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Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model organism in pharmacogenetics
and neuropharmacology. Both larval and adult zebrafish are currently used to increase our
understanding of brain function, dysfunction, and their genetic and pharmacological modulation.
Here we review the developing utility of zebrafish in the analysis of complex brain disorders
(including, for example, depression, autism, psychoses, drug abuse and cognitive disorders), also
covering zebrafish applications towards the goal of modeling major human neuropsychiatric and
drug-induced syndromes. We argue that zebrafish models of complex brain disorders and drug-
induced conditions have become a rapidly emerging critical field in translational
neuropharmacology research.
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The zebrafish
A small aquatic vertebrate, the zebrafish (Danio rerio) is rapidly becoming a new popular
model organism in biomedical research (Figures 1 and 2)1–5. Major universities and research
centers worldwide have established zebrafish facilities, and the US National Institutes of
Health have recently constructed the world’s biggest zebrafish research center, able to house
19,000 tanks and 100,000 fish. The utility of both adult and larval zebrafish in neuroscience
has grown markedly in the last decades as it is a vertebrate species with high physiological
and genetic homology to humans, as well as because of the ease of genetic manipulation and
similar CNS morphology (Boxes 1 and 2, Figure 3a)1–5. The zebrafish genome is well
characterized and its sequencing has just been completed by the UK Sanger Institute 6,
which has further increased interest in this fish as a model organism in neuroscience and
pharmacology (Figure 2). Possessing both rapid development and a relatively long lifespan
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(Box 1), zebrafish are currently used to model various human brain disorders (Table 1). The
availability of multiple zebrafish strains (Table 2) is another important aspect of this species,
enabling studies of strain differences in brain function, behavior and drug responses.

Box 1

Summary of zebrafish biology and its application to biomedical research

Natural habitat

South-East Asia (typically includes streams and rivers, silt-bottomed well-vegetated
pools and rice paddies adjacent to streams shown in Figure 1b), see 132, 133 for details.

Life cycle

Several distinct stages, such as embryonic pre-hatching (0–72 hpf) and post-hatching
(72–120 hpf); ‘larval’ (1–29 dpf; including a free-swimming larva from 5 dpf) to juvenile
fish (30–89 dpf), adult zebrafish (90 dpf-2 years) and aging/aged zebrafish (from 2 years,
Figure 1c). Zebrafish grow till death (4–5 years old) and remain sexually mature/active
almost all this time141. Zebrafish are excellent breeders, and a single female can lay
several hundred eggs each week. The embryonic development of zebrafish is very rapid
(e.g., all major organs form within 1 dpf, and the fish hatch and start feeding within 3
dpf). Unlike mammals, zebrafish develop from fertilised eggs to adults in transparent
eggs, which enables monitoring the developing embryos (and their organs), as well as
manipulating these processes (e.g., by injecting drugs or genes) in-vivo. This feature
empowers neurodevelopmental studies using zebrafish models (e.g., 72, 115, 142),
including neonatal drug exposure with subsequent analyses of neural abnormalities at
various time windows through the adulthood. At the same time, expanded lifespan of
zebrafish (e.g., ~4–5 years vs. 3 in mice) fosters translational studies of aging-related
behavioral deficits using this model organism110, 111.

Behaviors

Span multiple behavioral domains summarized in Table 1 (also see recent
reviews25, 84, 116, 127, 143 for details of behavioral phenotypes observed in larval and adult
zebrafish).

Brain morphology

Strikingly similar between zebrafish and mammalian (rodent) models, including both
general macro-organization of the brain, and cellular morphology (Figure 1a; see more
details in zebrafish online atlas www.zebrafishbrain.org). The knowledge gained from
these studies is very relevant to human brain functioning. For example, the involvement
of the amygdala and habenula in zebrafish affective behaviors parallels human data on
these structures. The habenula, a phylogenetically ancient group of nuclei in the
epithalamus, regulates the release of serotonin and dopamine122. Because the habenular
circuit is evolutionarily highly conserved, this enables a dissection of brain circuits in
more experimentally amenable vertebrate systems144. Illustrating the parallels between
brain substrates in zebrafish and mammals, and translational value of such research for
studying pathological behavior, the habenula is hyper-activated in individuals with
depression, in rodent models of this disorder145, and in zebrafish exhibiting stress-related
behaviors122.

Brain neurochemistry

Highly conserved across vertebrate species. Zebrafish possess all major neuromediator
systems, including neurotransmitter receptors, transporters, and enzymes of synthesis and
metabolism, similar to those observed in humans and rodents58, 59, 146.
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Endocrine responses

Zebrafish display well-developed functional neuroendocrine systems, generally
homologous to those established in mammals. Similar to humans, stress responses in
zebrafish are mediated by cortisol activated by the cascade of hypothalamo-putuitary
hormones and acting via glucocorticoid receptors12, 13, 15, 147. For example, zebrafish
cortisol responses strongly parallel behavioral indices of stress, and may be modulated
genetically and pharmacologically12, 13, 42, 121.

