including threshold-based Pearson correlation,
Euclidian distance, and a normalized version of Euclidian distance have also been
explored.23 The gp41 reference was constructed from a single C34 peptide from PDB entry
1AIK32 truncated to include only residues 117–125 and modified so that sidechains were
mutated to Ala with the exception of three key hydrophobic residues (Trp117, Trp120,
Ile124) and one charged residue (Asp121) that interact with the known pocket region formed
at the interface of two gp41 N-helices (Figure 1).19 The goal here was to focus the search for
small molecules capable of mimicking the interaction patterns made by only this select
group of residues while ignoring more distal residues. The mutated Ala construct yielded
nearly identical footprint patterns to the truncated wildtype sequence as shown in Figure 3
(green line). For comparison, a difference plot employing only the four key residues
(Trp117, Trp120, Ile124, Asp121) is also shown (Figure 3 blue line). The later case re-
affirms that the overall signature, in this case, is primarily a function of the four specific
pocket-binding residues. Standard ACE and NME capping groups were applied to the Ala
construct and the crystallographic pose of the modified peptide was energy minimized with
respect to the receptor coordinates following the same protocol as that described above for
virtual screening. To increase chemotype diversity, the top 100,000 compounds were
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clustered using MACCS fingerprints43,44 as implemented in the program MOE45 using a
Tanimoto coefficient of 0.75. Finally, rank-ordered lists based on the 500 top-scoring
molecules as determined by each of the four methods (DCEVDW+ES, FPSVDW+ES, FPSVDW,
FPSES) were generated. All footprint calculations employed a modified version of DOCK,
now available in DOCK6.6 (http://dock.compbio.ucsf.edu).

2.4 Molecular dynamics (MD) simulations
To evaluate ligand pose stability, molecular dynamics (MD) simulations were performed of
the docked small molecules in complex with gp41. Stability was evaluated using both
footprint similarity scores and rmsd. The accessory programs tleap and antechamber from
the AMBER37 program suite were used to assemble, protonate, solvate (10 Å buffer), and
assign force-field parameters for each complex consisting of FF99SB38 (protein), TIP3P46

(solvent), and GAFF47 (ligand). Ligands employed partial charges originally supplied with
the ZINC database. A nine-step protocol (see Balius et al48 for details) was used to
equilibrate each solvated structure prior to data collection. Briefly, a short steepest descent
energy minimization followed by a short MD simulation was used to relax the added
hydrogen atoms and water molecules. Additional short minimizations and MD simulations
were performed with gradually decreasing restraints on non-hydrogen receptor and ligand
atoms followed by an additional equilibration using a weak restraint only on the protein
backbone. Production MD was conducted for 2 ns. Constant temperature (298.15 K) and
pressure (1 bar) were maintained through use of Berendsen weak-coupling algorithms.49

Long range electrostatics were computed using the particle mesh Ewald (PME)50 with a
real-space cut off of 8 Å. All MD simulations employed AMBER10.51

2.5 Control MD simulations
For stability comparisons with known ligand-binding geometries, 128 systems52 from 32
protein families (4 systems each) were selected from the SB2010 test set33 and MD
simulations were performed using the same protocols described above with the exception
that AM1-BCC53,54 partial charges were used for the ligands. Decoy poses were also
simulated to evaluate stability in comparison with native (crystallographic) poses. The
decoys were taken from ensembles generated by Mukherjee et al33 using the second lowest
energy docked pose subject to the constraint the molecule had a different binding geometry
(≥ 4Å rmsd) and poor footprint score (FPSVDW < 0.7 r or FPSES < 0.7 r) relative to the
native pose. Overall, 116 out of the 128 systems had a companion decoy which was able to
fulfill these conditions. For comparison purposes only the intersection of control and decoy
sets (N = 116 systems) is presented in Results. In total, 744 explicit solvent MD simulations
were performed in this study (116 × 2 based on the controls plus 128 × 4 based on the
virtual screen).

