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Abstract

We present a customized high content (image-based) and high throughput screening algorithm for the quantification of
Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely
segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the
cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total
number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the
number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for
both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need
for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm
using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell
detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the
algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity.
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Introduction

Chagas disease is a tropical neglected disease caused by the

flagellate protozoan Trypanosoma cruzi, transmitted to humans by

the Triatominae insects (kissing bug), by the ingestion of food

contaminated with live forms of the parasite, or through

contaminated blood transfusion and organ donation. Chagas

disease is endemic in Latin America, where it is estimated to affect

10 million people [1]. The disease manifestation can range from

asymptomatic to flu-like fever in the acute stage, and life-

threatening heart and digestive system disorders in the chronic

stage, years after the beginning of infection. Due to global trends of

migration, massive numbers of infected individuals have carried

and transmitted the parasite to non-endemic regions such as North

America, Europe, Japan and Australia especially through blood

transfusion [2]. The only two available chemotherapies are

Benznidazole and Nifurtimox, showing both high toxicity with

severe side effects and being sometimes ineffective [3]. Therefore,

new drugs are urgently needed to treat Chagas disease.

The screening of large collections of chemical compounds is one

initial step towards the discovery of a new and better treatment. In

this aspect, high content screening (HCS) technologies have

advanced the discovery of new chemical entities to treat neglected

diseases [2–7]. Automated image acquisition technology and

computerized image mining techniques can provide unique multi-

parametric and highly accurate information of chemical com-

pounds activity against the intracellular parasite, enabling the

implementation of high-throughput experimentation [4].

We describe a fully automated image analysis algorithm for

HCS in anti-trypanosomal drug discovery. The algorithm is

capable of interpreting the infection and quantifying the activities

of the anti-parasitic compounds by precise detection of parasite

and host cell nuclei, as well as host cell cytoplasm in the images.

Additionally the algorithm can estimate the compound cytotox-

icity over host cells by counting the total number of cells in the

acquired images, thus eliminating the need for secondary assays to

assess compound cytotoxicity and determining the selectivity of a

compound. We compared the algorithm by comparison with
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manual inspection of fluorescence images of a Draq5 stained

human cell line infected with Trypanosoma cruzi. This comparison

have shown that the difference of the segmented nuclei numbers

from the algorithm and manual inspection results was consistently

less than 5%. Finally, dose-response curves (DRC’s) with

Benznidazole and Nifurtimox demonstrated that the algorithm

was capable of precisely detecting both infected host cells and their

intracellular parasites.

Materials and Methods

Parasite Culture, Image Acquisition Process and Image
Analysis Algorithm

The experimental assay was set up by the following protocol:

The U2OS human cell (HTB-96, ATCC, Manassas, VA) was used

for the in vitro assay preparation and the cells were infected with

wild type T. cruzi and GFP-tagged T. cruzi Tissue Culture

Trypomastigotes (TCT) [8]. Metacyclic trypomastigotes were

obtained from a late stage epimastigote in order to generate this

stage of parasites. The metacyclic trypomastigotes were used to

infect the LLC-MK2 cell line (CCL-7, ATCC, Manassas, VA).

Seven days after the infection, supernatant containing TCT

parasites was collected and used to re-infect new cultures of LLC-

MK2. Parasites from days 6, 7 and 8 were collected from the

supernatant of the LLC-MK2 infected culture and used to infect

U2OS in the assay plates. Re-infection was performed with

parasites from the 7th day after the previous infection. To perform

the in vitro infection in U2OS, cells and parasites were mixed in

DMEM-Low glucose media, supplemented with 2% heat-inacti-

vated Fetal Bovine Serum. This homogeneous mixture of U2OS

cells and parasites was seeded into the 384-well plates at 50 ml/

well and incubated for 48 hours at 37uC, 5% CO2. After

incubation was done, 12% paraformaldehyde (PFA) in PBS

solution was added and 80 ml of media was removed using EL406

BioTek automated liquid handler. The cells and parasites were

stained with 5 mM Draq5 (Biostatus) in 4% PFA solution. Infection

with GFP-tagged T.cruzi was performed same way as wild type

T.cruzi. Images are taken at 635 nm and 488 nm excitation filter

in Operetta imaging system.

Following the host cell and the parasite staining as described

above, four microscopic image fields (of 136061024 pixel2

= 6806512 mm2) were acquired from each assay well using an

automated Operetta 2.0 imaging system (Perkin Elmer) with

conditions of 635 nm filter of 90% excitation, 206 lens

magnification, 0.45 numerical aperture, 300 ms exposure time

and non-confocal optic mode. The acquired images were

transferred to a central image database in real-time and saved as

16-bit TIFF format (unsigned integer of range 0 to 65535). The

stored images were accessed through an in-house developed image

analysis software platform named Image Mining (IM). This

platform serve as an interface between the central image database

(from the Operetta) and the dedicated image analysis algorithm

doing the image analysis, and can process large amounts of image

data generated [9]. The developed algorithm was implemented as

a ‘plug-in’ to the IM platform, so that is able to use the automated

analysis capability of the IM platform.

