

NIH Public Access

Author Manuscript

J Phys Chem B. Author manuscript; available in PMC 2014 December 27.

Published in final edited form as:

J Phys Chem B. 2013 December 27; 117(51): 16428-16435. doi:10.1021/jp409693p.

Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

Hironori Kokubo[†], Robert C. Harris[†], Dilipkumar Asthigiri[‡], and B. Montgomery Pettitt^{†,*}

[†]Sealy Center for Structural Biology and Molecular Biophysics, Departments of Biochemistry and Molecular Biology and Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0304, USA

[‡]Chemical Engineering, Johns Hopkins University, Baltimore MD

Abstract

The electrostatic (ΔG_{el}), van der Waals cavity-formation (ΔG_{vdw}), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔG_{el} , and components ΔG_{vdw} , and ΔG , were found to be linear in *n*, with the slopes of the best-fit lines being γ_{el} , γ_{vdw} , and γ , respectively. Both γ_{el} and γ were negative for fixed and flexible peptides, and γ_{vdw} was negative for fixed peptides. That γ_{vdw} was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γ_{vdw} should be positive. A negative γ_{vdw} seemingly contradicts the notion that ΔG_{vdw} drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔG_{vdw} for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γ_{vdw} was positive. Because most proteins do not assume extended conformations, a ΔG_{vdw} that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular h-bonds but show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

Keywords

Folding free energy; Solvation effects

Introduction

Measuring and computing solvation free energies (ΔG) is a central problem in solution biophysics. For many biomolecular systems, obtaining desired free energy differences, such as binding, folding, and mutation free energies, is difficult. A common approach to performing these calculations is to express the desired free energy change (ΔG_{ij}) between states *i* and *j* of the biomolecule in solution as $\Delta G_{ij} = \Delta G_{ij}^{vac} - \Delta G_i + \Delta G_j$ where ΔG_{ij}^{vac} is the free energy difference between states *i* and *j* in vacuum, which is often easy to compute, and ΔG_i and ΔG_j are the solvation free energies of states *i* and *j*, respectively.^{1,2} This technique has been used with molecular dynamics (MD) simulations, implicit-solvent

^{*}To whom correspondence should be addressed mpettitt@utmb.edu.

models,³ such as the Poisson-Boltzmann equation (PBE)⁴ and generalized Born (GB) models,⁵ and structured continuum (SC) approaches.^{6–8}

Efforts to develop computationally-convenient models to approximate ΔG have focused on phenomenological decompositions.⁹ A number of methods have been developed that divide ΔG into different components, each of which can be computed independently. Frequently, for example, ΔG is divided into nonpolar (cavity-formation) and electrostatic components. In the present study, when the peptides are completely solvated, the only forces acting between atoms in the peptide and atoms in the solvent are a 6-12 Lennard-Jones van derWaal's (vdw) potential and a Coulombic potential. We therefore parsed ΔG into the energy (ΔG_{vdw}) of solvating an uncharged solute cavity of the appropriate size and shape by turning on the vdw forces slowly and the energy (ΔG_{el}) of charging the resulting solvated cavity.¹⁰ Clearly, therefore $\Delta G = \Delta G_{vdw} + \Delta G_{el}$. In practice, ΔG_{el} is commonly approximated with the linear response theory (LRT) or models, including the PBE, GB models, and SC approaches.^{3,8–12} In contrast, ΔG_{vdw} usually cannot be computed with the LRT, possibly because ΔG_{vdw} includes the energy of forming a dry cavity of the appropriate size and shape. In practice, ΔG_{vdw} is often assumed to be proportional to surface area, as would be expected from surface tension arguments, with a proportionality constant of Γ . Many studies^{2,13–24} have focused on the computation of Γ , and fundamental issues are still unresolved, including the effect of ΔG_{vdw} and whether it is proportional to surface area, as expected from surface tension arguments.

In previous work²⁵ from this lab we found by free energy simulations in explicit solvent that for extended oligoglycine peptides of lengths (*n*) ranging from 1–5 monomers ΔG_{el} , ΔG_{vdw} , and ΔG all decreased linearly with increasing *n* with best-fit lines whose slopes were γ_{el} , γ_{vdw} , and γ , respectively. We then augmented these findings by finding that for several conformations of decaalanine ΔG_{el} , ΔG_{vdw} , and ΔG all decreased with surface area.²⁶ That γ_{el} was negative is easy to rationalize; adding each monomer adds a substantial peptide dipole to a polar solvent. In contrast, that γ_{vdw} was negative is difficult to explain. In effect these studies show that for these extended peptides the creation of favorable vdw interactions with water atoms (which are proportional to $1/r^6$) outweigh the energy penalty of creating a large interface in water. Conversely, experimental studies and simulations have shown that Γ is typically positive for small molecular and model systems, ^{16,23,27} and a positive Γ is also expected from theoretical arguments.¹⁸ Additionally, a negative γ_{vdw} is puzzling because cavity formation has long been assumed to drive many phenomena including the initial collapse of proteins during folding by favoring configurations with smaller protein-water interfaces, ^{2,21,23} and this assumption implies a positive γ_{vdw} .