Genetics

Zebrafish have 25 pairs of chromosomes containing >26,000 protein-coding genes6. The
genetic homology of zebrafish (to mammals and humans) is relatively high, supporting
the translational value of zebrafish models. For example, the nucleotide sequence of
zebrafish genes shows approximately 70% homology with that of human genes, and 84%
of genes known to be associated with human disease have zebrafish counterparts6. It is
also important to consider the role of genome duplication in zebrafish, which occurred
during teleost evolution, resulting in the presence of several copies of multiple genes.
Despite this duplication, zebrafish have a very similar number of chromosomes as
humans, rats and mice (23, 21 and 20 pairs, respectively), and mounting evidence
supports generally conserved genetics and physiology of major brain processes and
behavioral traits in rodents and zebrafish, and the duplicated CNS genes seem to mostly
encode for proteins with similar (or substantially overlapping) functions and properties.

High-throughput screens (HTS)

Models used in biomedical discovery, testing live organisms and analyzing their
responses in a very time-efficient data-dense objective manner, using powerful computer-
aided methodologies, such as video-tracking tools. HTS, typically analyzing hundreds of
compounds per day, are becoming critical for bioinnovation and biotechnology, as they
enable quick inexpensive analyses of large libraries of genetic or pharmacological
modifiers, rapidly identifying active compounds (hits) or candidate genes. Zebrafish are
an excellent organism for HTP (Figure 3d)8–10, 148, and costs of in-vivo screening of one
drug in zebrafish are estimated to be ~$300, which is 500 times cheaper than a similar rat
assay143. Comparative analysis of cost-efficiency of mouse and zebrafish studies, using
an example of a 2-week chronic fluoxetine treatment (n = 15/group, based on 2012–2013
estimates from the Kalueff Laboratory), reveals a 5-fold saving in zebrafish (total $ 562)
vs. mouse ($ 2790) experiments of similar design.

Zebrafish strains

See Table 2 for details.

Sensitivity to pharmacological manipulations

Zebrafish are sensitive to all major classes of neurotropic drugs, including antipsychotics,
mood stabilizers, anxiolytics, antidepressants, ethanol, sedatives/hypnotics, stimulants,
hallucinogens, antiepileptics, anesthetic/analgesics and cognitive enhancers (see Table 3
for details).

Box 2

Molecular genetic tools for zebrafish research

Various ‘forward genetic’ tools exist to generate random mutations and discover novel
genes involved in particular brain functions and behavior in zebrafish. For example,
Ethyl-Nitroso Urea (ENU) chemical mutagenesis has been successfully utilized in large-

Kalueff et al. Page 3

Trends Pharmacol Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scale mutation screens in zebrafish149, whereas viral vector-mediated insertional
mutagenesis has also been developed to expedite the identification of the mutated
genes150. The development of increasingly powerful forward genetic methods continues,
including recent conditional gene-trapping and gene-breaking transposon-based
approaches151 and novel high-throughput large-scale loss-of-function screens using the
‘Clustered regularly interspaced short palindromic repeats’ (CRISPR) system152, 153.
Numerous ‘reverse genetic’ methods are also available to functionally characterize a
target zebrafish gene of interest by overexpressing or selectively targeting/knocking it
out. Analogous to the classical antisense oligonucleotide-based gene knock-down in
rodents, the morpholino is currently the most frequently used reverse genetic tool in
zebrafish154. In addition, the classical ‘Targeting Induced Local Lesions in Genomes’
(TILLING) method, developed for Arabidopsis, has also been successfully adapted to
zebrafish155. Most recently, an elegant, efficient and less labor-intensive gene targeting
method has been designed using the ‘Transcription activator-like effector nucleases’
(TALEN) system156, 157, likely to revolutionize targeting genes in zebrafish and other
model organisms. Also importantly, a large number of genetic markers are available for
laboratories still using classical linkage analysis-based mapping with zebrafish
(e.g., 158, 159). Collectively, this wide range of available molecular genetic tools
contributed to the fact that zebrafish has become one of the favorite model organisms in
genetics and neurogenetics5, 160.

The close parallels between mammalian and zebrafish behavioral paradigms (Figure 3,
Table 1) suggest the evolutionarily conserved nature of many behaviors (and deficits of their
control) across species, implying face and construct validity of zebrafish models. Zebrafish
are also very cost-efficient, easy to breed, and can be housed in large numbers in relatively
small space (Figure 1a, Box 1). Therefore, they may represent an ideal species for medium-
and high-throughput screens (HTS, Figure 2d) for genetic mutations and small
molecules7–10. Here, we review recent successes and existing challenges in this field, and
emphasize the developing utility of zebrafish for translational neuroscience, drug discovery
and the search for novel candidate genes.

