Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 14;70(Pt 1):o67. doi: 10.1107/S1600536813033539

1-Ethyl-5-iodo­indoline-2,3-dione

Lei Wang a, Yu-Xiang Shen b, Jian-Tong Dong a, Man Zhang a, Qi Fang b,*
PMCID: PMC3914098  PMID: 24527003

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C10H8INO2, which differ in the degree of planarity. The iodo­indoline-2,3-dione skeleton of mol­ecule 1 is essentially planar [mean deviation = 0.003 (2) Å for the nine non-H atoms of the indoline core, with a maximum deviation of 0.033 (1) Å for the I atom]. The I atom and O atom in the 3-position of mol­ecule 2 deviate by 0.195 (1) and 0.120 (2) Å, respectively, from the least-squares plane through the nine non-H atoms of the indoline core. Mol­ecules 1 and 2 are roughly coplanar, the mean planes through their cores making a dihedral angle of 6.84 (1)°. This coplanarity results in a layer-like structure parallel to (6,11,17) in the crystal, the distance between adjacent least-squares planes through the cores of mol­ecules 1 and 2 being 3.37 (1) Å. In such a layer, mol­ecules 1 and 2 are linked by C—H⋯O hydrogen bonds, forming chains along [11-1]. The chains are further coupled to construct a kind of double-chain structure via I⋯O inter­actions [3.270 (2) Å].

Related literature  

For applications of indoline-2,3-dione in drug design, see: Silva et al. (2001). For the synthesis of the title compound, see: Ji et al. (2010). For related structures, see: Garden et al. (2006); Abid et al. (2008); Kurkin et al. (2008).graphic file with name e-70-00o67-scheme1.jpg

Experimental  

Crystal data  

  • C10H8INO2

  • M r = 301.07

  • Triclinic, Inline graphic

  • a = 9.9658 (2) Å

  • b = 10.1453 (2) Å

  • c = 11.3007 (2) Å

  • α = 71.188 (1)°

  • β = 72.599 (1)°

  • γ = 84.434 (1)°

  • V = 1032.04 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 295 K

  • 0.27 × 0.21 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.490, T max = 0.746

  • 13515 measured reflections

  • 5091 independent reflections

  • 4358 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.066

  • S = 1.01

  • 5091 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813033539/vm2202sup1.cif

e-70-00o67-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033539/vm2202Isup2.hkl

e-70-00o67-Isup2.hkl (249.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033539/vm2202Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O2i 0.97 2.57 3.399 (3) 144
C27—H27⋯O2i 0.93 (3) 2.48 (3) 3.407 (3) 174 (3)
C9—H9A⋯O4 0.97 2.56 3.366 (3) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20972089) and by a grant from the State Key Laboratory of Crystal Materials.

supplementary crystallographic information

1. Comment

To date, isatin and its derivatives have received much attention due to their potential applications in biomedicine and agrochemical industries (Silva et al., 2001). In this paper, we report the synthesis and structure of a new isatin derivative, namely 1-ethyl-5-iodoindoline-2,3-dione.

There are two molecules in the asymmetric unit of the unit cell as depicted in Fig. 1. The two molecules are essentially planar. All non-hydrogen atoms, except the terminal methyl C atom, are in a same plane. The iodoindoline-2,3-dione skeleton of molecule 1 has a perfect planarity (mean deviation is 0.003 (2) Å, maximum deviation is 0.033 (1) Å for I1 for the least-squares plane through the 9 non-hydrogen atoms of the indoline core). In molecule 2, two large deviations exist [0.195 (1) (I2) and 0.120 (2) Å (O3)], and the mean deviation is relatively larger [0.022 (2) Å]. Molecules 1 and 2 are virtually co-planar with a small dihedral angle of 6.84 (1) ° between both best planes. This co-planarity results in a layer-like structure of the crystal (Figs. 2 and 3). Considering this co-planarity, the least-squares plane through the 18 non-hydrogen atoms of the two indoline cores of the two molecules shows a mean deviation of 0.064 (3) Å. The distance between two such adjacent best planes or layers is 3.37 (1) Å.