One possible solution to this puzzle is that the sign of γ_{vdw} is irrelevant, as long as its magnitude is small, because the initial collapse of proteins during folding is driven by intramolecular interactions.²⁸ As shown in Results, even when few h-bonds are formed, the average intramolecular vdw energy ($\langle U_{vdw}^{in} \rangle$) is indeed more favorable for a flexible peptide containing 6 alanine residues than for the same peptide constrained to an extended conformation. However, the fluctuations in these intramolecular energies were large, potentially casting doubt on the idea that differences in U_{vdw}^{in} cause collapse. This question merits more thorough investigation.

Our previous work only examined peptides that were in a variety of fixed conformations.^{25,26} We therefore decided to determine whether such findings would hold for flexible alanine peptides. In this work, we computed ΔG_{el} , ΔG_{vdw} , and ΔG for a series of alanine peptides with *n* ranging from 1 to 10 constrained, as in our previous study,²⁵ to remain in extended conformations, but here we repeated the calculations for some of these peptides after removing the conformational restraints. Because of the small magnitudes of

 γ_{vdw} , precise calculations of ΔG_{vdw} were required to answer the questions we were trying to address. As we show in Results, our values of ΔG_{vdw} , obtained by integrating $dU_{vdw}/d\lambda$ over λ as discussed in Methods, have converged because our estimates of $dU_{vdw}/d\lambda$ had converged at all values of λ . As an additional check, the differences in ΔG_{el} , ΔG_{vdw} , and ΔG between those for a peptide of length n and those for a peptide of length n - 1 were computed by "alchemically" transforming a peptide of length n - 1 into one of length n. We found that the resulting differences in solvation free energies were consistent with our estimates of the absolute solvation free energies. The models and methods used to compute these free energies are discussed in Methods and in the Results and Conclusion sections we compare with experiments and previous computational work.

Methods

Molecular dynamics procedures

All MD simulations were performed with the Amber suite.²⁹ A constant temperature of 300 K was maintained with the Berendsen thermostat, and a constant pressure of 1.0 atm was maintained with the weak-coupling method. Periodic boundary conditions and Ewald summation for the electrostatics were used. SHAKE was used to constrain the hydrogens, allowing a 2 fs time step to be used.

The calculations presented here used the ff03.r1 force field,³⁰ and, to be consistent with this force field, the solvent was modeled as TIP3P waters.³¹ Unfortunately, the best choice of force field for unstructured peptides, similar to the one that we used here, is an active topic of research.^{32–35} The conclusions presented in the present paper may be sensitive to our choice of force field, and investigating how these conclusions would differ if we used other force fields could provide an interesting direction of future study.

Structure preparation

We first prepared extended alanine peptide conformations with MOE,³⁷ with *n* ranging from 1 (ala₁) to 10 (ala₁₀) (Figure 1). The peptide terminals were capped with neutral acetate (ACE) and methyl amide (NME) residues. Short energy minimizations were run on the peptides in GB implicit aqueous solvent.²⁹ Each alanine peptide was then immersed in a rectangular parallelepiped of water with at least 8.0 Å of solvent between the peptide surface and the boundary of the box. The total numbers of water molecules ranged from 392 for the ala₁ system to 1804 for the ala₁₀ system. Each structure was then subjected to 500 steps of steepest-descent minimization, 500 steps of conjugate-gradient minimization, and finally equilibrated for 1.2 ns. During this process, harmonic positional restraints were placed on the heavy atoms with force constants of 10 kcal/(mol Å²) to maintain a linear conformation.

Solvation free energy

In the force field used in this study, the nonbonded interaction energy (U_{ij}) between two atoms, *i* and *j*, is the sum of two terms. One term is the Coulombic interaction energy,

$$U_{ij}^C = q_i q_j / (4\pi\varepsilon_0 r_{ij}), \quad (1)$$

where q_i and q_j are the charges on atoms *i* and *j*, respectively, ε_0 is the permittivity of vacuum, and r_{ij} is the distance between the atoms. The other term is the vdw interaction energy,

$$U_{ij}^{vdw} = 4\varepsilon_{ij} [(\sigma_{ij}/r_{ij})^{12} - (\sigma_{ij}/r_{ij})^6],$$
 (2)

where ε_{ii} is the well depth of the Lennard-Jones potential between atoms *i* and *j* and

 $\sigma_{ij}=2^{(-1/6)}r_{ij}^{min}$, where r_{ij}^{min} is the interatomic distance where U_{ij}^{vdw} has a minimum. The potential energy, U, of a molecular configuration is then the sum of the pairwise nonbonded interactions and the bonded interactions.