Zebrafish models of brain disorders
Numerous behavioral tests (Figure 3 and Table 1) illustrate how various common
neurobehavioral disorders can be modeled or studied in zebrafish. Consider depression, one
of the most widespread and severely debilitating brain disorders that affects ~20% of global
population at some point during life11. Strongly implicated in clinical depression, various
genetic factors, environmental stress and neurochemical disturbances seem to play a similar
role in zebrafish phenotypes. For example, gr-s357 zebrafish with a mutated glucocorticoid
receptor gene display aberrant corticoid biofeedback, increased levels of glucocorticoids,
and aberrant behaviors (reduced locomotion, impaired habituation, potentiated startle) that
resemble phenotypes seen in clinical depression12. Interestingly, antidepressants (such as
selective serotonin reuptake inhibitors, SSRIs) normalize some of the mutant phenotypes,
paralleling known effects of these drugs in modifying glucocorticoid signaling and
alleviating stress disorders in human patients, which also confirms the translational
relevance of serotonergic modulation of zebrafish stress responses12, 13.

In addition to genetic models, other factors, such as chronic stressors, commonly trigger
affective pathogenesis in both clinical and animal studies14. For example, the chronic
unpredictable stress (CUS) paradigm is a widely used model of experimental stress, in
which rodents are subjected to a battery of chronic stressors, such as restraint, crowding,
isolation, novelty, temperature change, light, noise and/or predator exposure14. Recent
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studies have successfully applied CUS in zebrafish, which affects shoaling, exploration and
anxiety behaviors, as well as alters brain proteome profiles and neurogenesis (the hallmark
of affective disorders in rodent models)15, 16; they also show chronic stress-induced memory
deficits and elevated cortisol levels 15, 16, paralleling depression-like states in humans and
rodents.

Complementing genetic and experimental manipulations, pharmacological models are also
widely used in brain research. For example, depression-like behaviors in humans and
rodents can be evoked by reserpine, which depletes brain monoamines by irreversibly
blocking vesicular monoamine transporter. The drug induces strong pro-depressant effects in
humans, also causing hypoactivity, motor stereotypies, lethargy and anhedonia in rodents17.
Reserpine treatment and related neurochemical and behavioral deficits are commonly used
as a model of depression in rodents, but can also evoke depression-like behavior in zebrafish
(including hypolocomotion and disrupted shoaling, resembling motor retardation and social
withdrawal symptoms observed in clinical depression)17. Emphasizing the role of
monoamine dysregulation in depression, these results also support the developing utility of
zebrafish to model complex affective brain disorders. Autism spectrum disorder (ASD)
represents another cluster of serious behavioral deficits, affecting ~1–2% of the general
population. Although the prevalence of ASD is lower than depression or anxiety (which
affect >10–15% of the adult population worldwide), autism causes an enormous amount of
human suffering, which (if expressed in patient-years; i.e., the number of patients multiplied
by the length of time for which the patient suffers from the disease) represents an urgent
unmet medical need18. In addition to severe behavioral and cognitive impairments, ASD is
characterized by high (~90%) heritability, representing one of the most heritable brain
disorders in humans19. The use of zebrafish to model ASD is supported by several lines of
evidence20. First, various models relevant to ASD-related social deficits (e.g., social
interaction, social preference) have been adapted from rodent studies, and successfully
applied to zebrafish paradigms (see examples in Figure 3e, f)20. Second, because of the
excellent genetic tools developed for the zebrafish, this species is expected to be a useful
model organism for human disorders with high heritability, which includes ASD21. For
instance, the human 16p11.2 locus is tightly linked to ASD, and the homologous region in
zebrafish spans genes important for brain development21. Likewise, the variants of the MET
gene, which encodes a transmembrane receptor tyrosine kinase of the hepatocyte growth
factor/scatter factor (HGF/SF), have been linked to greater autism risk in humans22, 23.
Notably, in zebrafish, met genetic knock-down impairs cerebellar development and facial
motor neuron migration24. As these genes are important for zebrafish brain development,
and ASD is believed to be a disorder of neural development, these findings are likely
relevant to ASD pathogenesis, and suggest strong translational relevance of zebrafish
models (also see 25, 26). Notably, zebrafish embryonic development has been thoroughly
characterized because these fish remain practically transparent for the first 2 weeks of life,
during which most developmental changes occur (Box 1). Thus, as a result of over four
decades of developmental biology research with zebrafish, this species has become one of
the most powerful vertebrate tools for embryologists, and may therefore offer uniquely
efficient answers to the conundrum of the developmental abnormalities associated with
ASD20.

A robust and often observed behavioral feature of zebrafish is their propensity to form tight
groups, a behavior called shoaling27–29. Shoaling may be induced and quantified in a variety
of ways in the laboratory27, 29–32. The developmental trajectory and neurobiological
correlates of this social behavior have also started to be investigated31, 33–36. Such studies
are noteworthy because they will offer potential tools with which human brain disorders
associated with abnormal social behavior may be examined. In addition to ASD, for
example, schizophrenia is also characterized by significantly impaired social behavior37.
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Similarly, several neuropsychiatric conditions, such as depression and anxiety disorders,
also include impaired or abnormal social behaviors38, 39. Thus, a laboratory species which
offers vertebrate system biology with easy to induce and measure social behavior may have
important translational relevance3, 40.

The latter disorders are only some of many examples (see Table 1 for more details) showing
how complex brain disorders may be successfully analyzed in zebrafish. In fact, mounting
evidence suggests that various aspects of almost every brain disorder that can be modeled in
rodents could also be modeled in zebrafish–perhaps, in a cheaper and more powerful
manner.