Several intermolecular interactions can be found in a layer. The C—H···O hydrogen bonds (Table 1) help to build one-dimensional chains and the I1···O3 [-x, 1 - y, 1 - z] [3.270 (2) Å] short contact helps to construct a kind of double-chain structure.

2. Experimental

We synthesized the title compound by the similar method reported by Ji et al. (2010). KI (1.27 g), hexadecyl trimethyl ammonium bromide (0.410 g) and 5-iodoisatin (3.75 g) were dissolved in 20 ml DMSO, and the mixture was stirred in N2 atmosphere while 2.7 ml iodoethane was quickly added via a syringe. Then 5 ml aqueous KOH solution (17.8 mol/L) was dropwise added into the brown solution at 30 °C and the colour rapidly became black. After another 3 ml iodoethane was added, the heating temperature was raised to 45 °C. The mixture was stirred for 5 h, then 1.6 ml iodoethane was added. The reaction continued for 1 h at 45°C. The mixture was then poured into water, and extracted with dichloromethane. The organic phase was seperated and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure, the crude product was purified by column chromatography [V (dichloromethane)/ V (petroleum ether) = 1:1] obtaining 47.4% yield. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution of the compound.

3. Refinement

H atoms bound to aromatic C atoms were located in difference maps and freely refined leading to C—H distances from 0.88 (3) to 0.99 (3) Å. Other H atoms were placed at calculated positions and treated by the riding model with C—H distances = 0.97 (methylene C) or 0.96 Å (methyl C) and Uiso(H) = 1.2 Ueq (methylene C) or 1.5 Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the two molecules in the asymmetric unit. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

A view of a molecular layer, showing the double-chain structure connected by C—H···O intermolecular hydrogen bonds and I1···O3 intermolecular contacts.

Fig. 3.

Fig. 3.

A view of the uniform layered structure, the spacing between neighboring layers is 3.37 (1) Å.

Crystal data

C10H8INO2 Z = 4
Mr = 301.07 F(000) = 576
Triclinic, P1 Dx = 1.938 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9658 (2) Å Cell parameters from 7943 reflections
b = 10.1453 (2) Å θ = 2.4–28.7°
c = 11.3007 (2) Å µ = 3.08 mm1
α = 71.188 (1)° T = 295 K
β = 72.599 (1)° Plank, orange
γ = 84.434 (1)° 0.27 × 0.21 × 0.10 mm
V = 1032.04 (3) Å3