3. Results and discussion
3.1 Ligand pose properties

3.1.1 Property comparisons—As illustrated in Figure 4, ligand pose properties obtained
using the new FPS functions systematically differ from those obtained using the standard
DOCK function. Specifically, FPS scoring, which decomposes the intermolecular score on a
per-residue basis, can be used to selectively identify compounds with high footprint overlap
to a reference query. In general, use of the standard scoring function DCEVDW+ES,
consisting of a single numerical value representing the overall sum of intermolecular van der
Waals plus electrostatic interactions, does not lead to as high of overlap. Results in this
section include comparisons for molecules obtained from different subsets of the virtual
screening pool as well as comparisons for the 115 compounds tested experimentally.
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Figure 4 compares results obtained using FPS and DCE scoring in terms of their ligand pose
properties for each of four different ensembles consisting 128 top-ranked ligands each. It is
important to emphasize the ensembles in this figure each contain a different group of 128
molecules produced by re-ranking the top 100,000 molecules from the virtual screen (see
Methods) using the DCEVDW+ES (black), FPSVDW+ES (orange), FPSVDW (green), or FPSES
(blue) functions. Thus, the underlying properties computed from the four different
ensembles will be different. Each ensemble is subsequently rescored (post-processed) with
the other three scoring functions to yield the four colored distributions in each panel.

The individual ranking methods used to select different sets of 128 top-scoring molecules
each produce an ensemble with properties that are physically consistent with the method
employed. For example, molecules picked using the DCEVDW+ES function (Figure 4 black)
have the most favorable energy scores in the DCEVDW+ES (Figure 4a black) histograms
compared with the three footprint methods which show essentially the same distributions
(Figure 4a orange, green, blue). Similarly, molecules chosen using FPSVDW+ES (Figure 4
orange), FPSVDW (Figure 4 green), or FPSES (Figure 4 blue) show larger peaks at higher
Pearson coefficient values relative to the other ranking methods in their respective parent
histograms (Figures 4d–f). Thus, on a case-by-case basis, large ensembles of molecules
docked to a target can be subsequently mined to enrich for a particular energetic signature(s)
which is not directly possible with the standard DCEVDW+ES function alone.

The DCEVDW+ES ensemble is strongly dominated by more favorable van der Waals
components as illustrated by the left-shift of the black line to more favorable scores relative
to other curves in Figure 4b. Here, stronger van der Waals (Figure 4b black) and
DCEVDW+ES (Figure 4a black) energies for compounds selected using DCEVDW+ES are due
to an increase in the average size of the molecules as shown by the higher molecular weights
(Figure 4g black) and larger numbers of rotatable bonds (Figure 4h black). Size bias is a
well-known problem in docking and strategies such as ligand efficiency55 have been devised
in an attempt to address the fact that larger molecules generally have more favorable energy
scores. Notably, use of FPS scoring generates a much wider range of molecular weights
compared to DCEVDW+ES which appears to alleviate size bias (Figure 4g orange, green,
blue). The relatively poor FPSVDW (Figure 4e black vs green) and FPSES (Figure 4f black vs
blue) scores for the ensemble selected using DCEVDW+ES suggest, quantitatively, that a
significant number of molecules identified using the standard DOCK function also interact
with areas outside of the gp41 binding pocket. This is undesirable in this study as the goal is
to mimic the interaction of the protein substrate. However, the fact that some DCEVDW+ES
ranked compounds also have reasonably strong FPSVDW and FPSES Pearson coefficients
(Figure 4e and 4f black, respectively) reveals a subset of compounds do have favorable
consensus pose properties and thus would be good candidates for additional scrutiny. The
prioritization protocol that led to the subset of 115 compounds which were purchased for
experimental testing emphasized selection of ligands with favorable scores across multiple
categories.18