Zebrafish models of drug-related disorders
Drug-induced disorders are an important area of biomedical research. One of the key
examples is addiction, a widespread disorder commonly associated with drug abuse.
Complementing traditional (rodent) models, zebrafish are valid translational models to study
reward and drug abuse. Both larval and adult zebrafish show high sensitivity to various
drugs of abuse (Figure 4, Table 3), as well as tolerance, clear preference (reward stimuli) for
these agents, and withdrawal symptoms41, 42. For instance, the effects of alcohol in zebrafish
have been studied for more than a dozen years, revealing numerous behavioral changes in
fish that resemble those seen in rodents and humans43–46. Acute alcohol reduces zebrafish
fear/anxiety at lower doses (increasing ‘top’ dwelling or reducing erratic movements, also
showing stimulant effects, increasing zebrafish speed and aggression), while higher doses
induce lethargy and sedation43, 45. These changes show a biphasic trajectory in zebrafish
that is highly similar to that in rodents and humans43. Chronic alcohol exposure also
demonstrates parallels between zebrafish and mammals44, 47. For example, after continuous
alcohol exposure, when briefly challenged by a high acute dose, zebrafish show markedly
diminished (or absent) behavioral responses to this challenge. Similarly, withdrawal from
chronic alcohol exposure leads to several behavioral and physiological abnormalities that
resemble anxiogenic withdrawal symptoms in humans or rodents42, 43. Notably, a variety of
alcohol effects in humans extends to the social domain, where (in contrast to the common
“knowledge” that alcohol facilitates social interaction) it impairs empathy, social problem-
solving and the ability to interpret and respond to social signals48. Interestingly, a significant
impairment in social behavior induced by acute alcohol exposure has also been reported in
zebrafish, including reduced responding to conspecifics, as assessed by the increased
distance between the focal and the stimulus fish49. These changes can be elicited and
quantified in a single fish (viewing animated conspecific images moving on a computer
screen) or in live freely-moving shoals27–29, 49.

The effects of alcohol have also been investigated in the context of fetal alcohol
syndrome50, 51. Its milder, but more prevalent form, fetal alcohol spectrum disorders
(FASD) represents the largest preventable cause of mental retardation in children, with a
huge societal cost and suffering. Modeling FASD in laboratory animals may lead to the
discovery of more efficient diagnostic tools (biomarkers) and treatment options. FASD has
been modeled in zebrafish by exposing them to low doses of alcohol for short periods of
time during early embryonic development52. This exposure led to a striking lack of gross
anatomical deformities, but caused significant behavioral anomalies in the adult fish,
including reduced social cohesion in shoals31 and increased distance to conspecific stimuli
when the individual fish were tested alone52, a behavioral impairment that parallels the
social deficits seen in FASD children.

Although these examples suggest good face validity (similar appearance of alcohol effects
on behavior in zebrafish and humans), the question of construct validity (similar underlying
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biological mechanisms) is only starting to be addressed in zebrafish models. Nevertheless,
the first studies already showed neurochemical changes that resemble those in humans, and
also changes in the expression of genes whose sequences are homologous in zebrafish and
humans44, 53. Here we use only one example to illustrate common underlying mechanisms,
the dopaminergic system, in alcohol-induced behavioral changes. Alcohol modulates the
dopaminergic system in various species54–56, and, when administered acutely, dose-
dependently elevates levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid
(DOPAC) in zebrafish brain57. Chronic alcohol pre-treatment attenuates these acute alcohol-
induced changes, demonstrating neuroadaptation in zebrafish dopaminergic system, similar
to that found in mammals44. Recently, we have also shown that this alcohol-induced
increase in dopamine and DOPAC levels correlates with the activity of brain tyrosine
hydroxylase, but not monoamine oxidase (A Kalueff, unpublished observations, also see53).
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of dopamine, and
zebrafish have two copies of the tyrosine hydroxylase gene (th1 and th2, differentially
expressed in the brain and the periphery, respectively58). Despite the differential expression
of tyrosine hydroxylase, the levels of both th1 and th2 mRNA increased dose-dependently in
response to alcohol in zebrafish larvae53. Monoamine oxidase (MAO) is the enzyme
responsible for the breakdown of catecholamines, such as dopamine, into DOPAC. Unlike
mammals, which have two forms of the MAO gene (MAO-A, MAO-B), only a single MAO
gene has been identified in zebrafish59. Although zebrafish MAO (zMAO) resembles both
MAO-A and MAO-B in humans, zMAO exhibits a higher amino acid sequence homology to
human MAO-A60. Despite these differences, the biosynthesis pathway of dopamine and the
enzymes involved, as well as the behavioral effects and the mechanisms of alcohol action
studied so far, show significant similarities between zebrafish and mammals.