Data collection

Bruker APEXII CCD diffractometer 5091 independent reflections
Radiation source: fine-focus sealed tube 4358 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
Detector resolution: 8.3 pixels mm-1 θmax = 28.3°, θmin = 2.0°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −13→13
Tmin = 0.490, Tmax = 0.746 l = −15→13
13515 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: mixed
wR(F2) = 0.066 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.529P] where P = (Fo2 + 2Fc2)/3
5091 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Experimental. Scan width 0.5° ω and φ, Crystal to detector distance 5.964 cm, exposure time 20 s, 19 h for data collection
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.188160 (18) 0.385210 (17) 0.659889 (17) 0.05692 (6)
I2 1.215992 (18) 0.17083 (2) 0.320573 (19) 0.06423 (7)
O1 0.1685 (2) −0.30982 (18) 0.98576 (18) 0.0606 (5)
O2 −0.12166 (19) −0.20187 (18) 1.00153 (18) 0.0587 (4)
O4 0.5791 (2) 0.1463 (2) 0.5519 (2) 0.0810 (7)
O3 0.41994 (19) 0.3947 (2) 0.4463 (2) 0.0673 (5)
N1 0.22397 (19) −0.09288 (18) 0.83363 (18) 0.0448 (4)
C29 0.6039 (3) 0.5967 (3) 0.2206 (3) 0.0574 (6)
H29A 0.6799 0.6622 0.1950 0.069*
H29B 0.5200 0.6337 0.2693 0.069*
C5 −0.0444 (2) 0.2289 (2) 0.7122 (2) 0.0451 (5)
C6 0.0995 (3) 0.2509 (2) 0.6564 (2) 0.0492 (5)
C7 0.1973 (2) 0.1495 (2) 0.6900 (2) 0.0476 (5)
C8 0.1470 (2) 0.0250 (2) 0.7828 (2) 0.0408 (4)
C9 0.3765 (2) −0.1004 (3) 0.8019 (3) 0.0521 (5)
H9A 0.4165 −0.0557 0.7092 0.063*
H9B 0.4054 −0.1973 0.8216 0.063*
C10 0.4329 (3) −0.0314 (4) 0.8766 (3) 0.0731 (8)
H10A 0.3986 0.0625 0.8625 0.110*
H10B 0.5338 −0.0306 0.8470 0.110*
H10C 0.4023 −0.0820 0.9679 0.110*
C1 0.1354 (3) −0.1967 (2) 0.9239 (2) 0.0453 (5)
C2 −0.0166 (2) −0.1390 (2) 0.9316 (2) 0.0444 (5)
C3 0.0021 (2) 0.0023 (2) 0.8392 (2) 0.0409 (4)
C4 −0.0948 (2) 0.1026 (2) 0.8047 (2) 0.0441 (5)
C25 1.0250 (2) 0.2682 (2) 0.3052 (2) 0.0456 (5)
C24 0.9007 (3) 0.2058 (2) 0.3914 (2) 0.0492 (5)
C23 0.7765 (2) 0.2774 (2) 0.3829 (2) 0.0439 (5)
C28 0.7764 (2) 0.4083 (2) 0.2908 (2) 0.0404 (4)
N2 0.63970 (19) 0.4636 (2) 0.30430 (19) 0.0467 (4)
C30 0.5792 (4) 0.5831 (4) 0.1017 (3) 0.0877 (11)
H30A 0.6629 0.5489 0.0519 0.132*
H30B 0.5553 0.6724 0.0498 0.132*
H30C 0.5034 0.5191 0.1265 0.132*
C22 0.6307 (3) 0.2473 (3) 0.4615 (2) 0.0536 (6)
C21 0.5455 (2) 0.3764 (3) 0.4059 (2) 0.0514 (5)
C27 0.9001 (2) 0.4696 (2) 0.2032 (2) 0.0461 (5)
C26 1.0245 (2) 0.3975 (2) 0.2122 (2) 0.0468 (5)