The results in Figure 4 also reveal that different FPS ensembles have more favorable van der
Waals energies (Figure 4b) when selected using FPSVDW (green) and more favorable
electrostatic energies (Figure 4c) when using FPSES (blue). And, compounds selected using
the combination FPSVDW+ES (Figure 4b,c orange) are roughly in-between those of FPSVDW
or FPSES. Although the energetic magnitude for van der Waals and electrostatic components
are independent of the quality of footprint correlations, the proclivity for FPSVDW to select
molecules with good van der Waals energies and FPSES to select molecules with good
electrostatic energies provides additional validation of the methodology.
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Other properties of interest in Figure 4 include ligand efficiency (Figure 4i), ligand formal
charge (Figure 4j), and percent volume overlap (Figure 4k) which is discussed further
below. In terms of ligand efficiency (defined here as FPSVDW+ES score/ligand molecular
weight), use of the FPSVDW+ES (Figure 4i orange) and FPSES (Figure 4i blue) functions
leads to overall higher ligand efficiency, or compounds with more favorable interaction
energies per molecule size. DCEVDW+ES and FPSVDW are substantially less efficient under
these conditions. In terms of ligand formal charge, use of FPSVDW+ES (Figure 4j orange)
and FPSES (Figure 4j blue) yields more molecules with a charge = −1 which is desirable
given the known interaction involving the salt-bridge in the native gp41 system. In contrast,
use of DCEVDW+ES and FPSVDW are more likely to enrich for compounds with formal
charge = 0.

3.1.2 Envelope and energy comparisons—Figure 5 further illustrates differences
between ensembles through visual comparison of the top 128 compounds in relation to the
reference envelope (light green molecular surface) defined here by the four key sidechains
from the native C34 peptide. Ensembles obtained using the three footprint functions
(FPSVDW+ES, FPSVDW, FPSES) overlap structurally with the reference envelope more
consistently than the DCEVDW+ES ensemble. Quantitatively, the correspondence can be
expressed as a % volume overlap, shown in Figure 4k as histograms, computed between the
four isolated reference sidechains and each docked pose. As expected, the averaged %
volume overlap using DCEVDW+ES to choose compounds is lowest. The overall trend
follows FPSVDW (45.1%) > FPSVDW+ES (44.0%) > FPSES (41.8%) > DCEVDW+ES (37.7%).
Schiffer and coworkers have highlighted the importance of considering the “substrate
envelope” when designing inhibitors against drug resistant HIV proteases.56 Use of
footprints to enrich screening results towards that of a “reference envelope” is conceptually
similar.

In terms of energy, Figure 6 shows per-residue VDW and ES differences (Δ values) for the
20 top-scoring compounds from each ensemble relative to the reference. Consistent with the
results presented earlier, use of the FPSVDW+ES function (Figure 6b) yields smaller per-
residue differences for both energy components (ΔVDW = black, ΔES = red) compared to
DCEVDW+ES indicating better molecular mimicry relative to the other methods. And, use of
FPSVDW (Figure 6c) or FPSES (Figure 6d) functions alone each yield the smallest per-
residue differences for their respective target function. Averaged absolute differences for the
key residues (52a-70a, 52c-70c) shown in Figure 6 follow the trend DCEVDW+ES (0.47 kcal/
mol) > FPSVDW (0.27 kcal/mol) = FPSES (0.27 kcal/mol) > FPSVDW+ES (0.25 kcal/mol). As
expected, use of DCEVDW+ES (Figure 6a) leads to the largest variance in both energy terms
indicating less effective mimicry, in this case by about double in magnitude relative to FPS
(0.47 kcal/mol vs ~ 0.26 kcal/mol). Interestingly, only the DCEVDW+ES ensemble
consistently yields dramatically more favorable ΔVDW deviations at specific residues
(Figure 6a black lines below zero), a further indication of increased molecular size relative
to the reference. However, as discussed in the next section, increased favorable interactions
at individual receptor sites, in the present case, does not appear to be as important for
activity as matching the overall pattern of the footprint comprised of a group of receptor
residues.

3.1.3 Footprint comparisons for experimentally tested compounds—As
described in Holden et al,18 out of 115 compounds from the gp41 virtual screen tested
experimentally, 24 showed affinity in a fluorescence-based binding assay and 7 were
ultimately identified as having favorable characteristics (low Ki, low IC50, high CC50
values) based on three different types of experimental assays (binding, cell-cell fusion,
cytotoxicity). Figure 7 shows the computational results in terms of the footprint patterns
made by all the tested molecules when arranged into two groups: (i) the 7 compounds with
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favorable characteristics in all three experimental assays defined here as actives, and (ii) the
remaining 108 compounds defined here as inactives. Strikingly, Figure 7 reveals how the
smaller set of 7 active compounds (blue) more closely conform to the per-residue patterns of
the reference (green) compared to the larger group of 108 inactives (red). However, it should
also be emphasized that good correspondence between any individual candidate molecule
and the reference does not necessarily imply activity as multiple inactives in Figure 7 also
show good overlap. Nevertheless, the fact that all 7 active compounds show good overlap is
notable, and suggests that footprints encode useful information. Overall, when faced with
the daunting task of mining large libraries on the order of potentially millions of compounds,
a prioritization method that includes mimicking known interaction patterns is a reasonable
approach.

It is important to emphasize the FPS method can be viewed as an attempt to capture which
residues “as a group” facilitate ligand binding without a priori emphasizing which
individual residue(s) are most important. Nonetheless, based on comparing the active vs
inactive footprints in Figure 7 across this group of 115 compounds, specific interactions that
appear to be important for activity include the need for: (1) favorable van der Waals
interactions at positions Val59a, Lys63a, Gln66a, Leu57c, and Trp60c, (2) favorable
electrostatic interactions at positions Lys63a, and Leu57c, (3) an absence of strong favorable
electrostatic interactions at positions Gln56a, Gln66a, Arg68a, and Arg68c.

Finally, Table 1 shows the rank-ordered position for each of the 7 active compounds in four
different lists obtained by re-scoring the top 100,000 compounds docked to gp41 with the
different functions and examining only the top 500. Importantly, 5 out of the 7 actives were
ranked within the top 62 in any of the ordered list and in all cases were ranked within the top
250. The lack of actives in the top 500 FPSVDW lists suggests including an electrostatic term
is important. From an overall enrichment standpoint, three of the seven (SB-D10, SB-C01,
and SB-H02) would not have been identified without FPS scoring. As was previously noted
in Holden et al,18 the 115 compounds ultimately purchased for experimental evaluation was
roughly evenly-split (21–33 compounds each) with regards to which criteria was used
during selection with an emphasis placed on obtaining ligands with favorable scores across
multiple categories. Thus, some compounds chosen based on DCE ranks also have
reasonable FPS overlap. One compound in particular (SB-C09) was ranked well across three
scoring functions (FPSVDW+ES = 3rd, DCEVDW+ES = 41st, and FPSES = 43rd). It should be
emphasized that from a practical standpoint, choosing which compounds to purchase is not
trivial. Beyond rank-ordered score, compound availability, chemical diversity, and
visualization of the binding poses were among other criteria that were considered during
selection. For the future, an ideal test to derive more complete enrichment statistics, if
resources would allow, would be to purchase a reasonably large number (i.e. the top 100
compounds) from each rank-ordered list for experimental testing without consideration of
rank in other scored lists.

3.2 Ligand pose stability
3.2.1 Stability comparisons for experimentally tested compounds—The key
utility of FPS scoring is to help identify and prioritize compounds from screens that mirror
the interactions of a known substrate, inhibitor, or, as in this present case for gp41,
significant protein sidechains. An alternative use is assessment of footprint stability with
respect to the initial docked pose. Roughly analogous to rmsd (but computed in energetic
rather than geometric space), footprint-stability provides a means to assess if key binding
site interactions will persist during a molecular dynamics (MD) simulation of the complex
while still allowing for the ligand to move in concert with the surrounding environment (i.e.
sidechains and solvent). Here, footprint stability was specifically defined as maintaining an
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average FPSVDW+ES > 1.70 r relative to the initial docked pose, during an explicit solvent
MD simulation of a docked complex with values being averaged over 2000 snapshots saved
periodically (1 ps) during a 2 ns trajectory.