The effects of other drugs of abuse have also been investigated in zebrafish. Albeit
considered as ‘dangerous’ drugs of abuse, hallucinogenic drugs often have low-to-mild
addictive properties, and are of interest because of their strong psychotropic effects and
potential for treating brain disorders, including depression, anxiety and post-traumatic
stress61, 62. The growing clinical and preclinical interest in hallucinogenic drugs63 also
impacts zebrafish models. Potently affecting human and animal CNS, various
hallucinogenic drugs (such as serotonergic psychedelic, glutamatergic dissociative, and
cholinergic deliriant agents) have recently been screened in zebrafish64. These studies not
only revealed prominent behavioral and physiological responses to these psychoactive drugs
(similar to those in humans)64, but also established striking parallels between the drugs’
pharmacological profiles in zebrafish, humans and rodents (Figure 4). Importantly, we need
to know about both positive and negative effects of hallucinogenic drugs61, 62. Thus, we can
learn from basic studies of hallucinogenic drug action in such animal models62 and use
zebrafish to identify novel promising drugs65. For instance, translational studies of
therapeutic effects of ketamine (e.g., its putative fast-acting antidepressant profile) and
ibogaine (e.g., its potential anti-addictive action) can be empowered by the fact that
zebrafish are highly sensitive to these compounds, and represent an excellent tool for
dissecting molecular pathways involved in pharmacological action of these drugs66–68.
Likewise, targeting unwanted reward and pro-psychotic effects of hallucinogens, these drug-
evoked behaviors in zebrafish can be useful to both study the molecular mechanisms of such
action and to screen novel anti-addictive or antipsychotic agents (see67, 69–71 for examples).
Consider, for example, schizophrenic patients which are resistant to dopamine antagonists
but may markedly benefit from drugs (e.g., clozapine) which act on other neurotransmitters
(e.g., serotonin). With no antipsychotic drug currently free of serious side effects or
providing complete resolution, we need to identify the mechanisms of these drugs and
understand why certain compounds work on some patients and not others, and how their
therapeutic effects can be maximized without combined side-effects. Drug candidates that
would resolve the above issues can only be discovered through investigation into
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hallucinogen-evoked mechanisms in animal models63, including zebrafish HTS and
biosensors2, 8, 9, 65, 72, as well as sensitive behavioral tests such as discussed here (Figure 3
and Table 3).

Closely related to the questions on the actions of hallucinogenic drugs is the utility of animal
models for the analysis of psychoses73–75. For instance, hallucinogens in animal models
successfully mimic the impaired habituation and disrupted pre-pulse inhibition characteristic
of schizophrenic patients–two abnormalities potentially responsible for the thought disorder
key to the symptoms of the disease63. A thorough understanding of the mediatory effects of
these compounds is therefore critical, but will only be possible through further research,
especially at the pre-clinical stage. Glutamatergic antagonists have long been known to
evoke clinical psychoses. In zebrafish, the dissociative hallucinogens ketamine and
dizocilpine (MK-801) produce various aberrant behaviors, which resemble those seen in
humans and rodents treated with drugs that evoke psychoses, and include cognitive
impairment, reduced social interaction, altered anxiety/activity and stereotypic
circling67, 70, 76 (also see Figure 4a for cross-species comparative analyses of doses).
Notably, some of these changes can be reversed by antipsychotic drugs71, collectively
indicating the utility of larval and adult zebrafish to model psychoses and their mechanisms,
also demonstrating the potential use of zebrafish in HTS for novel antipsychotic medication.

In addition to the drug-evoked responses discussed above, zebrafish models are very useful
for studying selected neurotoxic conditions. For example, serotonin syndrome (SS) is a
serious, potentially lethal disorder associated with elevated brain serotonergic function due
to an overdose or combined application of several serotonergic drugs77. With the increased
use of serotonergic medication, SS affects a large portion of general population and is
becoming a major biomedical concern78. Thus, there is a widely recognized need for novel
experimental models of SS77, 78. Characteristic behavioral, neuromuscular and autonomic
responses are observed in rodents following administration of serotonergic drugs,
representing useful experimental models of SS77, 79. Exposed to serotonergic agents and
their combinations, zebrafish exhibit a characteristic top dwelling (surfacing behavior) and
hypolocomotion, which positively correlate with brain serotonin and may therefore represent
potential markers of SS-like states in zebrafish78. Thus, the zebrafish seems to offer great
promise for HTS of novel serotonergic drugs, probing the SS pathogenetic mechanisms and
the analysis of drug × gene interactions78.

Critical evaluation and future directions
Although there are many human brain disorders whose modeling have been attempted, with
some success, using traditional laboratory species (e.g., rats or mice), the zebrafish appears
to have an excellent future in this line of research, and offers several important advantages.
For example, genetic factors play a key role in pathogenesis of brain disorders80–83, and the
utility of experimental models in clinical neuroscience relies on the model’s applicability to
genetics research. Box 2 summarizes recent successes in applying molecular genetics to
zebrafish neuroscience research.

The relatively sophisticated zebrafish behavioral repertoire84, including its highly social
nature and the fact that it is a diurnal species that relies heavily on vision (the same modality
humans use most), make it an excellent tool for investigators interested in the analysis of
brain function and dysfunction. In addition to the genetic tools available for the zebrafish
(Box 2)5, transgenic zebrafish fluorescence-based screens and optogenetic models enable
visualization of biological processes in the body, and an unprecedented dissection of
circuitry and cellular mechanisms of brain disorders85, 86. Zebrafish behavioral models are
also characterized by reliance on vision as an important sensory modality. Because humans
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are also highly ‘visual’, computer screens4, 27, 28 and robotic ‘fish’87, 88 can be cost-
effectively utilized to deliver environmental stimuli to zebrafish in a precise, consistent and
automated manner (a method much less applicable to the classical laboratory species, such
as nocturnal rodents; but see89–91). The fact that zebrafish behavioral stimuli can be applied
using computer screens or robots is also important methodologically (e.g., providing
standardized experimental stimulation vs. the rodent versions, which use less-controllable
‘live’ stimuli). Similarly, operant behavior may be studied in zebrafish in a manner it is
traditionally assessed in rodents. Although zebrafish are unable to press the lever or use
touchscreens (as rodents do90, 91), it is the matter of time before novel technologies are
developed to study zebrafish operant behavior. For example, swimming from one designated
area to another, detected by sensitive video-tracking systems, is a form of ‘operant
behavior’, a response that can be paired with software-generated positive reinforcement
(e.g., automated food delivery or dimming the lights in the tank).

However, like any model organism, the zebrafish also has its limitations. For example, a
recognized limitation in zebrafish genetics is the paucity of well-characterized inbred
strains92. While a growing number of zebrafish strains is becoming available (Box 1), many
of them are outbred, have an unclear breeding history, or show only partial inbreeding with
heterozygosity at a substantial percentage of their loci92. Because some zebrafish strains are
recognized as excellent performers, and enable a good analysis of strain differences (Table
2), the situation is still not as good as with mouse models, where almost 100 well-
characterized inbred strains (http://phenome.jax.org/) and hundreds of mutants (http://
www.informatics.jax.org/) are available to researchers. Thus, future efforts may be needed
to increase the number of available zebrafish strains and increase our understanding of the
strain differences in fish neural phenotypes.

In general, no experimental animal model can target the entirety of any complex brain
disorder observed clinically in human patients93. Thus, using animal models to target core
component behaviors which form a part of the disease spectrum becomes a valid strategy of
translational research in this field94, 95, if phenotypes we assess are quantifiable, and have
construct, predictive and face validity96. Many questions remain to be addressed in future
zebrafish studies. For example, despite the fact that zebrafish are highly social shoaling
animals, it is unclear if deficits in fish shoaling behaviors can be compared to complex
human ASD-like phenotypes. Specifically, one of the deficits in ASD is alteration in
attention processing which may lead to difficulties in interpreting facial expressions97–99.
Whether fish shoaling requires similar attention processing has yet to be established. In
addition to ASD, many other psychiatric disorders (including aggression, ADHD and
schizophrenia) also involve deficits in attention and impulse control. Although this area is
outside of the scope of this review, recent studies suggest the translational importance of
attention- and impulse control-related phenotypes in zebrafish100–103. Other studies have
shown the importance of social (kin) recognition in zebrafish shoaling104, revealing the role
of olfactory cues from the major histocompatibility complex (MHC) peptides, similar to the
well-established role of MHC in social recognition in mammals105–107.

Several important neuropsychiatric domains were not discussed here in-depth because of
their coverage by recent comprehensive literature elsewhere. For example, aggressive
behavior is another important area in translational biological psychiatry research. Mounting
evidence shows that zebrafish display a rich repertoire of aggressive behavior, the neural
mechanisms of which can now be dissected to understand the core pathogenesis of
aggression108, 109. Likewise, aging-related psychiatric disorders and cognitive decline are
receiving growing recognition in clinical psychiatry, and have recently been successfully
modeled in zebrafish110, 111. Bidirectional sensitivity of cognitive phenotypes to various
pharmacological modulators70, 110–112 further supports the value of zebrafish in this
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research. The growing interest in using zebrafish to study pathogenic overlap between
behavioral and metabolic disorders113 is also encouraging, and merits further analyses. The
utility of zebrafish for substance abuse research is also receiving wide recognition41, 114,
revealing overt reward responses to drugs of abuse69, 102, 114–117 and conserved gene
expression and adaptive (compulsive and relapse) behavior to chronic exposure to these
drugs118, 119.

Furthermore, there is a growing understanding of zebrafish affective (emotionality-related)
phenotypes84, which may be directly relevant to modeling anxiety, fear/panic, post-
traumatic stress disorder (PTSD) and other stress-related human brain disorders (see Table 1
and 120–127 for details). Anxiety-related disorders are the most widespread psychiatric
disorders11. Combined with analyses of neuroendocrine biomarkers (Box 1), genomic/
proteomic profiling128, 129 and dissection of the circuitry underlying fish affective
behavior122, 124, 130, zebrafish studies continue to provide important insights into core,
evolutionarily conserved pathobiology of these stress-related disorders.

Concluding remarks
There is an urgent need for novel biobehavioral assays using alternative model organisms,
especially those species with sufficient physiological complexity, similarity to humans, and
HTS capacity, such as zebrafish5, 40, 85, 131. Although scientists traditionally compare
laboratory species in terms of what they are better for, the fact that a novel species is added
to the repertoire of biomedical tools is important per se. For example, it allows a
comparative approach to brain disorders, that otherwise would not be possible. This is
critical because comparative studies can uncover evolutionarily conserved functions,
mechanisms and targets, which represent the most important ‘core’ aspects of the disease or
function being studied. This approach markedly increases our ability to translate our
findings from laboratory animal model to human disease.