H4 −0.189 (3) 0.089 (3) 0.843 (2) 0.046 (6)*
H6 0.132 (3) 0.339 (3) 0.596 (3) 0.055 (7)*
H7 0.299 (3) 0.166 (3) 0.650 (3) 0.050 (7)*
H26 1.110 (3) 0.439 (3) 0.149 (3) 0.055 (7)*
H27 0.897 (3) 0.557 (3) 0.142 (3) 0.052 (7)*
H24 0.903 (3) 0.124 (3) 0.449 (3) 0.055 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.05293 (10) 0.05269 (10) 0.06295 (11) 0.00741 (7) −0.02024 (8) −0.01363 (8)
I2 0.04713 (10) 0.07268 (13) 0.07074 (12) 0.01030 (8) −0.01917 (8) −0.02004 (9)
O1 0.0694 (12) 0.0412 (9) 0.0596 (10) 0.0013 (8) −0.0147 (9) −0.0037 (8)
O2 0.0541 (10) 0.0492 (9) 0.0564 (10) −0.0162 (8) −0.0007 (8) −0.0034 (8)
O4 0.0520 (11) 0.0725 (13) 0.0778 (14) −0.0168 (10) −0.0029 (10) 0.0214 (11)
O3 0.0382 (9) 0.0733 (13) 0.0721 (12) −0.0045 (8) −0.0035 (8) −0.0080 (10)
N1 0.0424 (10) 0.0391 (9) 0.0449 (10) −0.0014 (7) −0.0058 (8) −0.0079 (8)
C29 0.0451 (13) 0.0429 (12) 0.0678 (16) 0.0045 (10) −0.0062 (11) −0.0056 (11)
C5 0.0458 (12) 0.0415 (11) 0.0449 (11) 0.0021 (9) −0.0113 (9) −0.0113 (9)
C6 0.0475 (12) 0.0407 (11) 0.0457 (12) −0.0062 (9) −0.0040 (9) −0.0016 (9)
C7 0.0402 (11) 0.0448 (11) 0.0442 (11) −0.0079 (9) −0.0003 (9) −0.0040 (9)
C8 0.0409 (10) 0.0389 (10) 0.0373 (10) −0.0038 (8) −0.0053 (8) −0.0093 (8)
C9 0.0407 (11) 0.0510 (12) 0.0557 (13) 0.0068 (10) −0.0043 (10) −0.0152 (11)
C10 0.0457 (14) 0.097 (2) 0.086 (2) 0.0070 (14) −0.0178 (14) −0.0434 (18)
C1 0.0527 (13) 0.0380 (10) 0.0417 (11) −0.0038 (9) −0.0080 (9) −0.0115 (9)
C2 0.0485 (12) 0.0391 (10) 0.0400 (10) −0.0090 (9) −0.0041 (9) −0.0097 (9)
C3 0.0411 (11) 0.0373 (10) 0.0394 (10) −0.0070 (8) −0.0045 (8) −0.0098 (8)
C4 0.0380 (11) 0.0454 (11) 0.0442 (11) −0.0059 (9) −0.0036 (9) −0.0136 (9)
C25 0.0407 (11) 0.0471 (11) 0.0472 (11) 0.0010 (9) −0.0094 (9) −0.0151 (9)
C24 0.0499 (13) 0.0404 (11) 0.0476 (12) −0.0034 (9) −0.0104 (10) −0.0027 (10)
C23 0.0414 (11) 0.0421 (11) 0.0403 (10) −0.0076 (8) −0.0052 (8) −0.0058 (9)
C28 0.0401 (11) 0.0375 (10) 0.0388 (10) −0.0039 (8) −0.0059 (8) −0.0094 (8)
N2 0.0378 (9) 0.0440 (9) 0.0481 (10) −0.0031 (7) −0.0045 (8) −0.0067 (8)
C30 0.087 (2) 0.101 (3) 0.0606 (18) 0.025 (2) −0.0243 (16) −0.0097 (18)
C22 0.0448 (12) 0.0535 (13) 0.0496 (13) −0.0112 (10) −0.0068 (10) −0.0017 (10)
C21 0.0404 (12) 0.0558 (13) 0.0505 (12) −0.0079 (10) −0.0050 (9) −0.0115 (11)
C27 0.0435 (12) 0.0392 (11) 0.0445 (11) −0.0066 (9) −0.0032 (9) −0.0047 (9)
C26 0.0394 (11) 0.0457 (11) 0.0464 (11) −0.0057 (9) −0.0011 (9) −0.0108 (9)