In the present study, ΔG_{vdw} is defined to be the solvation free-energy difference between a system where the interaction energy between an atom, *i*, in the alanine peptide and an atom,

j, in the solvent, is $U_{ij} = U_{ij}^{vdw}$ and a system where $U_{ij} = 0$, whereas ΔG_{el} is defined to be the free-energy difference between a system where $U_{ij} = U_{ij}^C + U_{ij}^{vdw}$ and one where $U_{ij} = U_{ij}^{vdw}$. Although the division of ΔG into $\Delta G = \Delta G_{vdw} + \Delta G_{el}$ is not unique, these energies are well defined and consistent with our force field choice. All nonbonded and bonded interactions between solute atoms or between solvent atoms were those defined in the force field.³⁰

Three methods were used to estimate ΔG_{vdw} and ΔG_{el} from the same simulation windows: thermodynamic integration (TI), free-energy perturbation (FEP), and the Bennett acceptance ratio (BAR) method. We here briefly review these methods.

In TI the free-energy difference (ΔG_{ij}) between ensembles *i* and *j* is computed by approximate quadrature of the exact expression

$$\Delta G_{ij} = \int_{0}^{1} \langle dU(\lambda)/d\lambda \rangle_{\lambda} d\lambda, \quad (3)$$

where λ is a coupling parameter used to connect U(0), which is the potential energy function of ensemble *i*, and U(1), which is the potential energy function of ensemble *j*. $\langle dU (\lambda)/d\lambda \rangle_{\lambda}$ is the average value of $dU(\lambda)/d\lambda$ over the canonical ensemble defined by $U(\lambda)$.

In FEP, ΔG_{ii} can be computed from the similarly exact expression

$$\Delta G_{ij} = -(1/\beta) \ln \langle \exp[-\beta (U(1) - U(0))] \rangle_0, \quad (4)$$

where $\beta = 1/(k_B T)$, where k_B is Boltzmann's constant and T is the temperature. This formula requires overlap between the sampling of states *i* and *j*.

In the BAR method overlap between states *i* and *j* is optimized. ΔG_{ij} is computed by first solving the equation

$$n_0 \left\langle \frac{1}{1 + \exp(\beta(U(0) - U(1)) - C)} \right\rangle_0 = n_1 \left\langle \frac{1}{1 + \exp(\beta(U(0) - U(1)) + C)} \right\rangle_1$$
(5)

numerically for *C* where n_0 and n_1 are the numbers of samples taken from samples *i* and *j* respectively, and

$$C = \ln \frac{Q_0 n_1}{Q_1 n_0}, \quad (6)$$

where Q_0 and Q_1 are the partition functions in sample windows *i* and *j*, respectively. If $n_0 = n_1$, then ΔG_{ij} can finally be obtained from

$$\Delta G_{ij} = -(1/\beta)C.$$
 (7)

The BAR method optimizes the weighted sampling and frequently converges more quickly than either TI or FEP.³⁸

Simulations were run at a series of λ values between 0 and 1 chosen so that adjacent states had good overlap. ΔG_{ij} was then computed by summing the free energy differences between adjacent states.

As discussed above, U(0) and U(1) are constrained to be the potential energy functions in ensembles *i* and *j*, respectively, but $U(\lambda)$'s dependence on λ can be freely chosen to improve computational efficiency. One choice for $U(\lambda)$ is the simple linear ramp:

$$U(\lambda) = (1 - \lambda)U(0) + \lambda U(1), \quad (8)$$

and this was the functional form we chose for our calculations of ΔG_{el} . However, this is not an efficient choice for computing ΔG_{vdw} because the resulting integrals contain a well-known pole at $\lambda = 0.39,40$ In the present study, we adopted

$$U_{ij}(\lambda) = 4\varepsilon_{ij}\lambda \left[\frac{1}{\left[\alpha(1-\lambda) + (r_{ij}/\sigma_{ij})^6\right]^2} - \frac{1}{\left[\alpha(1-\lambda) + (r_{ij}/\sigma_{ij})^6\right]}\right]$$
(9)

with $\alpha = 0.5$ to compute ΔG_{vdw} .

Free energy calculations

For all of the peptides harmonic constraints with force constants of 10 kcal/(mol Å²) were placed on the heavy atoms to maintain the peptides in their extended conformations, and ΔG_{el} , ΔG_{vdw} , and ΔG were computed with the methods discussed above. For the computations of ΔG_{el} , λ space was divided into 20 equally sized windows, whereas for computations of ΔG_{vdw} 50 equally sized windows were required. For each window, 1 ns of equilibration was performed, followed by 5 ns of production MD, from which the free energy differences between adjacent λ values were computed with the methods outlined above, and the total free energies were computed by summing these differences. These calculations were then repeated for peptides of lengths n = 1, 2, 3, 4, 6 without positional constraints on the peptides, allowing them to explore natural ensembles of conformations.