In summary, zebrafish models are becoming an important tool expected to advance
neuroscience and neurogenetics. Zebrafish sensitivity to all major neurotropic drugs (Table
3) and the ability to respond to them in a similar manner as humans (Figure 4) support their
utility for pharmacological research. Representing an ideal organism for disease modeling
and HTS, as well as possessing high physiological and genetic homology to humans,
zebrafish prove increasingly useful in translational biomedical research, and are well suited
to meet the rapidly growing challenges of this field.
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Highlights

• The zebrafish is a popular novel model in pharmacogenetics and
neuropharmacology

• Both larval and adult zebrafish models contribute to studying complex brain
disorders

• Zebrafish are highly sensitive to major classes of neurotropic drugs active
clinically

• Zebrafish models emerge as a useful tool for genetic screening and drug
discovery

Kalueff et al. Page 20

Trends Pharmacol Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Zebrafish in laboratory research and natural environments
Panel (a) shows major zebrafish research centers established worldwide (red stars),
including the National Institutes of Health (1), University of Oregon (2) and Washington
University (3) in USA, and RIKEN Institute (4) in Japan. Inset – a typical rack housing
hundreds of zebrafish in a research facility. (b) Typical habitat of zebrafish in the wild
(shallow waters, e.g., rice fields) in various regions of South-East Asia (see 132, 133 for
details). (c) Larval and adult zebrafish (including several common color variants, also see
Table 2 for zebrafish strain information). (d) The growing number of published zebrafish
models (assessed in Pubmed in September 2013, using terms “zebrafish” and “behavior”).
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Figure 2. The timeline of the developing utility of zebrafish models in neuroscience and
neuropharmacology research
SSRI – selective serotonin reuptake inhibitors, ADHD – attention deficit/hyperactivity
disorder, AD – Alzheimer’s disease, PD – Parkinson’s disease, AL – anxiolytic drugs, AE –
antiepileptic drugs, SS – serotonin syndrome (serotonin toxicity), see Tables 1 and 3 for
details (note that toxicology studies were not included here).
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Figure 3. Comparison of zebrafish and mouse experimental models
Panel (a) shows the similarity of zebrafish and mouse brain morphology (OB – olfactory
bulbs, TC – telencephalon, OT – optic tectum, Hb – habenula, CB – cerebellum, HB – hind
brain, MD – medulla, SC – spinal cord, CR – cortex, Co – colliculi). Bottom inset: Golgi
staining of zebrafish neurons (I) and their dendritic spines (II), showing similarity of
zebrafish neuronal morphology to rodent neurons (photos by R. Mervis’ laboratory; Tampa,
FL). Panel (b) shows how major zebrafish neurobehavioral tests of exploration, anxiety and
locomotion parallel those traditionally used in rodents (adapted from 66, 121, 134–136),
combined with automated video-tracking using top-view (rodents) or top/side view cameras
(zebrafish). Note predominantly 2D nature of rodent locomotion (X,Z plane) vs. 3D
locomotion of zebrafish in X,Y,Z coordinates. Panel (c) shows typical anxiety-like

Kalueff et al. Page 24

Trends Pharmacol Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



behaviors observed in zebrafish in the novel tank diving test (including anxiety evoked by
alarm substance acute 5-min exposure and reduced anxiety produced by a chronic 2-week
0.1 mg/l fluoxetine anxiolytic treatment, see Table 1 for explanation of behavioral signs of
anxiety in zebrafish), an aquatic paradigm similar to rodent open field test (b). Note that
alarm substance exposure test in zebrafish is similar to the cat odor rodent task. Panel (d)
illustrates principles of high-throughput screens (HTS) using larval and adult zebrafish.
Panels (e-h) show examples of zebrafish social and cognitive behavior tests (adapted from
66, 68, 136, 137. Panel (e) illustrates the shoaling test’s typical set up (top) and application of
video-tracking tools to quantify zebrafish group behavior (bottom; photo from a
collaborative project between Noldus IT, Netherlands and the Kalueff Laboratory). Panel (f)
shows the aquatic social preference test (top) and its similarity to the mouse sociability test
(bottom). Panel (g) shows behavioral similarity between zebrafish predator avoidance (e.g.,
Indian Leaf Fish, Nandus nandus) and the rat exposure mouse test. Panel (h) illustrates
parallels between aquatic and rodent cognitive tasks, such as the T-maze test.
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Figure 4. Comparative analysis of relative potencies of effective acute behavioral doses of
selected psychotropic drugs in zebrafish and other species
Panel (a) shows glutamatergic antagonists dizocilpine (MK801), phencyclidine (PCP),
ibogaine (Ibo), ketamine (Ket) and kynurenic acid (KYNA); ‘Normalized’ logarithmic dose
range is 0.1–20 mg/L for zebrafish138; 0.05–200 mg/kg for mice; 0.003–25 mg/kg for non-
human primates; 0.01–15 mg/kg for humans139. *Data for KYNA not available. Panel (b)
shows zebrafish and human data for selected serotonergic drugs, including lysergic acid
diethylamide (LSD), mescaline (Mes), psilocybin (Psi), and 3,4-
methylenedioxymethamphetamine (MDMA); ‘Normalized’ logarithmic dose range is 0.1–
120 mg/L for zebrafish and 0.0001–4 mg/kg for humans140. Collectively, these data show
similar ranking of drugs’ activity across various species, illustrating translational value of
zebrafish models for screening clinically active neurotropic drugs.
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Table 1
Selected key neurophenotypic domains and associated disorders modeled in zebrafish