Although 2 ns is a relatively short simulation, under the present conditions employing a
restrained protein backbone, the amount of ligand movement in terms of FPS or rmsd
variability appears sufficient to establish whether any predicted pose can be categorized as
stable. As examples, Figure 8 plots results for the subset of 115 compounds which were
tested experimentally. Here, compounds which yield an average FPSVDW+ES score of 1.70 r
or greater in Figure 8a or 8e are colored black, otherwise red. Under this criteria, and
analogous to the results above which showed active compounds yielded a stronger footprint
overlap with the reference compared to inactives (Figure 7), the 7 actives here also appear to
be much more stable in terms of maintaining their FPS scores, especially for FPSVDW+ES
and FPSES, during the MD trajectories (Figure 8a–c black vs 8e–g red). And as a group, no
actives show large variability in terms of ligand rmsd (Figure 8d vs 8h), a general indication
of binding stability, in contrast to multiple inactive trajectories. However, it should also be
emphasized, again analogous to the FPS overlap discussion from above (Figure7), that good
MD stability also does not necessarily indicate that a particular compound will be active as
numerous inactives in Figure 8e-h do appear stable (black colored trajectories).
Nevertheless, the fact that all of the 7 actives in Figure 8 maintain overall good stability is
remarkable and suggests that use of MD in conjunction with FPS scoring to aid compound
prioritization is a useful strategy.

3.2.2 Use of FPS to enrich for stability—We hypothesized that use of FPS scoring
could lead to greater numbers of stable poses compared to the standard DCE function. To
test this hypothesis on larger datasets, we retroactively examined the four groups of 128 top-
ranked cluster heads based on different scoring functions used in the virtual screen (Figure
4). As above, we employed MD simulations of each complex to compute average
FPSVDW+ES scores and rmsds relative to the initial docked poses, in addition to individual
scores for FPSVDW and FPSES. For these experiments, a slightly more stringent criterion in
terms of the magnitude of the FPS score was used. Table 2 quantifies the number of ligands
in each group of 128 that maintained high average footprint scores (FPSVDW+ES > 1.80 r,
FPSVDW > 0.90 r, or FPSES > 0.90 r) or low average rmsds (rmsd < 2.0 Å).

When using the FPSVDW+ES stability metric (Table 2a), compounds selected with
FPSVDW+ES (61%) or FPSES (66%) functions do show enhanced stability relative to the
DCEVDW+ES (41%) set. Mirroring this trend, when using the FPSES stability metric (Table
2c), use of FPSVDW+ES (77%) or FPSES (86%) functions to select compounds also yields
more stable poses than DCEVDW+ES (54%). In contrast, use of the FPSVDW function yields
few poses that are able to maintain good FPSVDW+ES (Table 2a, 9%) or FPSES stability
(Table 2c, 14%). These results are consistent with the relatively featureless FPSVDW+ES and
FPSES histograms for top-ranked compounds selected using the FPSVDW function (Figure
4d and 4f, green). Examination of the results in rmsd space (Table 2d) reveals a similar trend
with functions containing electrostatic overlap terms, FPSVDW+ES (16%) and FPSES (27%),
both yielding larger numbers of rmsd-stable compounds than DCEVDW+ES (8%). The
previous observation that none of the 7 actives were in the rank-ordered lists of 500 derived
using FPSVDW (Table 1) provides compelling support for including electrostatics. Overall,
while additional systems need to be studied, the present studies suggest FPS scoring that
includes the electrostatic term (FPSVDW+ES or FPSES) could be a tool to enrich for
compounds that preferentially maintain their original docked interaction profiles relative to
use of the DCEVDW+ES function. Importantly, monitoring of FPS emerges as a practical
alternative to an rmsd-based measure of stability.
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3.2.3 Control and decoy stability—To more thoroughly investigate if pose stability is a
property inherent to known binding geometries (Figure 9), we examined the stability
behavior of ligands taken from 32 unique protein-ligand families comprising 116
crystallographic complexes (termed controls) with accompanying decoys (see Methods
describing decoy generation) under the same simulation conditions used to examine the
gp41 complexes comprising the 115 experimentally tested compounds (Figure 8) and the
four larger ensembles of 128 each (Table 2). As before, ligand FPS-stability and rmsd-
stability were measured, in this case relative to either x-ray or decoy poses. Importantly, the
control group of native x-ray poses (red histograms) more completely maintain their initial
FPSVDW+ES (Figure 9a), FPSVDW (Figure 9b), and FPSES (Figure 9c) footprint patterns
which yield higher r values relative to the corresponding decoy set (gray histograms). The
controls also show greater rmsd-stability as indicated by lower rmsd values (Figure 9d).
These tests help to confirm that pose stability is an inherent property of experimentally
observed geometries, across a diverse group of protein-ligand families, and thus a
potentially useful tool to aid ligand prioritization.

3.2.4 Solvent accessible surface area (SASA)—While the percentage of decoys in
Figure 9d that maintained a low rmsd (< 2.0 Å) was higher than might be expected (28%)
for poses that are not observed experimentally, the percentage of favorably-scored
compounds that maintained a low rmsd in the gp41 site was relatively small at 8–27% from
simulations of the 4*128 rank-ordered lists (Table 2d) and 13–14% from simulations of the
115 compounds tested experimentally (Figure 8). An examination of solvent accessible
surface area (SASA) shows that the crystallographic ligands (controls and decoys), on
average, are significantly more buried (Figure 10 red) when bound to their respective targets
versus the theoretical compounds docked into the gp41 site (Figure 10 colored lines). Taken
together, the results suggest that use of rmsd as a metric to gauge pose stability could lead to
false positives for highly buried ligands as well as false negatives for highly exposed
ligands. In these instances, FPS definitions of pose stability provide a useful alternative.

3.3 Ligand consensus
In a practical sense, the overall intersection between the ensemble derived using the standard
DOCK DCEVDW+ES function with those of the three FPS methods is minimal at only 2–8
molecules (Table 3) across the four sets of 128 top-ranked compounds. Only the
FPSVDW+ES and FPSES groups contain a significant number of molecules in common (N =
35) which is consistent with the observation that use of these two functions, in general,
yields greater numbers of more stable poses (Table 2). In any event, it should be emphasized
that footprint-based scoring provides alternative choices for ranking and was not necessarily
designed to replace the standard DOCK scoring method. In fact, as the different ranking
functions each produce different results (only 0% to 27% molecules are in common in Table
3), as emphasized earlier, it should be advantageous to look at top hits obtained using
multiple scoring metrics. However, if the goal is to quickly identify molecules that mimic a
known interaction pattern, then the FPS methods would have clear benefits.

4. Conclusion
The goal of this work was to evaluate use of different scoring and ranking strategies to help
prioritize compounds from large-scale computational virtual screening. The study compared
the standard DOCK energy function (DCEVDW+ES) with three new footprint-based scoring
functions (FPSVDW+ES, FPSVDW, and FPSES) developed in our laboratory.23,24 The
experiments employed results from our prior virtual screen18 of ca. 500,000 publically
available compounds docked to a hydrophobic pocket on the drug target HIVgp41 (Figures
3–8, Tables 1–3), as well as known crystallographic controls (Figures 9, 10). Ensembles of

Holden et al. Page 10

Bioorg Med Chem. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rank-ordered ligands were examined in terms of two main criteria: (1) ligand pose
properties which included DCE and FPS score distributions, molecular weight, number of
rotatable bonds, ligand efficiency, ligand formal charge, volume overlap, and footprint
comparisons between experimentally tested active and inactive compounds, and (2) ligand
pose stability which included footprint-stability (changes in footprint overlap) and rmsd-
stability (changes in geometry).

Ligand pose property experiments demonstrate how FPS functions can be used to mine sets
of compounds, from within a large pool of virtual screening results, which have properties
that mimic a specific reference. In the case of gp41, the reference was a construct derived
from the native peptide substrate sequence centered on four key sidechains that interact
(Figure 3) at an important protein interface (Figure 1). Molecules with high FPS scores
showed both good energetic (Figures 4, 6–7) and spatial (Figure 5) overlap with the
reference. Importantly, the specific method used to prioritize the screening results each
produces a set with properties physically consistent with the method employed (Figure 4).
Molecules prioritized with FPSVDW+ES, FPSVDW, or FPSES have larger peaks at higher
Pearson coefficient values in their respective parent histograms (Figure 4d–f) and smaller
energy differences to the reference sidechains (Figures 6) compared to use of DCEVDW+ES.
Notably, an examination of the 115 compounds tested experimentally reveals all 7 actives
have high footprint overlap to the reference relative to the inactive group which shows much
greater variability in terms of magnitude and position (Figure 7). Overall, the pose property
studies suggest a consensus of scoring functions should be used when choosing compounds
for experimental testing (Table 1).

Ligand pose stability experiments using MD simulations further demonstrate the utility of
using FPS methods as an alternative to rmsd by allowing a ligand to move in concert with
the surrounding environment and monitoring the extent with which binding site interactions
can be maintained. Remarkably, the group of 7 actives all maintain high FPSVDW+ES and
FPSES stability scores during the MD trajectories compared to the group of 108 inactive
compounds for which multiple members show large variability (Figure 8). Tests to gauge
pose stability across a much larger dataset (four groups of 128 compounds) show that use of
FPSVDW+ES and FPSES functions to rank-order compounds yield more stable compounds
relative to DCEVDW+ES or FPSVDW in all but one case (Table 2). Results for rmsd-stability
follow the same trend. While additional studies on greater numbers of systems need to be
performed, the present MD results suggest enhanced pose stability may be linked to
favorable electrostatic compatibility better captured by electrostatic footprint patterns
embodied in FPSVDW+ES and FPSES functions Consistent with this conclusion is the fact
that 3 of the 7 experimentally-verified leads identified from among the 115 compounds
tested for gp41 binding and activity were prioritized using FPSVDW+ES or FPSES (Table
3).18 Finally, concurrent control studies showed that known ligands in their crystallographic
binding poses maintain higher FPS scores and smaller rmsds versus decoys (Figure 9). This
confirms that native poses are indeed stable, and thus consideration of pose stability using
FPS during compound prioritization is likely to be beneficial.

Overall, the results presented in this study suggest that footprint-based methods can play at
least two useful roles in structure-based design: (a) footprints can aid identification of
compounds biased to specific properties inherent to a known reference, and (b) they provide
a useful alternative to rmsd for evaluating pose stability. Both uses complement current
virtual screening approaches for the identification (FPS-ranking) and prioritization (FPS-
stability) of target-compatible molecules in a quantitative and logical way.
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Figure 1.
Reference footprints constructed from a protein-protein interface on gp41. (a) Two views of
the drug target site showing the N-helix hydrophobic binding pocket region in gray and four
key sidechains from the native C-helix in green. (b) C34-derived van der Waals (VDW) and
electrostatic (ES) reference footprints. Binding site residues involved in a salt-bridge (sb)
with Asp121 and hydrogen bond (hb) with Trp120 on the reference are labeled in the
electrostatic footprint and the pocket surface. Coordinates from PDB code 1AIK.32
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Figure 2.
Footprint overlap comparisons for two molecules from the gp41 virtual screen showing (a)
bad and (b) good FPSVDW+ES overlap with the C34-derived reference from Figure 1.
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Figure 3.
Differences in per-residue interactions between the Ala construct and wildtype gp41
sequence (green lines) for a 9 residue section of the native C-helix. For comparison,
differences in energy using only the four key residues (Trp117, Trp120, Ile124, Asp121) and
the 9-residue wildtype sequence are also shown (blue lines).
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Figure 4.
Ligand pose properties based on different sets of 128 top-scoring molecules prioritized by
one of four scoring schemes and then rescored with the other three functions: DOCK energy
score (DCEVDW+ES, black), van der Waals footprint score plus electrostatic footprint score
(FPSVDW+ES, orange), van der Waals footprint score (FPSVDW, green), and electrostatic
footprint score (FPSES, blue). Histogrammed panels a-c show DOCK score distributions and
individual energy components, panels d–f show different FPS score distributions, panels g–i
show molecular weight, number of ligand rotatable bonds, and ligand efficiency, panels j–k
show ligand formal charge, and volume overlap.
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Figure 5.
Visual overlays for the top 128 scoring compounds from each of the re-ranking methods in
comparison with the reference envelope (light green surface).

Holden et al. Page 20

Bioorg Med Chem. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Per-residue energy differences (pose minus reference) for four ensembles comprised of the
20 top-scoring compounds derived from (a) DCEVDW+ES, (b) FPSVDW+ES, (c) FPSVDW,
and (d) FPSES ranking methods. Steric packing differences (ΔVDW) are in black and the
electrostatic differences (ΔES) are in red. Positive values indicate the reference makes
stronger interactions at specific residues; negative values indicate the candidate molecule
makes stronger interactions at specific residues. Energies in kcal/mol.
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Figure 7.
Footprint similarity comparisons for 7 active compounds (blue) and 108 inactive compounds
(red) relative to the reference (green).
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Figure 8.
Ligand pose stability showing FPSVDW+ES (r), FPSVDW (r), FPSES (r), and rmsd (Å) values
vs time (ps) relative to the initial docked position for 115 compounds from the gp41 virtual
screen tested experimentally. For clarity, all values smoothed using adjacent averaging in
blocks of 100. Compounds yielding an average FPSVDW+ES score of 1.70 r or greater in
panels (a) and (e) are colored black across all panels, otherwise colored red.
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Figure 9.
(a) FPSVDW+ES stability (r), (b) FPSVDW stability (r), (c) FPSES stability (r), and (d) rmsd
stability (Å) based on MD simulations starting from known crystallographic controls (red)52

and associated decoys (gray).
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Figure 10.
Ligand SASA of molecules from crystallographic complexes (red) and accompanying
decoys (gray) vs molecules docked to gp41 prioritized using the standard DOCK energy
score (DCEVDW+ES, black), van der Waals footprint score plus electrostatic footprint score
(FPSVDW+ES, orange), van der Waals footprint score (FPSVDW, green), or electrostatic
footprint score (FPSES, blue).
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Table 2

Number of ligands with high FPS scores and low rmsd values averaged from molecular dynamics simulations
of docked complexes of gp41.

Ranking Methoda

FPS-stability rmsd-stability

(a) (b) (c) (d)

FPSVDW+ES
N > 1.80 r

FPSVDW
N > 0.90 r

FPSES
N > 0.90 r

rmsd
N < 2 Å

DCEVDW+ES 53/128 (41%) 31/128 (24%) 69/128 (54%) 10/128 (8%)

FPSVDW+ES 78/128 (61%) 39/128 (30%) 99/128 (77%) 20/128 (16%)

FPSVDW 12/128 (9%) 53/128 (41%) 18/128 (14%) 16/128 (13%)

FPSES 85/128 (66%) 38/128 (30%) 110/128 (86%) 34/128 (27%)

a
Scoring function used to identify 128 top-ranked cluster heads.
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Table 3

Number of molecules in common across four sets of 128 top-ranked compounds using different rank-ordering
methods.

Methoda DCEVDW+ES FPSVDW+ES FPSVDW FPSES

DCEVDW+ES 128 8 2 6

FPSVDW+ES 128 8 35

FPSVDW 128 0

FPSES 128

a
Scoring function used to identify top-ranked cluster heads (N = 128).
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