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Abstract
The simultaneous control of multiple degrees of freedom (DOFs) is important for the intuitive,
life-like control of artificial limbs. The objective of this study was to determine whether the use of
intramuscular electromyogram (EMG) improved pattern classification of simultaneous wrist/hand
movements compared to surface EMG. Two pattern classification methods were used in this
analysis, and were trained to predict 1-DOF and 2-DOF movements involving wrist rotation, wrist
flexion/extension, and hand open/close. The classification methods used were (1) a single pattern
classifier discriminating between 1-DOF and 2-DOF motion classes, and (2) a parallel set of three
classifiers to predict the activity of each of the 3 DOFs. We demonstrate that in this combined
wrist/hand classification task, the use of intramuscular EMG significantly decreases classification
error compared to surface EMG for the parallel configuration (p<0.01), but not for the single
classifier. We also show that the use of intramuscular EMG mitigates the increase in errors
produced when the parallel classifier method is trained without 2-DOF motion class data.

I. Introduction
Myoelectric prostheses have traditionally used the surface electromyogram (sEMG) to
provide control signals. Much of the current myoelectric control literature has continued to
use surface signals, as they are convenient and noninvasive. Intramuscular recordings
provide an alternative source of EMG signals and address some of the difficulties associated
with sEMG-based control, such as maintaining robust electrode contact with the skin.
Intramuscular EMG (imEMG) also provides addition benefits, such as the ability to record
from deep muscles with little EMG crosstalk. ImEMG has been clinically infeasible, as it
requires the use of percutaneous wire/needle electrodes to transmit signals to the prosthesis.
However, the development of wireless implantable recording devices [1] may soon make
imEMG a viable signal source for myoelectric prostheses. Therefore, investigations
regarding the potential of imEMG for myoelectric prosthesis control are necessary.

Pattern recognition using EMG has provided a successful approach for classifying single
degree of freedom (DOF) motions in a sequential manner [2–5]. The use of both sEMG and
imEMG has been previously evaluated. Both signal sources have shown equivalent
classification accuracy of wrist movements and hand grasps when intramuscular electrodes
are targeted to muscles corresponding to intended movements [4, 5]. Few previous studies
have investigated simultaneous finger control using imEMG pattern classification [6–8];
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most studies using pattern recognition to simultaneously control two DOFs have used sEMG
[9–13].

One straight-forward approach for simultaneous multi- DOF control using pattern
recognition is to simply include 2- DOF movements, labeled as distinct motion classes, in
the training of a single pattern classifier (e.g. the classifier discriminates between motion
classes that include supination, hand closed, and supination/hand closed) [9, 11–13]. A
second straight-forward approach uses a "parallel" architecture of pattern classifiers [6, 10,
11, 13], where multiple classifiers are used in parallel to independently classify different
DOFs simultaneously. The parallel strategy is an attractive approach for simultaneous multi-
DOF pattern recognition control, because it may be trained with only 1- DOF motion
exemplars (whereas the single-classifier approach requires exemplars for all possible DOF
combinations); however, providing combined movement exemplars does result in lower
classification errors when using sEMG [13]. Furthermore, the parallel architecture may
provide a straightforward avenue for simultaneous proportional control, by applying
algorithms currently used to provide proportional control estimates for sequential pattern
recognition [14].

The objective of this study was to compare the offline classification accuracy of combined
wrist/hand movements using both sEMG and imEMG pattern recognition. This was
evaluated using both a single classifier and a parallel classifier approach.