(also see timeline in Figure 2, and zebrafish behavior catalog in 84).

Domain/disorder Zebrafish phenotypes References

Anxiety/fear-related behavior Reduction of exploration (especially in the top part of novel tanks), increased
avoidance, erratic behavior and freezing, elevated cortisol and brain c-fos; highly
sensitive to anxiolytic and anxiogenic agents

4, 123–125, 161–164

Mood/depression Reduced activity (motor retardation) accompanied with chronic elevation of cortisol;
responses can be reversed by antidepressant treatment

12, 17, 127

Cognitive behavior Excellent short-term and long-term memory tested in various memory and learning
tasks; sensitive to amnestic and promnestic agents

111, 112, 165, 166

Social behavior Robust social behavior; sensitive to drugs (e.g., increasing or reducing shoaling
responses)

27–29, 32

Psychoses Hyperactivity, impaired cognitive processes (startle, pre-pulse inhibition) by pro-
psychotic agents; rescued by antipsychotic drugs

8, 9, 167

Attention deficit hyperactivity
(ADHD)

Impulsive hyperactive locomotion rescued by anti-ADHD agents 168

Reward-related behavior Robust preference for rewarding stimuli, including food and abused substances 41, 69, 115–117, 169

Pain Robust pain responses to nociceptive stimuli, and their inhibition with analgesic drugs 170–172

Epilepsy Hyperactivity and seizure-like behavior, brain spikes (EEG) and c-fos up-regulation;
rescued by anti-epileptics

173, 174

Neurodegeneration Decline in locomotion, accompanied by characteristic biomolecular and cellular
markers of neurodegeneration

1, 146, 175

Serotonin syndrome (SS) Characteristic surfacing behavior in response to drugs (and their combination) known
to evoke clinical SS

78

Eating disorders Increased or reduced eating behavior (similar to anorexia and obesity); highly
sensitive to drugs affecting appetite and mediating metabolic phenotypes

113, 176

Sleep disorders Robust circadian rhythms bidirectionally sensitive to sleep-modulating drugs 110, 177–183
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Table 2

Selected zebrafish strains commonly used in biomedical research.

Strain Details Behavioral phenotypes

Strains

AB Commonly used ‘high-performance’ strain, developed by
G. Streisinger

Active strain, sensitive to various experimental
(genetic and pharmacological) manipulations

Casper Mutant strain translucent throughout adulthood due to a
lack of melanocytes and reflective cells

Display active locomotor phenotype and some
differences to developmental drug treatment

Ekkwill (EKW) Derived from Ekkwill breeders (FL) Active strain, sensitive to various experimental
manipulations

Nadia Domesticated strain derived from a wild-caught zebrafish More anxious zebrafish

Tubingen (Tu) Short-fin wild type strain, commonly used in
neurobehavioral tests. Utilized for genome sequencing
project by Sanger Institute

Active, sensitive to various genetic and
pharmacological manipulations

Wild Indian Karyotype
(WIK)

Derived from wild-caught Indian zebrafish, used for
genome mapping

Highly anxious zebrafish

Wild-caught Zebrafish caught in the wild in India Highly anxious zebrafish

Color variants

Long-fin variant Contain spontaneous mutation causing long fins (Figure
1c)

More anxious and sensitive to anxiogenic stimuli

Leopard color variant Contain spontaneous mutation causing spotting in adult
fish (Figure 1c)

More anxious and sensitive to anxiogenic stimuli

Mutants

naddne3256 An N-ethyl-N-nitrosourea-induced mutant used to study
the rewarding effects of amphetamine

Fails to respond to amphetamine

jpy Increased number of mitotic cells “Jumpy” fish exhibiting
cocaine sensitivity

Fails to respond to cocaine
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Table 3

Documented sensitivity of zebrafish models to major classes of neurotropic drugs

Drugs Larval models Adult zebrafish

Antipsychotics 8, 9, 167, 184 71

Mood stabilizers 72

Anxiolytics 72, 148 46, 120, 123, 163, 185126, 186

Antidepressants 187, 188

Ethanol 53, 189 31, 42, 52, 187, 190–192

Sedative/hypnotics 72, 148 193

Stimulants 2 69, 187

Hallucinogens 142 68, 69, 136, 140, 194

Antiepileptics 72, 148, 189 193, 195

Anesthetics/Analgesics 196

Cognitive enhancers 112 197
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