To confirm that the above calculations were converged, we also estimated the changes $(\Delta\Delta G_{el}, \Delta\Delta G_{vdw}, \text{and }\Delta\Delta G)$ in $\Delta G_{el}, \Delta G_{vdw}$, and ΔG between a peptide of length N and one of length N - 1 by "alchemically" transforming a peptide of length N - 1 into one of length N. These free energy differences could be computed by following the free energy cycle in Figure 2, but in the interests of computational efficiency we made two approximations: we assumed that the peptide adopted the same distribution of conformations in vacuum and solvent, and we assumed that the energy of charging the first N - 1 residues in the presence of the uncharged cap was equal to the energy of charging them in the presence of the uncharged residue N (implying that $\Delta G_2 + \Delta G_4 - \Delta G_7 - \Delta G_9 = 0$). The agreement between our alchemical results and those obtained from our direct calculations (Figure 5) indicates that these were reasonable assumptions for these calculations. First, we computed

$$\Delta G_1^{inter} = \int \langle dU_1^{inter}(\lambda)/d\lambda \rangle d\lambda, \quad (10)$$

where U_1^{inter} was defined by an equation of the form of Eq. 8 except that here $\lambda = 1$ corresponded to the initial state, $\lambda = 0$ corresponded to the final state, and the summation of the U_{ij} was only taken over pairs of atoms where one member of the pair was in the solute and the other member was in the solvent. If the peptide adopted the same distribution of conformations in vacuum and solvent, then $\Delta G_1^{inter} = \Delta G_1 - \Delta G_6$. Next, we computed

$$\Delta G_3^{inter} = \int \langle dU_3^{inter}(\lambda)/d\lambda \rangle d\lambda, \quad (11)$$

where U_3^{inter} was defined by summing U_{ij} only over pairs of atoms where one member of the pair was in the solute and the other member was in the solvent. Once again, if the peptide adopts the same distribution of conformations in vacuum and solvent, then $\Delta G_3^{inter} = \Delta G_3 - \Delta G_8$. Finally, we computed

$$\Delta G_5^{inter} = \int \langle dU_5^{inter}(\lambda)/d\lambda \rangle d\lambda, \quad (12)$$

where U_5^{inter} was defined by an equation of the form of Eq. 8 except that the summation of the U_{ij} was only taken over pairs of atoms where one member of the pair was in the solute and the other member was in the solvent.

Once these energies were obtained, we could obtain

$$\Delta \Delta G_{el} \approx \Delta G_1^{inter} + \Delta G_5^{inter}, \Delta \Delta G_{vdw} \approx \Delta G_3^{inter}, \text{ and } \Delta \Delta G = \Delta \Delta G_{el} + \Delta \Delta G_{vdw}.$$

Intramolecular van der Waal's energies

To investigate the contributions of intramolecular forces to the collapses of these alanine peptides, we computed the average intramolecular vdw energies $(\langle U_{vdw}^{in} \rangle)$ for both the extended and flexible alanine peptides with 6 alanine residues. For a single conformation,

$$U_{vdw}^{in} = \sum U_{ij}^{vdw} \quad (13)$$

where the summation was taken over nonbonded pairs in the peptide.

We also broke this energy into attractive $(\langle U_{vdw}^{in,r6} \rangle)$ and repulsive $(\langle U_{vdw}^{in,r12} \rangle)$ terms, where $U_{vdw}^{in,r6}$ and $U_{vdw}^{in,12}$ were defined for a single peptide conformation as

$$U_{vdw}^{in,r6} = -\sum 4\varepsilon_{ij} (\sigma_{ij}/r_{ij})^6 \quad (14)$$

and

$$U_{vdw}^{in,r12} = \sum 4\varepsilon_{ij} (\sigma_{ij}/r_{ij})^{12}. \quad (15)$$

where the summations were taken over the nonbonded pairs in the peptide. The averages of these energies, $\langle U_{vdw}^{in} \rangle$, $\langle U_{vdw}^{in,r6} \rangle$ and $\langle U_{vdw}^{in,r12} \rangle$, were then computed by averaging $U_{vdw}^{in,r6}$ and $U_{vdw}^{in,r12}$ over the conformations assumed by the peptides during the simulations.

Results

To verify that our results were reasonably converged, we computed all of our solvation free energies with the three methods, TI, FEP, and the BAR method, described in the Methods. For all of the results presented here, these three methods were in good agreement. For example, for the fixed extended peptide with 3 alanine residues, the estimates of ΔG_{el} given by TI, FEP, and the BAR method were -24.18, -24.17, and -24.19 kcal/mol, respectively, and for ΔG_{vdw} , these methods gave 0.94, 1.04, and 0.99 kcal/mol, respectively. Because all of these methods were in agreement we only present the results of TI here.

Figure 3 illustrates one reason why computing ΔG_{vdw} required more windows than computing ΔG_{el} . The pointwise estimates of $dU_{vdw}(\lambda)/d\lambda$ near the peak converged considerably more slowly than the estimates of $dU_{el}(\lambda)/d\lambda$. In this figure the cumulative running estimates of dU_{vdw} (0.2)/ $d\lambda$ and dU_{el} (0.5)/ $d\lambda$ are shown as functions of simulation sampling time. The depiction of $\lambda = 0.2$ was illustrative because this point was particularly difficult to converge, while the choice of $\lambda = 0.5$ was arbitrary, as $dU_{el}(\lambda)/d\lambda$ converged essentially equally well at all values of λ . The large fluctuations in the running averages at the beginnings of these plots reflect the large variances of the underlying estimates. In these regions of the plots not enough estimates of the energies have been obtained to obtain converged estimates of the means. The estimates of dU_{vdw} (0.2)/ $d\lambda$ had a variance of 960 $(kcal/mol)^2$ and an autocorrelation time estimated from a plot of the autocorrelation function (data not shown) of about 8.0 ps, implying an approximate error in our estimate of the mean of about 1.2 kcal/mol. The estimates of dU_{el} (0.5)/ $d\lambda$ had a variance of 93 (kcal/mol)² and an autocorrelation time estimated from a plot of the autocorrelation function (data not shown) of about 3.5 ps, implying an approximate error in our estimate of the mean of about 0.3 kcal/mol. The greater difficulty in obtaining converged estimates of dU_{vdw} (0.2)/d λ is therefore attributable primarily to the larger variance of the samples, combined with a small increase in autocorrelation time.

In Figure 4, $\langle dU_{el}(\lambda)/d\lambda \rangle$ and $\langle dU_{vdw}(\lambda)/d\lambda \rangle$ are plotted as functions of λ for the extended peptide with 10 alanine residues. The near linearity (small concavity) of the plot of $\langle dU_{el}(\lambda)/d\lambda \rangle$ as a function of λ is typical for these curves and demonstrates why the LRT has been successful at predicting ΔG_{el} .^{3,8,9,41} In contrast, the curve of $\langle dU_{vdw}(\lambda)/d\lambda \rangle$ is sharply peaked, preventing the use of the LRT. To obtain good estimates of ΔG_{vdw} many windows are necessary to accurately sample this peak. The smoothness of these curves is one indication that the calculations were reasonably well converged, but pointwise convergence of the integrand is also necessary to obtain reliable estimates of free energy changes.

In Figure 5 $\Delta\Delta G_{el}$, $\Delta\Delta G_{vdw}$, and $\Delta\Delta G$ computed by alchemically changing peptides of lengths n - 1 into peptides of lengths n and the corresponding differences between the absolute solvation free energies for the extended peptides are shown as functions of n. That ΔG_{el} , ΔG_{vdw} , and ΔG were linear in n is evident from this figure because $\Delta\Delta G_{el}$, $\Delta\Delta G_{vdw}$, and $\Delta\Delta G$ were independent of n. The agreement between the results of the alchemical transformations and those obtained by taking differences between absolute solvation free energies is another indication that our free energy estimates were converged.

In Figure 6, ΔG_{el} , ΔG_{vdw} , and ΔG for the fixed extended peptides are plotted as functions of n, and Figure 7 shows the same data for the flexible peptides. All of these free energies were linear in n. For both the flexible and fixed alanine peptides γ_{el} and γ were negative, and for the fixed extended peptides γ_{vdw} was negative. The value of γ_{vdw} found here for the fixed extended peptides is similar to that obtained in our previous work,²⁵ taking into account the surface area differences between oligo-gly and oligo-ala. Some of the difference between the values in the two studies can perhaps be attributed to less extensive sampling and correspondingly worse convergence in our previous study. The finding that γ_{vdw} is negative for the extended peptides contradicts other studies and some theoretical expectations.^{2,13,15–23} In particular, a negative γ_{vdw} is difficult to reconcile with the notion that ΔG_{vdw} favors states with small surface areas (for a given volume) and thus drives the collapse. In the present case, the attractive interactions between the water and the peptides overwhelms the interface-formation penalty, leading to a negative γ_{vdw} . Similarly when we studied the solvation free energy of extended glycine oligomers we also found that ΔG , ΔG_{el} , and ΔG_{vdw} were linear in *n*.²⁵ These quantities are therefore apparently linear in *n*, regardless of the presence of the side chain for this type of system.

A possible resolution of our findings of a negative γ_{vdw} with expectations of a positive value is suggested by comparing our results for our fixed (constrained) peptides to our analogous results for flexible peptides. As seen from Figure 7, when we measured ΔG_{vdw} for the flexible peptides, which could sample natural ensembles of compact conformations, γ_{vdw} was positive. Because most larger proteins do not form extended conformations in solution, that γ_{vdw} may be positive for most proteins does not contradict either the results presented here or the results in our previous studies. The idea that ΔG_{vdw} drives collapse by favoring conformations with small surface areas may therefore generally, although not universally, hold for proteins. Regardless, the results presented here indicate that ΔG_{vdw} as defined in this study does not behave as expected for the classical hydrophobic effect.^{42,43}

A potential alternative resolution of the seeming contradiction that longer peptides and proteins collapse despite potentially having a negative γ_{vdw} is that the sign of γ_{vdw} is not important, as long as γ_{vdw} is small, because the collapse is driven by intramolecular interactions. To begin to investigate this hypothesis, we computed $\langle U_{vdw}^{in} \rangle$, $\langle U_{vdw}^{in,r12} \rangle$, and $\langle U_{vdw}^{in,r6}\rangle$ for our peptide with 6 alanine residues with and without positional constraints (Table 1). Both $\langle U_{vdw}^{in,r12} \rangle$, and $\langle U_{vdw}^{in,r6} \rangle$ are larger in magnitude for the flexible peptide, as would be expected simply because the atoms in the peptide are, on average, closer together, but $\langle U_{vdw}^{in,r6} \rangle$'s increase in magnitude is larger than that of $\langle U_{vdw}^{in,r12} \rangle$, causing the flexible peptide's $\langle U_{vdw}^{in} \rangle$ to be more favorable than that of the extended peptide. This observation is consistent with the hypothesis that changes in U_{vdw}^{in} favor protein collapse. However, $\langle U_{vdw}^{in} \rangle$ of the extended peptide differs from that of the flexible peptide by only 7.26 kcal/mol, and the two energies have standard deviations of 1.56 and 2.63 kcal/mol, respectively. Many of the conformations assumed by the extended peptide have U_{vdw}^{in} that are less favorable than those of many of the conformations assumed by the flexible peptides. The large fluctuations in these energies may call into question the simple idea that the collapse of the protein is driven by changes in U_{vdw}^{in} .

Conclusions

In this article, we computed ΔG , ΔG_{el} , and ΔG_{vdw} for a series of 10 alanine peptides ranging in length from 1 to 10 alanine residues. The calculations were performed both with fixed, extended conformations of the peptides and again for some of the peptides without positional constraints. We verified that our free energy estimates were converged by computing them with three different methods, TI, FEP, and the BAR method, which all gave consistent answers. All of ΔG_{el} , ΔG_{vdw} , and ΔG were linear in *n*, and both γ_{el} and γ were negative for both fixed and flexible peptides. Surprisingly, we found that γ_{vdw} was negative for the extended peptides. Apparently the favorable interactions between the water and the peptides were more important than the cost of forming a dry bubble. This result contradicts the expectations of theory and simulation results on small molecules and model systems, which predict that ΔG_{vdw} should increase with surface area, and thus $n.^{2,13,15-23}$

The calculations on flexible peptides, however, may resolve this apparent contradiction. When the peptides were not constrained and allowed to collapse, γ_{vdw} was positive. Because most longer peptides and proteins in solvent rarely assume extended conformations but rather assume collapsed or globular conformations, the assumption that γ_{vdw} should be positive may be true for most proteins. Our findings are therefore not inconsistent with ΔG_{vdw} being the driving force behind the initial collapse during protein folding.

An alternative hypothesis of protein folding is that the initial collapse is driven by intramolecular interactions.²⁸ As we demonstrate above, the flexible peptide with 6 residues

had a more favorable $\langle U_{vdw}^{in} \rangle$ than the extended form. However, the fluctuations in these energies were large, potentially casting doubt on the idea that U_{vdw}^{in} drives the initial collapse during folding. The contribution of intramolecular energies to collapse merits further investigation.

Systematic changes in ΔG with surface area can help explain the initial collapse of the protein during folding. Our finding of a negative γ indicates the well known fact that water is a marginally good solvent for protein oligomers and favors transfer from the gas phase to water. We did not anticipate that γ_{vdw} would be negative for extended and positive for collapsed (flexible) oligomers. Perhaps these results should not have been unexpected because, barring large compensating energy terms, if γ_{vdw} were large and negative then proteins would be extended in solution and if it were large and positive then they would immediately collapse. The need to counterbalance large cavity-formation free energies would place strong constraints on biological systems. If this hypothesis is true, then the sign of γ_{vdw} is less important than that it is small. We will further examine the pronounced conformational dependence of γ_{vdw} in future studies.

Acknowledgments

The Robert A.Welch Foundation (H-0037), the National Science Foundation (CHE-1152876) and the National Institutes of Health (GM-037657) are thanked for partial support of this work. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, located at the Pacific Northwest National Laboratory and in part using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.