Since Draq5 was used to label DNA of both host cells and T.

cruzi parasites, host cell and parasite information were mixed into

one single channel. Image properties can be summarized as:

1) The intensity range of the nuclei and parasites was 1400 to

1800, and cytoplasm was 300 to 500.

2) Host cell nuclei were typically clustered or very close together.

3) There were objects of heterogeneous high intensity such as

apoptotic cells or cells under division with condensed DNA.

4) The images were often subject to an illumination bias, which

occurred during the image acquisition process.

Figure 1 shows a control image of infected and untreated host

cells (shown in (A)), a control image of uninfected host cells (shown

in (B)), a 3D surface plot of an infected host cell (shown in (C)) and

uninfected host cell (shown in (D)). Note that the intensity scale of

negative and positive control images in Figure 1 have been

changed for illustrational purpose. The original images of

Figure 1A and 1B are presented in Figure S1 and S2 respectively.

Based on the above properties, the algorithm segmented regions

containing nuclei, identified clustered nuclei and split them into

individual nuclei, segmented cytoplasm, and finally detected

parasites. In short, this algorithm consisted of five major parts

(Figure S3):

1) Image enhancement by intensity equalization and shading

correction.

2) Nuclei region segmentation by a new method based on the

Laplacian of Gaussian and morphological operations.

3) Individual nuclei segmentation by the gradient flow tracking

segmentation.

4) Cytoplasm segmentation by the seeded cell segmentation.

5) Parasites detection by the local extreme detection method.

Image Enhancement Process
Before entering the main part of the algorithm, raw images of T.

cruzi go through a two-step image-enhancement process in order to

obtain more reliable results.

The first enhancement step is intensity equalization. The images

often had objects with high intensity such as apoptotic cells or cells

during mitosis (the bright objects in Figure 2A). The intensity levels

of these objects were usually 3,5 times higher than the average

intensity of the nuclei and parasites, and 10,20 times higher than

the cytoplasm signal. Furthermore, on average, the occupied area

by the bright objects was at most 1% of the total image area. We

used the cumulative intensity histogram of the raw images to

rescale and equalize the intensity distribution. Let f be a raw

image. Based on the above observations, the algorithm calculated

the intensity of higher 1% cumulative intensity level Tf of f

(Figure 2B), and created the intensity equalized image g by

g(x,y)~ min (f (x,y),Tf )

as shown in Figure 2C.

The second enhancement step is correcting the illumination

bias. The images were subject to an illumination bias, which

occurred during the image acquisition process (Figure 2D). The

bias could be a consequence of poor physical imaging conditions

such as uneven well topology, resulting in a slowly changing

intensity across the image, corrupting the segmentation and

parasite detection results. This artifact is well known in image

processing, and we have used the illumination bias correction

method previously proposed [10]:

Let g be an image, having biased illumination. Then each pixel

intensity g(x,y) could be considered as a combination of its

original intensity g0(x,y) and an illumination bias artifact b(x,y),
given by
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g(x,y)~g0(x,y):b(x,y):

The illumination bias b was modeled and estimated by using the

Legendre polynomial. The 1-dimensional n-th order Legendre

polynomial pn is defined by the following recurrence relation [11]:

p0(x)~1

p1(x)~x

pn(x)~
(2n{1)x

n
pn{1(x){

n{1

n
pn{2(x)

for x[½{1,1�. A set of 2-dimentional polynomial basis Pm,n can be

computed by a linear combination of 1-dimensional Legendre

polynomials. Therefore, (m,n)-th order polynomial images Pm,n are

computed given the following formula:

Pm,n(x,y; A)~
1

(nz1)(mz1)

Xn

j~0

Xm

i~0

ai,jpi

2x

w
{1

� �
pj

2y

h
{1

� �

where (x,y) is a pixel position in g, w and h are width and height of

g respectively, and A~(ai,j) for ai,j[R is a m|n matrix.

The evaluation of A with respect to g is based on a least-square

minimization of the following function

Em,n(A)~
X

y

X
x

Pm,n(x,y; A){g(x,y)ð Þ2
 !1

2

using the conjugate gradient minimization method [12]. The

minimization result Pm,n(x,y; A) corresponds to the estimated bias
~bb(x,y) (Figure 2E), and therefore the original intensity g0(x,y) is

estimated by

g0(x,y)~
g(x,y)

b(x,y)
&

g(x,y)

~bb(x,y)

as shown in Figure 2F.

Nucleus Region Segmentation Process
The nucleus region detection was an important task because

these regions were used as input in the subsequent steps of the

algorithm: the individual nuclei identification, cytoplasm segmen-

tation and parasite detection processes. In previous research,

thresholding and size-based filtering, median filtering, and top-hat

filtering methods have been presented to segment nuclei regions

[6,7]. However, those approaches were not suitable for our T. cruzi

images for the following reasons:

1) Nuclei and parasites had similar intensity. Thus it was difficult

to accurately segment nuclei regions by morphological

Figure 1. T. cruzi fluorescence images. (A) Negative control image (infected host cells). (B) Positive control image (uninfected host cells). (C) 3D
surface plot of infected host cells in the yellow boxed region of (A). (D) 3D surface plot of uninfected host cells in the yellow boxed region of (B). Note
that intensity ranges of (A) and (B) are rescaled for enhanced visibility.
doi:10.1371/journal.pone.0087188.g001
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filtering used in [6,7] when parasites were closely located to

nuclei (Figure 3A). The parasites may not be separated from

nuclei boundaries.