Geometric parameters (Å, º)

I1—C5 2.092 (2) C10—H10A 0.9600
I2—C25 2.086 (2) C10—H10B 0.9600
O1—C1 1.209 (3) C10—H10C 0.9600
O2—C2 1.198 (3) C1—C2 1.558 (3)
O4—C22 1.213 (3) C2—C3 1.467 (3)
O3—C21 1.215 (3) C3—C4 1.378 (3)
N1—C1 1.371 (3) C4—H4 0.91 (3)
N1—C8 1.411 (3) C25—C24 1.384 (3)
N1—C9 1.454 (3) C25—C26 1.392 (3)
C29—N2 1.459 (3) C24—C23 1.386 (3)
C29—C30 1.486 (5) C24—H24 0.88 (3)
C29—H29A 0.9700 C23—C28 1.399 (3)
C29—H29B 0.9700 C23—C22 1.460 (3)
C5—C4 1.391 (3) C28—C27 1.381 (3)
C5—C6 1.391 (3) C28—N2 1.406 (3)
C6—C7 1.388 (3) N2—C21 1.358 (3)
C6—H6 0.95 (3) C30—H30A 0.9600
C7—C8 1.378 (3) C30—H30B 0.9600
C7—H7 0.99 (3) C30—H30C 0.9600
C8—C3 1.401 (3) C22—C21 1.551 (4)
C9—C10 1.503 (4) C27—C26 1.391 (3)
C9—H9A 0.9700 C27—H27 0.93 (3)
C9—H9B 0.9700 C26—H26 0.96 (3)
C1—N1—C8 110.78 (18) C4—C3—C8 121.64 (19)
C1—N1—C9 124.24 (19) C4—C3—C2 131.1 (2)
C8—N1—C9 124.86 (18) C8—C3—C2 107.30 (19)
N2—C29—C30 112.1 (2) C3—C4—C5 117.8 (2)
N2—C29—H29A 109.2 C3—C4—H4 121.8 (16)
C30—C29—H29A 109.2 C5—C4—H4 120.4 (16)
N2—C29—H29B 109.2 C24—C25—C26 121.0 (2)
C30—C29—H29B 109.2 C24—C25—I2 119.38 (17)
H29A—C29—H29B 107.9 C26—C25—I2 119.59 (17)
C4—C5—C6 120.3 (2) C25—C24—C23 117.7 (2)
C4—C5—I1 118.94 (17) C25—C24—H24 119.6 (18)
C6—C5—I1 120.75 (16) C23—C24—H24 122.7 (18)
C7—C6—C5 122.0 (2) C24—C23—C28 121.3 (2)
C7—C6—H6 118.8 (17) C24—C23—C22 132.1 (2)
C5—C6—H6 119.2 (17) C28—C23—C22 106.5 (2)
C8—C7—C6 117.6 (2) C27—C28—C23 121.1 (2)
C8—C7—H7 121.0 (16) C27—C28—N2 127.6 (2)
C6—C7—H7 121.5 (16) C23—C28—N2 111.23 (18)
C7—C8—C3 120.7 (2) C21—N2—C28 110.83 (18)
C7—C8—N1 128.4 (2) C21—N2—C29 124.6 (2)
C3—C8—N1 110.93 (18) C28—N2—C29 124.59 (18)
N1—C9—C10 112.0 (2) C29—C30—H30A 109.5
N1—C9—H9A 109.2 C29—C30—H30B 109.5
C10—C9—H9A 109.2 H30A—C30—H30B 109.5
N1—C9—H9B 109.2 C29—C30—H30C 109.5
C10—C9—H9B 109.2 H30A—C30—H30C 109.5
H9A—C9—H9B 107.9 H30B—C30—H30C 109.5
C9—C10—H10A 109.5 O4—C22—C23 130.6 (3)
C9—C10—H10B 109.5 O4—C22—C21 124.0 (2)
H10A—C10—H10B 109.5 C23—C22—C21 105.38 (19)
C9—C10—H10C 109.5 O3—C21—N2 127.6 (2)
H10A—C10—H10C 109.5 O3—C21—C22 126.4 (2)
H10B—C10—H10C 109.5 N2—C21—C22 105.98 (19)
O1—C1—N1 126.9 (2) C28—C27—C26 117.4 (2)
O1—C1—C2 127.0 (2) C28—C27—H27 119.1 (17)
N1—C1—C2 106.10 (18) C26—C27—H27 123.5 (17)
O2—C2—C3 130.5 (2) C27—C26—C25 121.5 (2)
O2—C2—C1 124.6 (2) C27—C26—H26 116.9 (17)
C3—C2—C1 104.89 (18) C25—C26—H26 121.6 (17)
C4—C5—C6—C7 −0.1 (4) C26—C25—C24—C23 −0.8 (4)