References

- Babu CS, Tembe BL. The Role of Solvent Models in Stabilizing Nonclassical Ions. J. Chem. Sci. 1987; 98:235–240.
- 2. Baldwin R. Energetics of Protein Folding. J. Mol. Biol. 2007; 371:283-301. [PubMed: 17582437]
- Cramer CJ, Truhlar DG. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Revs. 1999; 99:2161–2200. [PubMed: 11849023]
- Grochowski P, Trylska J. Continuum Molecular Electrostatics, Salt effects, and Counterion Binding–A Review of the Poisson–Boltzmann Theory and its Modifications. Biopolymers. 2008; 89:93–113. [PubMed: 17969016]
- Bashford D, Case DA. Generalized Born Models of Macromolecular Solvation Effects. Ann. Rev. Phys. Chem. 2000; 51:129–152. [PubMed: 11031278]
- Lounnas V, Pettitt BM, Phillips GNA Jr. Global Model of the Protein-Solvent Interface. Biophys. J. 1994; 66:601–614. [PubMed: 8011893]
- Makarov V, Pettitt BM, Feig M. Solvation and Hydration of Proteins and Nucleic Acids: A Theoretical View of Simulation and Experiment. Acc. Chem. Res. 2002; 35:376–384. [PubMed: 12069622]
- Lin B, Pettitt BM. Electrostatic Solvation Free Energy of Amino Acid Side Chain Analogs: Implications for the Validity of Electrostatic Linear Response in Water. J. Comput. Chem. 2011; 32:878–885. [PubMed: 20941733]
- Levy RM, Gallicchio E. Computer Simulations with Explicit Solvent: Recent Progress in the Thermodynamic Decomposition of Free Energies and in Modeling Electrostatic Effects. Ann. Rev. Phys. Chem. 1998; 49:531–567. [PubMed: 9933909]
- 10. Born M. Volumes and Heats of Hydration of Ions. Z. Phys. 1920; 1:45-48.
- Tanford C. The Electrostatic Free Energy of Globular Protein Ions in Aqueous Salt Solution. J. Phys. Chem. 1955; 59:788–793.
- Gilson MK, Rashin A, Fine R, Honig B. On the Calculation of Electrostatic Interactions in Proteins. J. Mol. Biol. 1985; 184:503–516. [PubMed: 4046024]

- Lee B. The Physical Origin of the Low Solubility of Nonpolar Solutes in Water. Biopolymers. 1985; 24:813–823. [PubMed: 4016216]
- 14. Ashbaugh HS, Kaler EW, Paulaitis ME. A "Universal" Surface Area Correlation for Molecular Hydrophobic Phenomena. J. Am. Chem. Soc. 1999; 121:9243–9244.
- Lum K, Chandler D, Weeks JD. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B. 1999; 103:4570–4577.
- Huang DM, Chandler D. The Hydrophobic Effect and the Influence of Solute-Solvent Attractions. J. Phys. Chem. B. 2002; 106:2047–2053.
- 17. Pratt LR. Molecular Theory of Hydrophobic Effects: "She is too Mean to have her Name Repeated". Ann. Rev. Phys. Chem. 2002; 53:409–436. [PubMed: 11972014]
- Chandler D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature. 2005; 437:640– 647. [PubMed: 16193038]
- Ghosh T, Kalra A, Garde S. On the Salt-Induced Stabilization of Pair and Many-Body Hydrophobic Interactions. J. Phys. Chem. B. 2005; 109:642–651. [PubMed: 16851057]
- Rajamani S, Truskett TM, Garde S. Hydrophobic Hydration From Small to Large Lengthscales: Understanding and Manipulating the Crossover. Proc. Natl. Acad. Sci. USA. 2005; 102:9475– 9480. [PubMed: 15972804]
- Meyer EE, Rosenberg KJ, Israelachvili J. Inaugural Article: Recent Progress in Understanding Hydrophobic Interactions. Proc. Natl. Acad. Sci. USA. 2006; 103:15739–15746. [PubMed: 17023540]
- 22. Tomonari S, Hideo S. Integral Equation Study of Hydrophobic Interaction: A Comparison Between the Simple Point Charge Model for Water and a Lennard-Jones Model for Solvent. J. Chem. Phys. 2007; 126:144508. [PubMed: 17444724]
- 23. Ball P. Water as an Active Constituent in Cell Biology. Chem. Revs. 2008; 108:74–108. [PubMed: 18095715]
- 24. Ikeguchi M, Nakamura S, Shimizu K. Molecular Dynamics Study on Hydrophobic Effects in Aqueous Urea Solutions. J. Am. Chem. Soc. 123:677–682. [PubMed: 11456580]
- Hu CY, Kokubo H, Lynch GC, Bolen DW, Pettitt BM. Backbone Additivity in the Transfer Model of Protein Solvation. Protein Sci. 2010; 19:1011–1022. [PubMed: 20306490]
- Kokubo H, Hu CY, Pettitt BM. Peptide Conformational Preferences in Osmolyte Solutions: Transfer Free Energies of Decaalanine. J. Am. Chem. Soc. 2011; 133:1849–1858. [PubMed: 21250690]
- Gallicchio E, Kubo MM, Levy RM. Enthalpy-Entropy and Cavity Decomposition of Alkane Hydration Free Energies: Numerical Results and Implications for Theories of Hydrophobic Solvation. J. Phys. Chem. B. 2000; 104:6271–6285.
- Rose GD, Fleming PJ, Banavar JR, Maritan A. A Backbone-Based Theory of Protein Folding. Proc. Natl. Acad. Sci. USA. 2006; 103:16623–16633. [PubMed: 17075053]
- 29. Case, DA., et al. Amber 12. San Francisco: University of California; 2012.
- Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003; 24:1999–2012. [PubMed: 14531054]
- Jorgensen WL. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983; 79:926–935.
- Best RB, Buchete N-V, Hummer G. Are Current Molecular Dynamics Force Fields too Helical? Biophys. J. 2008; 95:L07–L09. [PubMed: 18456823]
- 33. Best RB, Mittal J, Feig M, MacKerell AD Jr. Inclusion of Many-Body Effects in the Additive CHARMM Protein CMAP Potential Results in Enhanced Cooperativity of α-Helix and β-Hairpin Formation. Biophys. J. 2012; 103:1045–1051. [PubMed: 23009854]
- Beauchamp KA, Lin Y-S, Das R, Pande VS. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 diverse NMR Measurements. J. Chem. Theory Comput. 2012; 8:1409–1414. [PubMed: 22754404]

- Cino EA, Choy W-Y, Karttunen M. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. J. Chem. Theory Comput. 2012; 8:2725–2740. [PubMed: 22904695]
- 36. Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.3r1. 2010
- Labute P. Protonate3D: Assignment of Ionization States and Hydrogen Coordinates to Macromolecular Structures. Proteins. 2009; 75:187–205. [PubMed: 18814299]
- Shirts M, Pande V. Comparison of Efficiency and Bias of Free Energies Computed by Exponential Averaging, the Bennett Acceptance Ratio, and Thermodynamic Integration. J. Chem. Phys. 2005; 122:144107. [PubMed: 15847516]
- Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF. Avoiding Singularities and Numerical Instabilities in Free-Energy Calculations Based on Molecular Simulations. Chem. Phys. Lett. 1994; 222:529–539.
- Zacharias M, Straatsma TP, McCammon JA. Separation-Shifted Scaling, a New Scaling Method for Lennard-Jones Interactions in Thermodynamic Integration. J. Chem. Phys. 1994; 100:9025– 9031.
- Åqvist J, Hansson T. On the Validity of Electrostatic Linear Response in Polar Solvents. J. Phys. Chem. 1996; 100:9512–9521.
- 42. Kauzmann W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 1959; 14:1–63. [PubMed: 14404936]
- 43. Tanford C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc. 1962; 84:4240–4247.

The 10 alanine peptide oligomers examined in this study in their equilibrated extended conformations created in PyMOL. 36

Figure 2.

A free energy cycle that could be used to compute the change $(\Delta\Delta G)$ in solvation energy between a peptide of length N and one of length N - 1. A blue background indicates that a molecule is in explicit solvent, while a white background indicates that it is in vacuum. The large circles represent the first N - 1 residues of an alanine peptide, the small circles represent the cap on the peptide of length N - 1, and the medium-sized circle represents the N'th residue of the peptide of length N. A black circle means that the atoms in question are charged, and a white circle means that they are uncharged.

Kokubo et al.

Figure 3.

The cumulative running estimates of the integrands (a. $dU(0.2)/d\lambda$ for the van der Waal's (cavity-formation) and b. $dU(0.5)/d\lambda$ for the electrostatic solvation free energy calculations) of the thermodynamic integration free energy calculations as functions of simulation time for the extended peptide with 10 alanine residues.

Kokubo et al.

Figure 4.

The integrands $(\langle dU (\lambda)/d\lambda \rangle$ for a. the van der Waal's (cavity-formation) and b. the electrostatic solvation free energy calculations) of the thermodynamic integration free energy calculations as functions of λ for the extended peptide with 10 alanine residues.

Figure 5.

The differences between the solvation free energies of peptides of length n and those of length n - 1 plotted as functions of n. Squares represent the results of alchemical free energy calculations, and diamonds represent the differences between the free energy estimates computed by thermodynamic integration. a. The total solvation free energy. b. The van der Waal's (cavity-formation) component of the solvation free energy. c. The electrostatic component of the solvation free energy.

NIH-PA Author Manuscript

Figure 6.

Solvation free energies of the extended alanine peptides plotted as functions of the number (N) of residues in the peptide. a. The total solvation free energy. b. The van der Waal's (cavity-formation) component of the solvation free energy. c. The electrostatic component of the solvation free energy.

Figure 7.

Solvation free energies of the flexible alanine peptides plotted as functions of the number (n) of residues in the peptide. a. The total solvation free energy. b. The van der Waal's (cavity-formation) component of the solvation free energy. c. The electrostatic component of the solvation free energy.

Table 1

The intramolecular van der Waal's energy $(\langle U_{vdw}^{in} \rangle)$ and its repulsive $(\langle U_{vdw}^{in,12} \rangle)$ and attractive $(U_{vdw}^{in,6})$ components for both a flexible peptide with 6 alanine residues and a similar peptide constrained to maintain an extended conformation.

	flexible	extended
$\langle U_{vdw}^{in} \rangle_{(\text{kcal/mol})}$	-0.7	6.6
$\langle U_{vdw}^{in,r12} \rangle_{\text{(kcal/mol)}}$	61.0	51.2
$\langle U_{vdw}^{in,r6} \rangle_{\text{(kcal/mol)}}$	-61.7	-44.7