II. Methods
A. Experimental Protocol

Four able-bodied control subjects participated in the following experiment, which was
approved by the Northwestern University Institutional Review Board. EMG was recorded
using either intramuscular or surface electrodes during two separate sessions. ImEMG
signals were collected using percutaneous fine-wire electrodes (CareFusion, San Diego, CA)
that were inserted using 25 ga hypodermic needles. Bipolar electrodes were inserted into six
forearm muscles: pronator teres, supinator, flexor carpi radialis, extensor carpi radialis
longus, flexor digitorum profundus, and extensor digitorum. Insertion locations were
identified by palpation and confirmed by observing EMG channel activity during
corresponding test contractions. A sEMG electrode on the olecranon was used for ground.
Signals were collected using a Motion Lab Systems MA300 EMG system connected to a
National Instruments DAQ (NI-USB 6218). Signals were amplified, bandpass filtered
between 10–2000 Hz, and sampled at 5 kHz. sEMG signals were collected using 6 bipolar
surface electrodes along the circumference of the proximal forearm, approximately 2 cm
distal to the elbow. One electrode was placed on the main wrist flexor muscle group and one
was placed on the main wrist extensor muscle group. Two additional electrodes were each
placed on the anterior and posterior forearm, distributed equally between the main flexor
and extensor bundle electrodes. Electrodes were not targeted to specific muscles, as previous
literature has shown that targeted placement of surface electrodes has little effect on
classification [5]. A ground electrode was placed on the olecranon. Signals were collected
using a Delsys Bagnoli-16 Amplifier connected to a National Instruments DAQ (NI-USB
6218). Signals were amplified, bandpass filtered between 20–450 Hz, and sampled at 1 kHz.

After the electrode placement (either intramuscular insertion or surface adhesion), subjects
were restrained in a neutral posture by a custom brace that restricted forearm rotation, and
wrist and hand movement. Subjects were instructed by visual and audial prompt to produce
isometric contractions of both discrete 1-DOF wrist/hand motions or simultaneous 2-DOF
wrist/hand motions. EMG signals for fifteen motion classes were collected in total: 1 no
motion/relaxation class, 6 single-DOF motions (pronation/supination, wrist flexion/

Smith and Hargrove Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



extension, and hand open/close), and 8 combined wrist/hand motion (pronation/supination
with hand open/close and wrist flexion/extension with hand open/close). Subjects were
provided a practice period to become accustomed to making contractions in the brace. Four
repetitions of contractions were then collected. Subjects were instructed to produce
comfortable, moderate level contractions for 3 s each, providing 12 s of signal in total for
each motion. Analysis of classification performance was then completed offline.

B. EMG Data Processing
The presence of crosstalk in both the sEMG and imEMG signals was evaluated by
calculating correlation coefficients between individual channels.

EMG features were extracted from 250 ms non-overlapping windows [15] of the collected
signals. Both time domain [16] and autoregressive features [17] were calculated for each
window to train the pattern classifiers.

C. Classifier Configurations
All classifier configurations used linear discriminant analysis (LDA) classifiers. Preliminary
analysis comparing LDA classifiers and support vector machines showed no difference in
performance for linear, third-order polynomial and Gaussian kernels. LDA classifiers were
therefore used for ease of implementation.

The single classifier approach used one LDA classifier. This classifier was trained to
discriminate between the fifteen motion classes collected: 1 no motion/rest motion class, 6
single-DOF motion classes and 8 combined wrist/hand motion classes, as previously
described.

The parallel classifier approach used three LDA classifiers: one for each DOF (wrist
rotation, wrist flexion/extension, and hand open/close) (Figure 1). Each LDA classifier
distinguished between the two opposing motion classes for the DOF (e.g. supination and
pronation for wrist rotation) and a no motion class. The overall commanded movement was
the combination of the outputs from each classifier. The parallel classifiers were trained with
and without 2-DOF motion class data. The 'no motion' class for all classifiers was trained
using any exemplar where the DOF of interest was not active (e.g. the no motion class in the
hand classifier was trained with true no motion, wrist flexion/extension, and supination/
pronation exemplars, etc.).

D. Classifier Evaluation
Four classifiers were evaluated for each subject: (1) a single classifier using imEMG, (2) a
single classifier using sEMG, (3) parallel classifiers using imEMG, and (4) parallel
classifiers using sEMG. Classifiers were trained on the extracted features described above.
For initial comparisons, both parallel classifiers were trained using both 1- and 2- DOF
motion class data.

Classification error was calculated using random subsampling validation [18]: error was
averaged over twenty repetitions, where a random sample of 90% of windows of each
motion class was used for training, and the remaining data was used for testing. Overall
classification error represented an equally weighted average of each of the fifteen motion
classes collected. Classification error was also grouped and averaged for all 1-DOF intended
movements and for 2-DOF intended movements.

We also evaluated the classification error when parallel classifiers were trained with only 1-
DOF motion class training data.

Smith and Hargrove Page 3

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



E. Statistical Analysis
Repeated measures analysis of variance (ANOVA) with post-hoc comparisons using the
Tukey method was used to compare overall, no motion, 1-DOF, and 2-DOF classification
error between the four classifier/signal source configurations.

For both imEMG and sEMG parallel classifiers, the effect of removing 2-DOF motion class
training on 1-DOF and 2-DOF motion classification error was evaluated using paired t-tests.

Significance was evaluated with α = 0.05. Residuals were confirmed to be normally
distributed.

III. Results
Table I shows the correlation between channels for both intramuscular and surface raw
EMG for one representative subject. Correlation coefficients with magnitudes greater than
0.5 are highlighted. There is almost no correlation between channels in the intramuscular
signals, but substantial correlation between channels in the surface signals.

The overall, 1-DOF, and 2-DOF classification errors were significantly influenced by the
combinations of classifier configuration and signal source (p<0.01) (Figure 2). There was no
difference in no motion classification between the classifier configurations or signal sources.

Post-hoc comparisons revealed that a parallel classifier using imEMG produced significantly
less overall, 1-DOF, and 2-DOF error compared to a parallel classifier using sEMG
(p<0.01). A single classifier using imEMG produced a consistent but non-significant
decrease in error when compared to a single classifier using sEMG.

Post-hoc comparisons also revealed that when using imEMG, the error of the single
classifier was no different than the parallel configuration. However, when using sEMG, the
single classifier produced significantly less overall, 1-DOF and 2-DOF error than the
parallel classifier (p<0.05).

For both the sEMG parallel classifier and the imEMG parallel classifier, the removal of 2-
DOF motion classes from the training data set caused large significant increases in 2-DOF
motion classification error (p<0.05) (Figure 3). When no 2-DOF motion class training data
was used, both the sEMG parallel classifier and the imEMG parallel classifier had very large
2-DOF motion classification errors (49% and 76%, respectively). For the sEMG parallel
classifier, there was also a small significant decrease in 1-DOF motion classification error
(p<0.01).

IV. Discussion
This preliminary study demonstrates the effects of using imEMG on the classification error
of simultaneous wrist/hand movements using two pattern recognition strategies previously
described in the literature (a single-classifier and a set of parallel classifiers) [6, 9–13].
Similar to [4, 5], using imEMG signals produced no significant reductions in error from
sEMG for a single classifier approach (Figure 2). However, we show that the use of imEMG
produced a significant decrease in classification error for parallel classifiers. Therefore,
while a single classifier significantly outperformed a parallel classifier using sEMG (as was
previously shown in [11, 13]), the use of imEMG decreased the parallel classifier's error to
nearly that of the single classifier. The use of imEMG makes the parallel configuration a
more promising approach for simultaneous control than had been previously suggested in
sEMG studies.
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The use of imEMG also improved error when attempting to train a parallel classifier without
2-DOF motion training data (Figure 3). One theoretical benefit of the parallel-classifier
architecture that distinguishes it from the single-classifier approach is the possibility of
training the classifiers without the use of simultaneous multi-DOF data. This is an attractive
property of the parallel configuration, because the number of motion classes required to train
a single-classifier for simultaneous multi-DOF control becomes burdensome as more DOFs
are included. Neither imEMG nor sEMG provided useable levels of error when only 1-DOF
motion classes were used to train the parallel classifiers. However, the use of imEMG
mitigated this error (49% vs. 76% 2-DOF error for imEMG vs. sEMG, respectively).

ImEMG signal properties and the difference between the parallel and single classifier
configurations may explain the error reductions seen with the parallel configuration. Perfect
performance of the single classifier requires that motion classes are linearly separable.
(While this study's error rates indicate that the classes are not completely separable, the low
error suggest that classes are mostly separable, and subjects could potentially improve the
separability of motion class features given real-time feedback.) In addition to this
requirement, the parallel classifier also requires motion classes sharing at least one active
DOF motion (e.g. supination, supination/hand open and supination/hand closed) to be
grouped in feature space and separable from motion classes sharing the opposite motion.
ImEMG may be a better signal source for such a configuration, because it provides signals
with substantially less crosstalk, as is demonstrated by the decrease in inter-channel
correlation when compared to sEMG signals (Table I). The decreased crosstalk results in
more independently distributed EMG features, which may aid in the separability of the
grouped feature distributions. In contrast, a single classifier, which does not use such
groupings, may not benefit as much from this property of imEMG. Such findings are
consistent with [4, 5], which showed no difference between imEMG and sEMG with a
single classifier for 1-DOF motions.

The presented work focuses on the offline classification accuracy of two pattern
classification approaches for simultaneous wrist/hand control using imEMG and sEMG.
Future work should investigate whether pre-processing with source separation algorithms
(e.g. principal component analysis, independent component analysis, or non-negative matrix
factorization) could improve classification of 2-DOF motions by identifying similarities
with the features of each 1-DOF motion class. This work is limited to a comparison between
pattern recognition using imEMG targeted to muscles of interest and untargeted sEMG.
Though previous work [5] has demonstrated no difference between targeted and untargeted
sEMG for a single classifier configuration, this has not been demonstrated for the parallel
configuration, and should be investigated in future studies. Future work should also focus on
the development of proportional control algorithms and the real-time evaluation of
prosthesis control using these classifiers. ImEMG has the potential to be a useful signal
source for proportional control, as one can evaluate the EMG amplitude (and estimate
intended contraction strength) of specific muscles that control the DOF of interest. This
work is also limited to the use of able-bodied control subjects. Future studies will extend this
evaluation to persons with amputations, who may produce different patterns of muscle
activation / co-contraction than subjects without amputations.
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Figure 1.
Organization of parallel classifier tested. The configuration used three parallel classifiers:
one for each DOF evaluated. Each classifier output one of two active motion classes or no
motion. The overall commanded movement was the combination of the output from each
classifier. An example of the training data used for the hand classifier is shown. Here, all 2-
DOF motion classes containing hand closed are relabeled to hand closed, etc. It is not
required to use 2-DOF motion classes to train the classifier. PR = pronation, SU =
supination, WF = wrist flexion, WE = wrist extension, HC = hand closed, HO = hand open,
NM = no movement.
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Figure 2.
Classification error for each classifier type, trained with either surface or intramuscular
EMG. Parallel classifiers are trained with both 1-DOF and 2-DOF motion training data.
Error is presented as an overall error, and broken into error for classification of no motion,
1-DOF intended motions and 2-DOF intended motions. For the parallel classifiers, the use of
imEMG provided significant improvement in classification error when compared to sEMG.
Results are an average of four subjects. * p<0.05, ** p<0.01, *** p<0.001. Error bars show
+/− 1 SEM. (IM = intramuscular, NM = no motion)
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Figure 3.
Classification error of parallel classifiers when trained with and without 2-DOF motion class
data. Error is partitioned into error for 1-DOF intended motions and 2-DOF intended
motions. Training with only 1-DOF motion class data resulted in significant increases in
error for both intramuscular and surface signal sources. Results are an average of four
subjects. * p<0.05, ** p<0.01. Error bars show +/− 1 SEM. (IM = intramuscular)
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