2) Spatial density of parasites was higher than the images used in

[6,7], and their appearances were more blurred (Figure 3A),

therefore the intensities of the regions between parasites were

higher than normal cytoplasm intensity. Thus parasites may

be segmented incorrectly as a part of nucleus.

3) Some nuclei and parasites had very high intensities (Figure 3B

and 3C). This could also cause incorrect segmentation results.

In order to solve the difficulties, and to have more precisely

segmented nuclei regions, we introduced a new method for

nucleus region segmentation based on the discontinuity detection

and morphological processing methods. The basic idea of the

method was to suppress parasite signals before applying morpho-

logical operations in order to minimize the deformation of the

nuclei regions. The nuclei regions were segmented by the

following sequential steps:

1) Compute the Laplacian of Gaussian (LoG) of an input image

(Figure 4A) in order to filter parasites signals and inner

textures of nuclei (Figure 4B).

2) Apply the morphological gray-scale dilation operator to 1) in

order to expand the sphere of influence of the parasite signals

(Figure 4C). The structuring element is a rectangle of 767

pixels2.

3) Apply a Gaussian smoothing filter to 2) in order to have

smoothed parasites sphere map (Figure 4D). The standard

deviation s of the Gaussian smoothing kernel was chosen to

be 3.

4) Subtract the parasites sphere map 3) from the original image.

Then the parasites have been deformed while the nuclei keep

their basic morphology (Figure 4E).

5) Apply morphological gray-scale opening operator to 4) in

order to remove parasites signals completely (Figure 4F). The

structuring element is a rectangle of 565 pixels2.

6) Apply Gaussian smoothing filter to 5) in order to have smooth

boundaries of nuclei regions (Figure 4G). The standard

deviation s of the Gaussian smoothing is 2.

7) Separate nuclei regions by the Otsu’s threshold method [13]

(Figure 4H).

The size chosen for the windows and kernels in the step 2), 3), 5)

and 6) were all based on observation of the average parasite size

(found to be 565 pixels2). The comparison results of the previous

methods and proposed method for the difficult cases are given in

the result section.

Individual Nucleus Segmentation Process
After the nuclei regions have been identified, the next step was

splitting clustered nuclei into individual nuclei. This was also a

crucial step because the individual nucleus was used to count total

number of host cells. They were also used as the seed regions to

segment the cytoplasm, and therefore have a huge impact on the

final segmentation results.

We identified isolated and clustered regions, before further

processing. The following two different criteria were employed to

identify these clusters. The first criterion was the existence of

concave corner points on the boundary. If an object was an

isolated nucleus, then the object boundary should not have any

concave corner points. On the other hand, if there were concave

corner points on the boundary, then the object was identified as a

Figure 2. Image enhancement process. (A) Original image of maximum intensity 6461. (B) Cumulative histogram of intensity. The maximum
intensity is rescaled to the intensity of higher 1% cumulative intensity level. (C) Intensity equalized image. The maximum intensity has decreased to
1805. (D) Estimated shading map of (C). (E) Biased illumination was corrected from (C). The numbers in the boxes of (C) and (E) are average intensities
of nuclei in the yellow dashed circles.
doi:10.1371/journal.pone.0087188.g002
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nuclei cluster (Figure 4I). We used the osculating circle estimation

method [14] to detect the concave corner points of an object

boundary based on the curvature. The method can be briefly

described as: For the 2-dimensional integer grid Z|Z, let

X~ x1, � � � ,xnDxi~(xi,yi)[Z|Zf g be the chain code [15] of

boundary of an object, that is xi belongs to the boundary and xi+1

is a neighboring pixel of xi. Then, the osculating circle

Fxi
(x)~a1(x2zy2)za2xza3yza4~0

at a boundary point xi with respect to a given window size p§1 is

computed by a least square minimization problem

Minimize

x2
i{pzy2

i{p xi{p yi{p 1

..

...
...
...
.

x2
izpzy2

izp xizp yizp 1

0
BB@

1
CCA

a1

a2

a3

a4

0
BBB@

1
CCCA

���������

���������
2

Subjectto a1,a2,a3,a4ð Þk k2~1

8>>>>>><
>>>>>>:

:

Then the center z(xi) and radius r(xi) of the osculating circle at

xi are given by

z(xi)~(z1,z2)~ {
a2

2a1
,{

a3

2a1

� �
, r(xi)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2za2
3

4a2
1

{
a4

a1

s

and therefore the local curvature of the boundary at xi is

k(xi)~sign z(xi)ð Þ 1

r(xi)

where sign z(xi)ð Þ~1 if z(xi) is inside of the object region,

otherwise sign z(xi)ð Þ~{1. If a point on the boundary had a

negative local minimum curvature (red arrows in the bottom-right

plot of Figure 4I), then the point was a concave corner point (red

dots in the top-right image of Figure 4I).

The second criterion used was based on the convex hull [16].

The convex hull of an object was defined as the minimal convex

set of pixels containing the object. If an object was isolated

nucleus, then the convex hull of the object was very close (or

exactly same) to the object itself. Thus, we can identify isolated and

clustered nuclei by calculating the ratio between the object area

and the convex hull area, named convexity, given by

convexity~
area (object)

area (convex hull)
|100(%):

If the convexity of an object was less than a threshold, then the

object was also identified as a nuclei cluster (Figure 4J). We set the

threshold to 98%, which was a number obtained through various

tests. If an object satisfied one of the above-mentioned criteria

(concavity or convexity), then the object was identified as a cluster

of nuclei.

After identification, the next step was to split the clusters into

individual nuclei. For this we applied the gradient flow tracking

(GFT) segmentation method [17]. The method was composed of

three steps: gradient vector diffusion, gradient flow tracking, and

adaptive thresholding. Let f be an image and Vf be the gradient

vector field of f defined by

Vf (x)~+f (x)~ Gx,Gy

� �
(x)

where

Gx(x)~f (xz1,y){f (x{1,y)

Gy(x)~f (x,yz1){f (x,y{1) for x~(x,y):

The gradients are based on first-order derivatives, hence Vf is

very sensitive to noise. Therefore, Vf needs to be regularized

before the tracking step. We used the Perona-Malik anisotropic

diffusion filter [18] to diffuse Gx and Gy in order to suppress

influence of noise and regularize gradient vectors while keeping

the principle morphology of Vf . The Perona-Malik anisotropic

diffusion filter is an initial value problem of the diffusion equation

ut(x,t)~div c D+uD2
� �

+u
� �

, 0vtƒT

u(x,0)~g(x)

(

Figure 3. Nuclei region segmentation results for examples of
difficult cases. (A) Parasites are too close to a nucleus. (B) Nucleus
intensity is too high. (C) Parasites intensities are too high. (Second
row) Parasite-removal images by the proposed method. (Third row)
Nuclei masks by Otsu’s thresholding method applied to the second row
images. (Fourth row) Boundaries of segmented nuclei regions (green
contours) overlapped to the original images.
doi:10.1371/journal.pone.0087188.g003
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where T is a maximum diffusion time, and c is an edge seeking

function satisfies lims??c(s)~0 so that diffusion process stops at

the location of edges. One of the most widely used edge seeking

functions is c(s)~
n

1zs2
�

l2
lw0ð Þ

Figure 4. Sequential steps of individual nucleus segmentation process. (A) Enhanced image. (B) , (H) Nuclei region segmentation. (B)
Laplacian of Gaussian. (C) Gray-scale dilation. (D) Gaussian smoothing. (E) Subtract (D) from (A). (F) Gray-scale opening. (G) Gaussian smoothing. (H)
Segmented nuclei regions obtained by the Otsu’s thresholding method. (I) , (J) Two criteria for identifying clustered nuclei. (I) Identification
based on boundary curvature. (J) Identification based on convexity. Red arrows and dots in (I) represent local minimum curvature points and
corresponding found corner points. In both (I) and (J), red contours refer isolated nucleus and green contours refer clustered nuclei. (K) , (L)
Clustered nuclei splitting using GVF segmentation method. (K) Gradient vector fields (red arrows) and the sink points (green dots) of
clustered nuclei. (L) Splitting results.
doi:10.1371/journal.pone.0087188.g004
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where n is a parameter controlling the length scale and l is a

threshold tuning the edge seeking sensitivity. The Perona-Malik

anisotropic diffusion filter is applied to Gx and Gy separately to

diffuse Vf . Let DVf ~(DGx,DGy) be the diffused gradient vector

field. Then DGx and DGy are given as the solution u(x,T) of the

diffusion equation by setting the initial condition g(x)~Gx(x) and

g(x)~Gy(x) respectively.

The gradient flow tracking step is to split the individual nucleus

by clustering gradient vectors. In DVf (ideally) the vectors always

flow toward the sinks, which correspond to the centers of cell

nuclei. To follow the gradient vectors until they stop at the sinks,

the gradient flow tracking procedure is performed as following:

from any starting point x, the next point x0 that x flows through in

DVf is computed as

x0~xzround
v(x)

v(x)k k

� �
, v(x) [ DVf

and the angle between x and x0 is determined as

h~ arccos
v(x)

v(x)k k ,
v(x0)

v(x0)k k , 0ƒhvp:

The tracking procedure is continued while h is less than 90

degrees. If h is greater than 90 degrees the tracking procedure is

stopped since a sink is reached. In practice, a segmentation of the

image into cell nuclei could be obtained by starting a gradient flow

tracking procedure from every point in the image. The set of pixels

that flow to the same sink were segmented as a nucleus. The

adaptive thresholding step was to remove background regions

from the segmented nuclei regions. The Otsu’s thresholding

method [13] was applied for the purpose.

The gradient vector field (the set of red arrows in Figure 4K)

was calculated from each nuclei cluster and the gradient vectors

which converged to a same sink (green dots in Figure 4K) are

clustered as an individual nucleus (Figure 4L). Examples of the

individual nucleus segmentation process applied to a full size

images are given in Figure S4A and S4B. Most of the clustered

nuclei were well separated, but the process gave wrong segmen-

tation results when touching boundaries of nuclei were ambiguous

or one of the nuclei in a cluster has strong intensity.

Cytoplasm Segmentation Process
In the images, the intensity range of the cytoplasm (300,500) is

much lower than the intensity range of nuclei and parasites

(1400,1800) as shown in Figure 5A. Therefore, it is necessary to

adjust the image intensity range before segmenting cytoplasm in

order to avoid the influence of the brightness difference.

To estimate the average intensity of the cytoplasm, we used the

k-means clustering segmentation method [19]. The number of

clusters k was chosen to be five because there are five different

intensity layers: background, cytoplasm, nuclei and parasites of

low intensity, middle intensity and high intensity. The average

intensity mc of the cytoplasm was then given by the average

intensity of the second-bottom layer of the k-means clustering

result, which is shown as blue regions in Figure 5B. In addition,

the average intensity mn of the nuclei regions was calculated using

the segmented nuclei regions produced by the nucleus region

segmentation process. Then the intensity adjusted image g of f

was calculated by

g(x,y)~ min f (x,y),fmax
: mc

mn

� �

where fmax denotes the maximum intensity of f (Figure 5C).

The individual cytoplasm regions were then segmented from g

by the seeded cell segmentation method [20]. The seeded cell

segmentation method was a region growing method developed for

segmenting cells, and especially the irregular cytoplasm regions.

The cell model used in the method assumed that the boundaries of

touching cells form valley, which means that the touching

boundaries are darker than inner cell regions. The region growing

process started from pre-defined seed points or regions with the

growing criterion given by a weighted distance, and ended when

the growing regions reach to the background or other growing

regions.

Let the set of seed regions S~ S1, � � � ,Snf g be the set of

individual nuclei regions produced in the individual nucleus

segmentation process (colored contours in Figure 5C). Then, let

Dg be the image domain of the image g, and d be the Euclidean

distance. Then the distance from a pixel x[Dg to a region Si with

respect to d is defined by

�dd(x,Si)~
min d(x,y)Dy[Sif g if x =[Si

0 if x[Si

	
,

and the distance from x to the set of seed regions S with respect to
�dd is defined by

d(x,S)~
min �dd(x,Si)DSi[S


 �
if x Si for all Si[S

0 if x[Si for any Si[S

(
:

In the above d(x,S) is called the Euclidean distance map of any

pixel in x to the region S.

The weighted distance used in the method was computed from

the edge strength given by the Hessian matrix based discontinuity

detection filter [21,22] (Figure 5D). Let H be the Hessian of the

image g, and l1, l2 be the eigenvalues of H which have larger and

smaller absolute values respectively. The Hessian based disconti-

nuity detection filter r(x) for each pixel x is defined by

r(x)~
l1=lmin if l1v0

0 if l1§0

	

where lmin denotes the smallest eigenvalue over all pixels in the

image, which in practice will always be smaller than zero. Then

r(x) has range ½0,1�, r(x)&1 if x is a pixel on the discontinuity

structure, and r(x)&0 when x lies on a flat region. The weighted

distance dw is then defined by

dw(x,S)~
(1{v)

d(x,S)

dmax
zv

r(x)

rmax

if x Si for all Si[S

0 if x[Si for any Si[S

8<
:

where v is the controlling parameter for balancing the Euclidean

distance and the edge strength weight, and
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=[

=[



dmax~ max d(x,S)Dx[Dg


 �
rmax~ max r(x)Dx[Dg


 �
:

The practical implementation of the seeded cell segmentation

method is as following: for the given image g and the set of seed

regions S~ S1, � � � ,Snf g,

1) Apply Gaussian smoothing filter to g in order to reduce noise

influence and regularize cell regions.

2) Segment cell regions from background by the Otsu’s thresh-

olding method [13]. Let Rc be the cell regions and Rb be the

background regions.

3) Compute dw(x,S) for the all pixels in Rc (Figure 5E).

4) Let �SSi be the set of neighboring pixels of Si and start region

growing process from each seed region Si.

5) For x[�SSi, if there exists a neighborhood pixel y of x such that

y=[Sj|�SSj for all 1ƒjƒn, y=[Rb and dw(y,S)wdw(x,S), then

move x to Si, add y to �SSi, and continue the growing. If not,

then move x to Si and stop growing.

6) Repeat step 5 for all Si until every pixel in Rc belongs to one

of the seed regions (Figure 5F).

The distance map (Figure 5E) is displayed as heat map, which

means the distance of a pixel is large when the color is close to red,

and small when close to blue. Figure 5G shows the final cytoplasm

segmentation result. Note that the parasites give no influence to

the segmentation result, because the weighted distance map in the

seeded cell segmentation process is based on the Hessian based

discontinuity detector, and therefore spot-shape objects are

suppressed when the map is generated. Examples of the cytoplasm

segmentation process applied to a full size images are given in

Figure S4C and S4D.

Parasite Detection Process
The last part of the algorithm was parasite detection process.

The parasites were detected by using the local extreme detection

method [23] to the Laplacian of Gaussian of the original image, by

the following sequential steps:

1) Compute Laplacian of Gaussian of an input image (Figure 6A)

in order to filter parasites signals and to suppress other

regional signals (Figure 6B).

2) Find local maxima points from the Laplacian of Gaussian

image (red dots in Figure 6C).

3) Generate the binary mask of parasites and nuclei regions from

the five-class k-means segmentation which is previously

performed in the cytoplasm segmentation process. (Figure 6D).

4) Generate the binary mask of parasite candidate regions

(Figure 6F) by multiplying 3) to the inverse binary mask of

nuclei regions produced in the nucleus region segmentation

process (Figure 6E).

5) Multiplying 4) to 2) to remove the local maxima points in the

outside of the parasite candidate regions, and get the final

parasite detection result (red dots in Figure 6G).

The k-means clustering segmentation used in the step 3) plays

the role of sensitivity selector of the parasite detection. The

parasites usually have similar intensity as the nuclei, but some of

them have an intensity biased toward being darker. If we set k = 3

instead k = 2 and take the top first and second layers of the k-means

clustering result, then the parasite candidates include those who

are darker, and therefore more parasites of low intensity would be

detected additionally.

Figure 5. Cytoplasm segmentation using seeded cell segmentation method. (A) Original image. (B) Segmented layers by the k-means
clustering segmentation. (C) Intensity rescaled image and previously obtained individual nuclei (seed regions for seeded cell segmentation). (D) Edge
strength of cell regions computed by the Hessian based discontinuity detector. (E) Weighted distance map displayed as heat map. (F) Region
growing result displayed with random color. (G) Segmentation result of the individual nuclei and cells regions.
doi:10.1371/journal.pone.0087188.g005

Assessment of Drug Activity against T. cruzi

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e87188



Data Analysis
From the information of segmented cytoplasm and detected

parasites, the T. cruzi analysis algorithm labels each host cell region

and assign the parasites to the host cell they belong. The algorithm

outputs the following information: total number of host cells, total

number of parasites, total number of infected and uninfected host

cells and number of parasites for each infected host cell.

The total number of host cells was obtained by counting the

individual nuclei. The total numbers of infected and uninfected

host cells were obtained by counting non-empty and empty

parasite labels respectively. And the number of parasites for each

infected host cell was obtained by counting parasites of same label

to the host cell. From those outputs, the algorithm calculated the

ratio of infected host cells over the total host cells number, and

average and standard deviation of the number of parasites per

infected host cells which measured the anti-parasitic effects of test

compounds.

Results

The validation of the algorithm was done by 1) comparing the

preciseness of our nuclei segmentation method with other

methods, 2) comparing nuclei segmentation results by the

algorithm with manual inspection results and 3) determining the

Z’ factor, infection response and EC50 from reference drug plates.

The experimental assay for the algorithm validation was composed

of 10 DRC plates of Benznidazole (maximum dose 400 mM), 10

DRC plates of Nifurtimox (maximum dose 100 mM), and 10

mock-treated plates (DMSO 1%).

Comparison of the Nucleus Region Segmentation
Methods

As previously mentioned, the precise nucleus region segmenta-

tion is an important factor in determining the reliability of the

entire algorithm. We compared our nuclei region segmentation

method with median filtering and top-hat filtering based methods

used in previous research [6,7]. The difficult cases images in

Figure 3 were used as test images for the comparison. Those cases

were 1) parasites were too close to a nucleus (3A), 2) nucleus

intensity is heterogeneously high (3B), and 3) parasites intensities

are abnormally high (3C). In order to ensure the fairness of the

test, we used same structuring element of 767 pixels2 rectangle to

those three methods. The parasites signals were removed from a

test image by each method, and the nuclei regions were segmented

from the images by the Otsu’s thresholding method [13]. For all of

the three tested images, the proposed method segmented nuclei

region precisely (bottom row images in Figure 3) whereas other

two methods yielded over segmentation problem (bottom row

images in Figure S5).

In order to obtain a precise segmentation result, the parasite

signals should be sufficiently suppressed compared to the nuclei

regions. The median filtering and top-hat filtering based methods

use intensity information when they performed filtering process.

Thus their filtering results were strongly influenced by the nuclei

or parasites of abnormally high intensity, and consequently they

failed to sufficiently suppress the parasites signals as shown in

Figure S5. On the other hand, our method used the Laplacian of

Gaussian which is based on the neighboring intensity difference

but independent to the intensity itself. Therefore, our method was

less affected by the nuclei or parasites intensities, and was able to

suppress the parasites signals efficiently even though parasites or

nuclei had heterogeneous intensity as shown in Figure 3.

Validation of the Nuclei Segmentation
The nuclei segmentation process was validated by comparing

the algorithm segmentation results with manual inspection to the

infection assay exposed to 10 different doses of reference

compounds (Benznidazole and Nifurtimox). For each of the two

reference compounds, four image fields were randomly selected

for each dose so that in total, 80 randomly selected images were

used for the validation. Table 1 shows the averaged comparison

results of the Benznidazole and Nifurtimox tested assays. The

entire inspection results of the 80 images are shown in Table S1

and S2. We compared each segmented nucleus by the algorithm

and the manual inspection, and counted over-segmented and

under-segmented nuclei. In the tables, the over-segmented is that

Figure 6. Parasite detection process. (A) Original image. (B) Laplacian of Gaussian of the original image. (C) Local maxima points of (B) (red dots).
(D) Binary mask of parasites and nuclei produced from the five-class k-means segmentation in the cytoplasm segmentation process. (E) Inverse
binary mask of nuclei regions from nucleus region segmentation process. (F) Binary mask of parasites candidates regions by multiplying (D) and (E).
(G) Found parasites applying the binary mask (F) to the local maxima points (C).
doi:10.1371/journal.pone.0087188.g006
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the number of incorrectly divided nuclei by the algorithm which

should not be divided, and the under-segmented is that the

number of incorrectly undivided nuclei by the algorithm which

should be divided. The difference is the sum of the over- and

under-segmented nuclei, which implies total error of the algorithm

with respect to the manual inspection results. The proportion of

the difference for the algorithm compare to the manual inspection

were consistently less than 5% for both the Benznidazole and the

Nifurtimox images, indicating the robustness and reliability of the

nuclei segmentation process.

Based on the stability and consistency of nuclei segmentation

performance proved by the comparison with manual inspection,

the nuclei segmentation performance for mass data set was

validated from 1000 control wells (100 wells for each dose of 10

concentrations). Figure 7A shows the plots of the validation results

and Table S3 and S4 show the average and standard deviation of

the number of nuclei counted from the test images. Within a dose,

the number of nuclei counted by the algorithm distributed in a

narrow band (small standard deviation) around average. Across

doses, the average number of nuclei forms monotonically

increasing graph as dose increases. Note that the average area of

cell regions became larger as the number of infected cells

increased, because the cytoplasm area of infected cells became

larger as parasites occupied more space in the cytoplasm.

Consequently the average number of the nuclei increased as dose

increased, as shown in Figure 7A, Table S3 and Table S4.

Therefore the nuclei segmentation process had enough capability

to provide robust and reliable data for HCS.

EC50 and Z’ factor Determination using the T. cruzi
analysis algorithm

We determined the EC50 values from the Benznidazole and

Nifurtimox DRC plates. The DRC of the drug activity against the

parasites was measured by the normalized anti-T.cruzi activity,

which was defined by the normalized ratio between number of

infected host cells and number of total host cells. A four-parameter

sigmoidal function

p(x)~
a{d

1z
x

c

� 
b
zd

where a = minimum asymptote, b = slope factor, c = inflection

point and d = maximum asymptote, and a nonlinear least square

fitting method were used to calculate the DRC. The DRCs by the

algorithm are shown in Figure 7B, and EC50 values obtained from

the DRCs were 2.3861025 M and 8.6761026 M for Benznida-

zole and Nifurtimox respectively, which were within the expected

ranges.

On the basis of the infection ratio from the positive controls

(400 mM of Benznidazole and 100 mM Nifurtimox) and the

negative controls (DMSO 1%), we calculated Z’ factor as following

equation:

Z0factor~1{
3 spzsn

� �
Dmp{mnD

with the averages mp,mn and standard deviations sp,sn of the

positive and negative controls respectively. There were clear

windows between the positive and the negative controls as shown

in Figure 7C, and the Z’ factor were 0.73 and 0.76 for

Benznidazole and Nifurtimox respectively, demonstrating the

statistical confidence of the algorithm.

Discussion

In this paper, we have presented an automated image analysis

algorithm for the quantification of infection ratio and intracellular

T.cruzi amastigote in human cell line, responded to drug activity.

The most critical factors to determine image analysis is the

generation of image with well distinguishing parasites and the host

cell. A single DNA staining method was used for image properties

to classify cells and parasites. This was achieved by the accurate

segmentation and detection of both nuclei and cytoplasm of the

host cells and of the parasites. The T. cruzi analysis algorithm first

enhanced images using intensity equalization and illumination bias

correction methods in order to obtain more reliable results. Nuclei

regions were then segmented from background. The nucleus

region segmentation process was the most important task for the

entire T. cruzi analysis algorithm because the nuclei region mask

was used for the individual nuclei identification, cytoplasm

segmentation and parasite detection processes. Thresholding and

size-based filtering, median filtering, and top-hat filtering methods

were used in previous research [6,7] in order to segment nuclei

regions. However, those approaches were not sufficient for our

analysis due to complex image conditions, such as irregular

illumination and heterogeneous staining of host cells and parasites.

We employed a new method for accurate nucleus region

segmentation based on the discontinuity detection and morpho-

logical processing methods. As demonstrated by the comparison in

the result section, the T. cruzi analysis algorithm showed better

performance than other methods used previously [6,7] for the

difficult cases.

From the extracted nuclei regions, clustered nuclei were

identified and split into individual nuclei by a gradient flow

tracking segmentation. After splitting, the nuclei were counted.

They were also used as the seed regions to segment cytoplasm

process, and therefore had a significant influence on the final

segmentation results. The individual cytoplasm regions were

Table 1. Comparison of manual and algorithm host cell nuclei detection for the test compounds.

Benznidazole (Average±Stdev) Nifurtimox (Average±Stdev)

Manual Count 281.23622.50 281.65618.44

Algorithm Count 283.55624.75 283.35619.38

O.Seg* (%) 6.0362.36 (2.1460.84%) 5.4862.06 (1.9460.73%)

U.Seg* (%) 3.7062.10 (1.3260.75%) 3.7861.94 (1.3460.69%)

Difference (%) 9.7361.84 (3.4660.66%) 9.2562.35 (3.2860.84%)

* O.Seg and U.Seg mean over-segmented nuclei and under-segmented nuclei respectively.
doi:10.1371/journal.pone.0087188.t001
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segmented by the seeded cell segmentation method with the

individual nuclei as seed regions. Before segmenting cytoplasm,

the image intensity range was adjusted in order to avoid the

influence of the brightness difference of cytoplasm and nuclei

regions. Since the identification and segmentation of the host cell

was based simply on the DNA staining method, other types of host

cells, including primary cells can be also used with great

probability of success.

The parasites were detected using the local extreme detection

method to the Laplacian of Gaussian of the original image, and

applying the parasite region mask to the detected local maxima

points. From the information of the segmented cytoplasm and

detected parasites, the algorithm outputted the total number of

host cells, total number of parasites, total number of infected and

uninfected host cells and number of parasites for each infected host

cell. The algorithm performance for HCS was validated after

being compared to a manual inspection. As shown in Figure 7, the

algorithm had sufficient performance to be used in HCS system

for anti-trypanosomal drug discovery.

The common way to perform this type of analysis is to have cells

and parasites being detected in different wavelength (image

channels). We have tried this approach by using GFP-expressing

parasites, however, we have observed that the infection ratio of the

modified parasite was significantly decreased compared to wild

type parasite, resulted in narrow windows between non-infected

and infected cell. The infection ratio of wild type T.cruzi reaches

up to average of 0.7–0.8 but for GFP-expressing parasite, the

average infection ratio was only observed to be 0.3 (Figure S6).

Even though using two different fluorescence fields is highly

beneficial for image analysis, due to low infection ratio, GFP-

expressing parasite was not applied to our image-based assay

system.

Beside the application in drug discovery, this algorithm can be

also used as a tool for diagnosis or any other type of study that

requires detection and quantification of intracellular T. cruzi,

saving time and increasing the precision of the process regularly

performed by manual counting of the parasites on the microscope.

Supporting Information

Figure S1 Raw images of a negative control. The original

images of Figure 1A. A 16-bit image viewer is recommended for

image reading.

(TIF)

Figure S2 Raw images of a positive control. The original

images of Figure 1B. A 16-bit image viewer is recommended for

image reading.

(TIF)

Figure S3 T. cruzi analysis algorithm diagram. The

algorithm outputs analysis data from input images by following

five sequential processes: image enhancement, nucleus region

segmentation, individual nucleus segmentation, cytoplasm seg-

mentation and parasite detection.

(TIF)

Figure S4 Examples of individual nuclei and cytoplasm
segmentation process. Individual nuclei segmentation results

of (A) Negative control image. (B) Positive control image.

Cytoplasm segmentation results of (C) Negative control image.

(D) Positive control image.

(TIF)

Figure 7. T. cruzi analysis algorithm validation results. Validation results for Benznidazole (top row) and Nifurtimox (bottom row) DRC plates.
(A) Plots of the number of nuclei for 10 different concentrations. (B) Plots of the DRCs of normalized anti-T.cruzi activity. (C) Plots of the infection ratio
of the positive control (red dots, fully uninfected) and negative control (blue dots, fully infected) wells.
doi:10.1371/journal.pone.0087188.g007
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Figure S5 Nuclei region segmentation results of the
median and top-hat filtering based methods applied to
the example images in Figure 3. (A) Results of the median

filtering based method with window size of 767 pixels2. (B) Results

of the top-hat filtering based method with window size of 767

pixels2. (First row) Parasite-removal images by the methods.

(Second row) Nuclei masks by Otsu’s thresholding method

applied to the top row images. (Third row) Boundaries of

segmented nuclei regions (green contours) overlapped to the

original images.

(TIF)

Figure S6 Infection ratio of GFP tagged T. cruzi in
U2OS cell line. (A) Images for GFP-expressing T. cruzi in host

cell. Red signal is DNA staining and Green signal is GFP-

expressing T. cruzi. (B) Plots of the infection ratio of 256 control

wells (fully infected). The average infection ratio was

30.6665.93%.

(TIF)

Table S1 Comparison of manual and algorithm host
cell nuclei detection for Benznidazole DRC plates.
(PDF)

Table S2 Comparison of manual and algorithm host
cell nuclei detection for Nifurtimox DRC plates.

(PDF)

Table S3 Number of host cells counted from Benznida-
zole DRC plates.

(PDF)

Table S4 Number of host cells counted from Nifurtimox
DRC plates.

(PDF)
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