I1—C5—C6—C7 179.48 (19) I2—C25—C24—C23 176.44 (18)
C5—C6—C7—C8 −0.7 (4) C25—C24—C23—C28 −0.2 (4)
C6—C7—C8—C3 0.7 (4) C25—C24—C23—C22 −175.8 (3)
C6—C7—C8—N1 −179.6 (2) C24—C23—C28—C27 1.4 (4)
C1—N1—C8—C7 −179.6 (2) C22—C23—C28—C27 177.9 (2)
C9—N1—C8—C7 4.4 (4) C24—C23—C28—N2 −177.2 (2)
C1—N1—C8—C3 0.1 (3) C22—C23—C28—N2 −0.6 (3)
C9—N1—C8—C3 −175.9 (2) C27—C28—N2—C21 −176.6 (2)
C1—N1—C9—C10 −95.9 (3) C23—C28—N2—C21 1.9 (3)
C8—N1—C9—C10 79.5 (3) C27—C28—N2—C29 3.4 (4)
C8—N1—C1—O1 −179.3 (2) C23—C28—N2—C29 −178.2 (2)
C9—N1—C1—O1 −3.2 (4) C30—C29—N2—C21 −93.7 (3)
C8—N1—C1—C2 0.2 (2) C30—C29—N2—C28 86.3 (3)
C9—N1—C1—C2 176.3 (2) C24—C23—C22—O4 −4.6 (5)
O1—C1—C2—O2 −0.2 (4) C28—C23—C22—O4 179.4 (3)
N1—C1—C2—O2 −179.7 (2) C24—C23—C22—C21 175.4 (3)
O1—C1—C2—C3 179.0 (2) C28—C23—C22—C21 −0.7 (3)
N1—C1—C2—C3 −0.5 (2) C28—N2—C21—O3 177.6 (3)
C7—C8—C3—C4 −0.1 (3) C29—N2—C21—O3 −2.3 (4)
N1—C8—C3—C4 −179.8 (2) C28—N2—C21—C22 −2.2 (3)
C7—C8—C3—C2 179.3 (2) C29—N2—C21—C22 177.9 (2)
N1—C8—C3—C2 −0.4 (2) O4—C22—C21—O3 1.9 (5)
O2—C2—C3—C4 −0.9 (4) C23—C22—C21—O3 −178.0 (3)
C1—C2—C3—C4 179.9 (2) O4—C22—C21—N2 −178.3 (3)
O2—C2—C3—C8 179.7 (3) C23—C22—C21—N2 1.7 (3)
C1—C2—C3—C8 0.5 (2) C23—C28—C27—C26 −1.4 (3)
C8—C3—C4—C5 −0.6 (3) N2—C28—C27—C26 176.9 (2)
C2—C3—C4—C5 −179.9 (2) C28—C27—C26—C25 0.4 (4)
C6—C5—C4—C3 0.7 (3) C24—C25—C26—C27 0.8 (4)
I1—C5—C4—C3 −178.87 (16) I2—C25—C26—C27 −176.51 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C29—H29A···O2i 0.97 2.57 3.399 (3) 144
C27—H27···O2i 0.93 (3) 2.48 (3) 3.407 (3) 174 (3)
C9—H9A···O4 0.97 2.56 3.366 (3) 140

Symmetry code: (i) x+1, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2202).

References

  1. Abid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223. [DOI] [PMC free article] [PubMed]
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323. [DOI] [PubMed]
  4. Ji, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. X. & Chen, H. F. (2010). Org. Lett. 12, 5192–5195. [DOI] [PubMed]
  5. Kurkin, A. V., Bernovskaya, A. A., Yurovskaya, M. A. & Rybakov, V. B. (2008). Acta Cryst. E64, o1448. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Silva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813033539/vm2202sup1.cif

e-70-00o67-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813033539/vm2202Isup2.hkl

e-70-00o67-Isup2.hkl (249.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813033539/vm2202Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES