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Abstract
Objective—While dimension reduction has been previously explored in computer aided
diagnosis (CADx) as an alternative to feature selection, previous implementations of its
integration into CADx do not ensure strict separation between training and test data required for
the machine learning task. This compromises the integrity of the independent test set, which
serves as the basis for evaluating classifier performance.

Methods and Materials—We propose, implement and evaluate an improved CADx
methodology where strict separation is maintained. This is achieved by subjecting the training data
alone to dimension reduction; the test data is subsequently processed with out-of-sample extension
methods. Our approach is demonstrated in the research context of classifying small diagnostically
challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The
lesions were dynamically characterized through topological feature vectors derived from
Minkowski functionals. These feature vectors were then subject to dimension reduction with
different linear and non-linear algorithms applied in conjunction with out-of-sample extension
techniques. This was followed by classification through supervised learning with support vector
regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the
metric of classifier performance.

Results—Of the feature vectors investigated, the best performance was observed with
Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the
dimension reduction algorithms tested with ’perimeter’, the best performance was observed with
Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory
observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10).
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Conclusions—The results reported in this study with the proposed CADx methodology present
a significant improvement over previous results reported with such small lesions on dynamic
breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better
classification performance than linear approaches, when integrated into our CADx methodology.
We also note that while dimension reduction techniques may not necessarily provide an
improvement in classification performance over feature selection, they do allow for a higher
degree of feature compaction.

Keywords
dimension reduction; out-of-sample extension; Minkowski functionals; topological texture
features; feature selection; automated lesion classification; dynamic breast magnetic resonance
imaging

1. Introduction
Computer Aided Diagnosis (CADx) aims to assist in the characterization of a previously
annotated pattern in terms of its morphological or functional attributes, and in the estimation
of its probability of pathological (or healthy) state [1]. Approaches to CADx typically
involve three steps - (1) an extraction step where features characterizing the healthy or
pathological patterns are computed, (2) a feature reduction step where the initial set of
computed features are reduced to a smaller subset of features most relevant to the
classification task and (3) a supervised learning step where the classification performance of
the pattern characterizing features is evaluated. This has been widely demonstrated in the
current literature in several contexts such as chest CT [2, 3], dynamic breast MRI [4–6],
digital mammography [7, 8] etc.

Of particular interest in this study is feature reduction, which aims to efficiently represent
the originally extracted high-dimension pattern characterizing feature vectors in a low-
dimension space; this has been previously accomplished through feature selection in CADx
[5, 6, 9]. Feature selection involves reducing the size of the originally extracted feature set
through exclusion of features that are either irrelevant to the feature task, or are redundant in
information content. Recently, dimension reduction was proposed as an alternative to feature
selection in breast CADx [7, 10]. Rather than explicit inclusion or exclusion of specific
features, such techniques allowed for algorithmic-dependent weighting of all features while
computing a new feature set in the low-dimension space. While integration of dimension
reduction into CADx presents an interesting innovation, the implementation is not without
complications.

The supervised learning step, where features are evaluated in their ability to distinguish
between healthy and pathological classes of patterns, is an important step in currently
established CADx methodology. Here, a strict separation of training and test data is
mandatory for proper execution of this step, especially since the performance of the features
are evaluated on the test data. Feature selection can be easily integrated into CADx while
maintaining this strict separation because it yields explicit selection of features that are best
suited for the task. This allows simple selection of the best features from the training set
alone for subsequent application to the test set. However, dimension reduction yields a new
set of features in a different feature space; the mapping between the high-dimension feature
set and the corresponding low-dimension representation is not as easy to interpret and
subsequently replicate in the test set. Thus, the ideal approach to integrating dimension
reduction in CADx while also maintaining strict training-test separation is not immediately
clear. Previous approaches to integrating dimension reduction in CADx have taken to
applying such algorithms to the entire dataset [7, 10] which unfortunately violates the
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requirement of strict seperation between training and test sets. This is attributed to the fact
that dimension reduction imposes no such restriction regarding training-test data separation;
data points from both sets are free to interact and influence the computation of their low-
dimension representations. A direct consequence of such interaction between the training
and test data, prior to the supervised learning step, is the contamination of the independent
test set. Evaluating the performance of the classifier on such a test set is not representative of
the real world application of CADx where all information about the test set would be
completely hidden from the classifier until its training is complete.

To address this shortcoming, we propose an improved CADx methodology where the
required strict separation between training and test data is maintained while concurrently
integrating dimension reduction. This involves restricting the application of dimension
reduction techniques to the training data alone. The low-dimension representation of data
points in the test set are computed through out-of-sample extensions. A comparison of the
CADx methodology proposed in this study and the one previously used is shown in Figure
1. As shown here, the use of such out-of-sample extension techniques allows for integration
of dimension reduction in CADx while maintaining the integrity of the independent test set.

We demonstrate our CADx methodology in the research context of classifying small
diagnostically challenging lesions on dynamic breast magnetic resonance imaging (MRI).
Breast cancer is among the leading causes of mortality for women in North America [11]. In
this regard, dynamic contrast-enhanced MRI (DCE-MRI) has emerged as a promising
diagnostic modality for detection and evaluation of suspicious mammographic lesions.
However, while breast cancer diagnosis on DCE-MRI has been the subject of research in the
area of CADx [4, 5, 12–21], not many studies have focused on evaluating the value of DCE-
MRI in small lesions. Accurate diagnosis of such small lesions is clinically important for
improving disease management in patients, where evaluating the dignity of breast lesions is
specifically challenging as typical benign and malignant characteristics are harder to discern.
In this regard, Leinsinger et al. reported a diagnostic accuracy of 75% in detecting breast
cancer through cluster analysis of signal intensity time curves [22]. More recently,
Schlossbauer et al., attempting to classify a dataset of small lesions (mean size 1.1 cm),
reported an AUC value of 0.76 when using dynamic criteria [23].

Our work falls in the general research context of improving the classification performance of
such small lesions on breast DCE-MRI. Here, we specifically focus on the evaluation of
different feature reduction approaches through dimension reduction and feature selection
using previously proposed topological feature sets derived from Minkowski Functionals
[24]. Our goals in this work are to evaluate the ability of such feature reduction algorithms
in terms of the classification performance of the reduced feature sets as well as the degree of
feature compaction achieved by both approaches, as discussed in the following sections.

2. CADx methodology
2.1. Overview

Figure 1(B) shows the CADx methodology proposed and evaluated in this study; various
components of this system are described in this section.

Feature computation is achieved through the use of novel topological texture features
derived from Minkowski functionals [25] to dynamically capture properties of the lesion
enhancement pattern. Previous studies have investigated a variety of textural approaches
such as using gray-level co-occurence matrices [4, 18, 5, 26, 27], gabor texture and moment
invariants [6, 26], shape descriptors [19] etc in characterizing the character of lesions on
dynamic breast MRI. Such approaches usually require a pre-processing step involving
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precise lesion segmentation which is a challenging task for the radiologist given the small
size of the lesions used in this study. Borders of such lesions can be ill-defined and harder to
visualize leading to imperfect manual segmentation and significant inter-reader variability.
However, the process involved in extracting Minkowski Functionals creates binary images
of the lesion at several thresholds which performs an implicit segmentation without any
external user input. Previous work has also shown that such texture features are also able to
characterize the lesion margin at different gray-level thresholds which contributes to
improved classifier performance [24]. In this work, texture analysis using Minkowski
functionals is performed on all five post-contrast images of a dynamic breast MRI exam and
then combined to form lesion characterizing high-dimension feature vectors; this follows a
dynamic characterization approach previously explored in other studies [27, 26].

The extracted feature vectors are then split into a training and test set. The high-dimension
feature vectors in the training set alone are subject to dimension reduction. While the
literature boasts of a wide spectrum of dimension reduction algorithms, it is impossible to
systematically evaluate our approach with all such documented algorithms. To showcase our
CADx methodology with a balanced yet representative selection of algorithms, we focus on
two classical and two recent dimension reduction techniques that can be considered as a
balanced selection with respect to algorithmic properties, namely principal component
analysis or PCA (non-parametric, linear) [28], Sammon’s mapping (classical gradient
descent, non-linear) [29], t-distributed stochastic neighbor embedding or t-SNE (global
optimization, non-linear) [30] and exploratory observation machine or XOM (local
optimization, non-linear) [31–33].

After the training data is processed with such dimension reduction techniques, the
corresponding low-dimension representations for the test set are obtained using out-of-
sample extension techniques. In particular, we investigate the use of Shepard’s interpolation
and radial basis function neural network function approximation (RBFN-FA).

For comparison with dimension reduction, feature selection through evaluation of mutual
information criteria [9] is also used. Feature reduction is followed by supervised learning
and classification, which is achieved through support vector regression (SVR) [34]. These
processing steps were used to evaluate the classification performance achieved with
proposed CADx methodology of maintaining training-test data separation while applying
dimension reduction, as discussed in the following sections.

2.2. Texture analysis
Minkowski functionals were computed by first binarizing each specified region of interest
(ROI) through the application of several thresholds. While different strategies may be
pursued for choosing thresholds, we specified thresholds at equal intervals between its
minimum and maximum intensity limits to cover the entire gray-level range. For each binary
image obtained, three Minkowski functionals, i.e. area, perimeter and Euler characteristic,
were computed as follows -

(1)

(2)

(3)
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where ns was the total number of white pixels, ne was the total number of edges and nv was
the number of vertices [25]. The area feature recorded the area of the white pixel regions in
the binary image, the perimeter feature calculated the length of the boundary of white pixel
areas and the Euler characteristic was a measure of connectivity between the white pixel
regions. This is further illustrated in Figure 2. The number of thresholds applied was a free
parameter; different choices for this parameter are investigated here.

Once computed for every binary image derived from a specific ROI, these values were
stored in a high-dimension vector corresponding to each Minkowski functional, similar to an
approach described in [3]. Such computations were performed for the same ROI on all five
post-contrast images of the lesion and then combined. The dimension of such texture feature
vectors was given by N×D, where N was the number of thresholds used to binarize each ROI
and D was the number of post-contrast images acquired for each lesion (5 for all dynamic
breast MRI exams used in this study). Thus, the overall dimension of the texture feature
vectors was 100.

2.3. Feature reduction - dimension reduction
The goal of dimension reduction in this study was to transform high-dimension feature
vectors into a set of low-dimension vectors for subsequent classification. Specifically, we
investigated the classification performance achieved with such representations of
dimensions 2, 3, 5, 10 and 20, as computed using the following methods.

PCA is an orthogonal linear transform that maps the original feature space to a new set of
orthogonal coordinates or principal components [28]. This transformation is defined so that
the first principal component accounts for highest global variance, and subsequent principal
components account for decreasing amounts of variance. The corresponding low-dimension
projections of the texture feature vectors can be determined by including the appropriate
number of principal components. As mentioned above, we investigated using the first 2, 3,
5, 10 and 20 principal components to represent the high-dimension feature vectors.

Sammon’s mapping is based on a point mapping of high-dimension feature vectors to a low-
dimension space such that inter-point distances in the high-dimension space approximate the
corresponding inter-point distances in the low-dimension space [29].

Let Xi, i = 1, 2, ..N, represent a set of high-dimension feature vectors and Yi, i = 1, 2, ..N,
their corresponding low-dimension representations where N is the number of data points in
the training set of this study. The distance between any two points Xi and Xj is represented
by Dij, and the distance between any two points Yi and Yj, by dij. Starting with a randomly
chosen initial configuration for Yi, the cost function E which represents how well the low-
dimension representations Yi represent the feature vectors Xi is given by

(4)

A steepest descent procedure is used for minimizing E. The implementation of this
algorithm was taken from a widely used dimension reduction toolbox for MATLAB [35].

Stochastic neighbor embedding (SNE) follows a non-linear approach where Euclidean
distances between high-dimension texture feature vectors are converted into conditional
probabilities representing similarities. The similarity of two feature vectors is defined as the
conditional probability that one selects the other as a neighbor; the closer the feature vectors,
the higher the similarity [30]. Once such conditional probability distributions are established
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for both the high-dimension feature vectors and their corresponding low-dimension
representations, the goal is to minimize the mismatch between the two distributions.

Let Xi, i = 1, 2, ..N, represent a set of high-dimension feature vectors and Yi, i = 1, 2, ..N,
their corresponding low-dimension representations. Let pj|i be the condition probability that
Xi selects Xj as a neighbor, assuming that neighbors were picked in proportion to their
probability density under a Gaussian centered at Xi. Similarly, qj|i is the conditional
probability in the low-dimension space. The goal of SNE is to reduce the mismatch between
pj|i and qj|i, which is achieved through minimization of the sum of Kullback-Leibler (KL)
divergences over all feature vectors using a gradient descent method. The cost function is
given by

(5)

where Pi represents the conditional probability distribution over all other feature vectors
given Xi, and Qi represents the conditional probability distribution over all other low-
dimension representations given Yi.

t-SNE was developed as an improvement over SNE in two respects - (1) simplification of
the cost function optimization and (2) addressing the so-called crowding problem inherent to
SNE [30]. Details pertaining to this algorithm and its cost function minimization can be
found in [30], and a review of the algorithm can be found in [7, 36]. The t-SNE
implementation was taken from the dimension reduction toolbox for MATLAB [35]. This
implementation had one free parameter perplexity, which can be defined as a smooth
measure of the effective number of neighbors. The value of this free parameter was specified
to provide the best separation between the two classes of lesions. Other internal parameters
of t-SNE such as the degrees of freedom of the t-function and the number of iterations for
which the cost function optimization is processed were defined through default settings
provided by the toolbox.

Finally, we note that the t-SNE implementation provided in the MATLAB toolbox was
specifically tuned for visualizing high-dimensional data in 2-D and 3-D; its behavior in
general dimension reduction tasks (such as 5-D, 10-D, 20-D etc) is not fully understood
[30]. Our inclusions of results that reduce the data to 5, 10 and 20 dimensions were simply
for completeness, and to observe their corresponding effects on classification performance.

XOM maps a finite number of data points Xi in a high-dimension space to target points Yi in
the low-dimension embedding space [31–33]. The embedding space is equipped with a
structure hypothesis which corresponds to the final target structure for embedding the high-
dimension data. However, a key difference that separates XOM from other topology-
preserving mappings, such as Kohonen’s Self-Organizing Map (SOM) [37], is that it
projects the high-dimension data to the low-dimension embedding space (rather than
projecting the sampling vectors of the structure hypothesis onto the high-dimension data
space).

The initial setup of XOM involves - (1) defining the topology of the high-dimension data in
the feature space through computation of distances d(Xi, Xj) between feature vectors Xi, (2)
defining a structure hypothesis represented by sampling vectors Sk in the low-dimension
space, and (3) initializing output vectors Yi, one for each input feature vector Xi. While
different choices may be considered for Sk, such as lattice structures, Gaussian distributions
etc. [33], we use random samples from a uniform distribution in this application in order to
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enable occupation of the entire projection space. The output vectors Yi are adapted
iteratively during the training process; upon completion of the dimension reduction
procedure, their final position represents the low-dimension projections of the high-
dimension feature vectors.

Once the initial setup was complete, the goal of the algorithm is to reconstruct the topology
induced by the high-dimension feature vectors Xi through displacements of Yi in the low-
dimension space. This is accomplished by incrementally updating the image vectors Yi using
a sequential learning procedure. For this purpose, neighborhood couplings between feature
vectors in the high-dimension space are represented by a cooperativity function h, which
was modeled in this study as a Gaussian

(6)

Here, X′(S(t)) represents the best-match for a input feature vector Xi. For a randomly
selected sampling vector S, the best-match feature vector X′ is identified by the criterion: ||S
− Y′|| = mini|| S − Yi||. Once the best-match feature vector is identified, the output vectors Yi
are incrementally updated by a sequential adaptation step according to the learning rule

(7)

where t represents the iteration step, ε(t) is the learning rate and σ(t) is a measure of
neighborhood width taken into account by the cooperativity function h. In this study, both
ε(t) and σ(t) are changed in a systematic manner depending on the number of iterations by
an exponential decay annealing scheme [33]. The algorithm is terminated when either the
cost criterion is satisfied, or when the maximum number of iterations is completed. The
above sequential learning rule can be interpreted as a gradient descent step on a cost
function for XOM, whose formal derivation can be found in [36]. By systematically
exchanging functional and structural components of topology preserving mappings such as
SOM [37], XOM can be seen as a computational framework for structure-preserving
dimensionality reduction [32, 33]. Further details of this algorithm can be found in [32, 36].

We note three parameters in this algorithm - (1) the learning parameter ε(2) the
neighborhood parameter σ, and (3) the total number of iterations. Default settings were
specified for internal parameters ε and number of iterations. Under these conditions, the
value of free parameter σ that enabled the best separation between the two classes of lesions
was identified.

2.4. Out-of-sample extension
Since feature reduction through dimension reduction was restricted in its application to the
training data alone, the test data were out-of-sample points that had to be mapped to a low-
dimension representation. For this purpose, the training set of high-dimension points Xi and
their corresponding known low-dimension representations Yi were used to define a mapping
F such that Yi = F (Xi). Once established, such a mapping could be used to determine the
low-dimension representations of the test set.

The goal of out-of-sample extension algorithms in this context was to create or approximate
the mapping F. For a high-dimension feature vector X whose low-dimension representation
is unknown, F can be treated as an interpolating function of the form
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(8)

where ai are the weights that define the interpolating function and M is the number of data
points in the test set. We investigated two approaches to defining these weights.

Shepard’s interpolation—This technique implements an inverse distance weighting
approach in defining ai described previously [38], i.e.,

(9)

The power parameter p controlled how points at different distances from X contributed to
the computation of F(X), i.e. large values of p ensured that only those points close to X made
contributions to the weighting function.

Radial basis neural network function approximation (RBFN-FA)—As an
alternative to Shepard’s interpolation, the mapping F was approximated using a radial basis
function neural network. The weights ai were defined as,

(10)

which represented the activity of the hidden layer of the radial basis function network. The ρ
parameter controlled the shape of the radial basis function kernel, and defined the
neighborhood of feature vectors that contributed to the computation of F(X).

Of the dimension reduction techniques investigated in this study, PCA was a special case
that allowed for direct mapping of out-of-sample points into the lower-dimension space and
did not require any special out-of-sample extension.

2.5. Treatment of free parameters for dimension reduction and out-of-sample extension
Most advanced non-linear dimension reduction and out-of-sample extension techniques have
free parameters which must be specified. Typically, such free parameters were optimized
using a variety of quality measures related to visualization, as described in the literature [29,
39–41]. We refrained from using such measures in this study for two reasons - (1) the best
way to evaluate the quality of a lower-dimension projection is still unclear and under debate
[40] and (2) the end goal for dimension reduction in this study is classification and not
visualization. For these reasons, we instead specified values for such free parameters that
provided the best separation between the benign and malignant classes of lesion patterns, as
identified in cross-validation analysis performed independently with randomly chosen
subsets of data.

2.6. Feature reduction - feature selection
Feature selection involves identifying a subset of features from the input feature space that
makes the most relevant contribution to separating the two different classes of data points in
the machine learning step. This study used mutual information analysis to identify a subset
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of features from the high-dimensional feature vectors that best contributed to the lesion
character classification.

Mutual information (MI) is a measure of general independence between random variables
[42]. For two random variables X and Y, the MI is defined as -

(11)

where entropy H(·) measures the uncertainty associated with a random variable. The MI I(X,
Y ) estimates how the uncertainty of X is reduced when Y has been observed. If X and Y are
independent, their MI is zero.

For ROI data set in this study, the MI between each feature fs, which is the feature stored in
the sth dimension of feature vector f, and the corresponding class labels y was calculated as

(12)

where nc was the number of classes and nf was the number of histogram bins used for fs. In
this approach, the probability density function of each variable is approximated using
histograms P(·) [43]. The number of classes nc = 2 and the number of histogram bins for the
texture features nf was determined adaptively according to

(13)

where κ is the estimated kurtosis and N the number of ROIs in the training set [9].

2.7. Classification
The extraction of texture features and subsequent feature reduction was followed by a
supervised learning step where the lesion patterns were classified as benign or malignant. In
this work, support vector regression with a radial basis function kernel was used for the
machine learning task [34]. Here, SVR treated the features as independent variables and
their labels as the dependent variable and acted as a function approximator; this function
was then used in conjunction with the texture features of the test data to predict their labels.
The SVR implementation was taken from the libSVM library [44].

In this study, 70% of the data was used for the training phase while the remaining 30%
served as an independent test set. The percentages for division into training and test set (and
subsequent division of the training set into a training and validation set for cross-validation)
were determined empirically; 50-50, 60-40, 70-30, 80-20 and 90-10 splits have all been used
in the literature. The training data was sub-sampled from the complete dataset in such a
manner that atleast 40% of each class (benign and malignant) were represented to ensure
that class representation in the training set was not skewed toward one particular class.
Special care was taken to ensure that lesion ROIs extracted from the same patient were used
either as training or test data to prevent any potential for biased training. As mentioned
earlier, the use of out-of-sample extension techniques ensured that training and test feature
vectors did not interact during the feature reduction step. When evaluating feature selection,
the best features of the texture feature vectors were selected by evaluating the mutual
information criteria of the training data alone.
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In the training phase, models were created from labeled data by employing a random sub-
sampling cross-validation strategy where the training set was further split into 70% training
samples and 30% validations samples. Such cross-validation was performed over 40
iterations where the training and validation samples were picked randomly from the original
training set. The purpose of the training was to determine the optimal classifier parameters,
i.e. those that best capture the boundaries between the two classes of lesion patterns. The
free parameters for the classifiers used in this study were the cost parameter for SVR and the
shape parameter of its radial basis function kernel. Then, during the testing phase, the
optimized classifier predicted the label (benign or malignant) of lesion ROIs in the
independent test dataset; a receiver-operating characteristic (ROC) curve was generated and
used to compute the area under the ROC curve (AUC) which served as a measure of
classifier performance. This process was repeated 50 times resulting in an AUC distribution
for each feature set.

We use AUC as the metric of classifier performance in this study over simpler metrics such
as accuracy in this study for the following reasons - (1) AUC, unlike accuracy, is not
influenced by the prevalence of disease in the sample, and it is not calculated on the basis of
only one cut-off point, which treats false-positive and false-negative results as if they were
equally undesirable, but allows for a detailed evaluation of diagnostic accuracy at varying
levels of sensitivity and specificity [45], (2) AUC is well established as a metric of classifier
performance in various studies involving lesion classification on breast MRI [5–7, 10, 23,
26, 21, 20, 27, 24], (3) ) it serves as metric for quantitative comparison of classifier
performance between different algorithmic approaches in our CADx methodology, and (4) it
allows us to compare our approach to previous studies that have also reported AUC values
while investigating lesion classification on a similar dataset of small lesions [23].

2.8. Statistical analysis
A Wilcoxon signed-rank test was used to compare two AUC distributions corresponding to
different texture features. Significance thresholds were adjusted for multiple comparisons
using the Holm-Bonferroni correction to achieve an overall type I error rate (significance
level) less than α (where α = 0.05) [46, 47].

Texture, feature reduction, classifier and statistical analysis were implemented using Matlab
2008b (The MathWorks, Natick, MA).

3. Data
3.1. Patient data

Sixty diagnostically challenging breast tissue lesions were identified from DCE-MRI
datasets of 54 female patients by two experienced radiologists who came to a consensus on
evaluation of clinical findings. The mean patient age was 52 (standard deviation: 12 years,
range: 27 to 78 years). In all cases, histopathologically confirmed diagnosis from needle
aspiration/excision biopsy was available prior to this study; 32 of the lesions were diagnosed
as benign and the remaining 28 as malignant. Mean lesion diameter was 1.1 cm (standard
deviation of 0.73 cm). The histological distribution of the 32 benign lesions is as follows - 3
fibroadenoma, 10 fibrocystic changes, 5 fibrolipomatous change, 7 adenosis, 1 papilloma
and 6 non-typical benign disease. The histological distribution of the 28 malignant lesions is
as follows - 18 invasive ductal carcinoma, 5 invasive lobular carcinoma, 3 ductal carcinoma
in-situ and 2 non-typical malignant disease.
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3.2. Acquisition protocols
Patients were scanned in the prone position using a 1.5T MR system (Magnetom VisionTM,
Siemens, Erlangen, Germany) with a dedicated surface coil to enable simultaneous imaging
of both breasts. Images were acquired in the transversal slice orientation using a T1-
weighted 3D spoiled gradient echo sequence with the following imaging parameters; echo
repetition time (TR) = 9.1 ms, echo time (TE) = 4.76 ms and flip angle (FA) = 25°.
Acquisition of the pre-contrast series was followed by the administration of 0.1 mmol/kg
body weight of paramagnetic contrast agent (gadopentate dimeglumine, MagnevistTM,
Schering, Berlin, Germany). Five post-contrast series were then acquired, each with a
measurement time of 83 seconds, and at intervals of 110 seconds. All DCE-MRI datasets
were acquired, based on routine clinical indication only, with informed consent from the
patients. Purely retrospective use of strictly anonymized data was performed according to
the institutional review board (IRB) guidelines of Ludwig Maximilians University, Munich,
Germany.

In the collection of patient data used in this study, images in the dynamic series were
acquired with two different settings of spatial parameters; for 19 patients, the images were
acquired as 32 slices per series with a 512×512 matrix, 0.684×0.684 mm2 in-plane
resolution and 4 mm slice thickness, while in other cases, the same images were acquired as
64 slices per series with a 256×256 matrix, 1.37×1.37 mm2 and 2 mm slice thickness. To
maintain uniform image data for texture analysis, the images acquired with a 512×512
matrix were reduced to a 256×256 matrix through bilinear interpolation.

3.3. Lesion annotation
With the exception of two patients, for whom two separate lesions were chosen for analysis,
one primary lesion was selected from each patient for analysis. Each identified lesion was
annotated with a two-dimensional (2D) square ROI with dimensions of 11×11 pixels on the
central slice of the lesion by two experienced radiologists in a consensus approach. The ROI
annotations were made on difference images created by subtracting the fourth post-contrast
image from the pre-contrast image; these difference images were acquired as part of the
clinical imaging protocol and allowed for better localization of the small lesions through
enhancement of lesion tissue. This ROI was subsequently translated to the pre-contrast and
all five post-contrast images of the T1 dynamic series. The ROI size was chosen to minimize
the included amount of surrounding healthy tissue. A single encapsulating ROI was used to
capture the lesion in most cases. Four lesions (3 malignant and 1 benign), whose margins
exceeded the ROI boundary, were captured with two non-overlapping ROIs to preserve
lesion margin information. Three examples of the small lesions used in this study are shown
in Figure 3.

3.4. Pre-processing steps
Lesions were enhanced on each post-contrast ROI (Si) by subtracting and dividing the ith

post-contrast ROI Si, i = {1, 2, 3, 4, 5}, with the corresponding ROI annotated on the pre-
contrast lesion (S0), Si = (Si − S0)/S0. This step effectively suppresses the healthy tissue that
surrounded the lesion in the ROI but can be problematic if patient motion during the
acquisition results in improper registration between the various post-contrast and pre-
contrast images. Datasets used in this study had only negligible motion artifacts over time
and thus, compensatory image registration steps were not required.
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4. Results
4.1. Extracting Minkowski functionals with different number of thresholds

Table 4.1 shows the classification performance in AUC achieved with the three Minkowski
functionals when extracted with different number of binarizing thresholds. The extracted
feature vectors were not subject to subsequent dimension reduction and out-of-sample
extension and thus the size of these vectors was determined by the number of binarizing
thresholds used. A significant improvement in performance was noted with perimeter when
20 such thresholds were used to binarize the ROI of the lesion (on each post-contrast image)
(p < 0.05). The classification performance did not significantly improve when more
thresholds were used (p < 0.05). All other results reported in this study used 20 thresholds
when computing topological texture features from each post-contrast image. The resulting
overall dimension of each Minkowski functional feature vector was 100. We also observed
that while the performance of the feature vectors derived from area and perimeter were
comparable to each other, both significantly outperformed Euler characteristic (p < 0.01).

4.2. Evaluating the best results obtained with dimension reduction
Figure 4 shows the classification performance achieved with the three Minkowski
functionals when PCA was used to project the feature vectors to a low-dimension space
defined by different numbers of principal components. The best classification performance
was observed with ’Area’ (0.81 ± 0.09) and ’Perimeter’ (0.80 ± 0.10) which was obtained
with 20-D projections from PCA. However, we note that this performance was not
significantly better than that achieved with 2-D (0.78 ± 0.10 for area and perimeter) or 3-D
projections (0.79 ± 0.10 for area and perimeter). Thus, a high degree of feature compaction
was achieved from the original 100-D vectors. We also evaluated the percentage of variance
accounted for when including different number of principal components of the original
feature vectors. Inclusion of 20 principal components accounted for 99% of overall variance
in both area and perimeter, while inclusion of 2 and 3 principal components accounted for
approximately 65% and 75% of variance respectively, as seen in Table 4.2.

Figure 5 shows the classification performance achieved with the three Minkowski
functionals when Sammon’s mapping is used to project the feature vectors to a low-
dimension space. The best classification performance was observed with ’Area’ (0.83 ±
0.08) and ’Perimeter’ (0.84 ± 0.10) when 20-D projections were obtained using Sammon’s
mapping in conjunction with out-of-sample extension through RBFN-FA. We note that the
performance achieved with 20-D projections for ’Area’ were not significantly better than
those achieved with 2-D (0.81± 0.10) or 3-D projections (0.80± 0.10). Similarly, the
performance achieved with 20-D projections for ’Perimeter’ were not significantly better
than those achieved with 3-D projections (0.83 ± 0.09). Thus, a high degree of feature
compaction was achieved from the original 100-D vectors. When comparing out-of-sample
extension techniques used in conjunction with Sammon’s mapping, we note that the
performance achieved with RBFN-FA was significantly better than that achieved with
Shepard’s interpolation (p < 0.01).

Figure 6 shows the classification performance achieved with the three Minkowski
functionals when XOM was used to project the feature vectors to a low-dimension space of
different dimensions. The best classification performance was observed with ’Area’ (0.83 ±
0.10) which was obtained with 2-D projections from XOM. Comparable performance was
observed with ’Perimeter’ (0.82 ± 0.09), also with 2-D projections. The classification
performance for both did not significantly improve or decline when dimensions of the XOM
projections was increased. Of the two out-of-sample extension techniques used, the best
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classification performance was achieved with RBFN-FA which significantly outperformed
Shepard’s interpolation (p < 0.01).

Figure 7 shows the classification performance achieved with the three Minkowski
functionals when t-SNE was used to project the feature vectors to a low-dimension space of
different dimensions. The best classification performance was observed with ’Area’ (0.76 ±
0.11) for 20-D projections and ’Perimeter’ (0.74 ± 0.12) for 5-D projections. In both cases,
the performance was not significantly different than that achieved with 3-D projections. No
significant differences were observed between using RBFN-FA and Shepard’s interpolation
(p < 0.05).

4.3. Dimensionality reduction vs feature selection vs no feature reduction
Table 4.4 shows a comparison of the best classification performance obtained with the three
Minkowski functionals when using PCA, Sammon’s mapping, XOM and t-SNE in
conjunction with RBFN-FA to create low-dimension representations of the feature vectors.
For comparison, the classification performance obtained with feature selection through
evaluation of mutual information criteria, and with no feature reduction was also included.
The number of projective dimensions required to achieve the reported classification
performance is also shown.

The best classification performance with ’Area’ was observed when using Sammon’s
mapping (0.83 ± 0.08) and XOM (0.83 ± 0.10). This was no significantly better than the
performance achieved when no feature reduction was employed (p < 0.05). The best
classification performance with ’Perimeter’ was observed with Sammon’s mapping (0.84 ±
0.10). This was not significantly better than either XOM (0.82± 0.09) or not using any
feature reduction (0.82± 0.09) (p < 0.05). However, for both Minkowski Functionals, the
worst classification performance was observed with t-SNE which was significantly
outperformed by other algorithms (p < 0.05). For both features, the dimension reduction
techniques were used in conjunction with RBFN-FA.

As seen Table 4.4, XOM achieved the reported results while using the least number of
dimensions for its projections (2-D). While Sammon’s mapping required 20-D projections
for its reported performance, this was not significantly better than the performance achieved
with 2-D projections for ’Area’ or 3-D projections for ’Perimeter’, as seen in Figure 5. Thus,
Sammon’s mapping and XOM were able to achieve high classification performance while
simultaneously providing a high degree of compaction of the original feature set, especially
when compared to feature selection through mutual information.

4.4. Comparing the CADx work flow proposed in this study with the previous approach
Table 5 shows the comparison in classification performance achieved with the two CADx
methodologies (outlined in Figure 1) when using PCA, Sammon’s mapping, XOM and t-
SNE for both 2-D and 3-D projections. As seen here, the classification performance
achieved with all techniques did not significantly change when either CADx approach was
used. The only exception to this trend was classification performance of Minkowski
functional ’Area’ when processed with XOM, which showed a small but significant
improvement in performance (p < 0.05) when the CADx methodology proposed in this
study was used. In contrast, classification performance for t-SNE improved when the CADx
approach did not properly maintain an independent test set, although this improvement was
not statistically significant (p < 0.05) and its performance was still worse than other
techniques.
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5. Discussion
Dimension reduction has been previously proposed as an alternative for feature selection in
CADx while evaluating the character of suspicious lesions on breast exams [7, 10].
However, such studies did not maintain a strict separation between training and test data
while integrating dimension reduction into CADx, which is requirement for the supervised
learning step. To address this shortcoming, we developed, tested and quantitatively
evaluated an improved CADx methodology that integrates dimension reduction while
concurrently maintaining strict separation between training and test sets. This was achieved
by applying dimension reduction to the training data alone, while using out-of-sample
extension techniques to compute low-dimension representations of the test set. Our
methodology explored the integration of dimension reduction algorithms such as PCA,
Sammon’s mapping, XOM and t-SNE in conjunction with out-of-sample extension
techniques such as Shepard’s interpolation and RBFN-FA, as alternatives for explicit feature
selection for the purpose of reducing the size of the originally extracted feature set. In this
study, the original feature set included three 100-D vectors extracted for each of the
Minkowski functionals, i.e., area, perimeter and Euler characteristic.

We demonstrated the applicability of our CADx methodology to a clinical problem, namely
improving the classification performance achieved with small diagnostically challenging
lesions (mean size 1.1 cm) on breast DCE-MRI. Accurate diagnosis of such small lesions is
clinically important for improving disease management in patients, where evaluating the
dignity of breast lesions is specifically challenging as typical benign and malignant
characteristics are harder to discern. The best AUC value achieved by previous studies with
such lesions was 0.76 when using dynamic criteria to characterize the lesions [23]. In this
study, we were able to improve upon such results through the use of topological texture
features derived from Minkowski functionals which were subsequently processed using non-
linear dimension reduction techniques such as Sammon’s mapping (0.84 ± 0.10 for
perimeter) and XOM (0.83 ± 0.10 for area) in conjunction with RBFN-FA when using our
proposed CADx methodology. Improved classification performance can contribute to
reducing (1) the likelihood of performing false positive biopsies of benign lesions, thereby
eliminating risks associated with the biopsy and (2) missed breast cancers developing from
misdiagnosed malignant lesions, while also enabling earlier diagnosis of suspicious lesions.

As seen in Table 4.1, the best classification performance among the feature vectors extracted
from Minkowski Functionals was achieved with area and perimeter. These features
characterize the size and boundary of the lesion pixel regions as a function of the gray-level
threshold, thereby capturing aspects of lesion heterogeneity (or lack thereof), which is an
important criterion for determining malignancy of lesions on breast DCE-MRI. This is also
observed in Figure 2 where the benign and malignant lesion exhibit very different
topological changes when binarized with different gray-level thresholds. We also note in
Table 4.1 that Euler Characteristic performs significantly worse when compared to the other
two Minkowski Functionals (p < 0.01). This suggests that connectivity does not make a
significant contribution toward distinguishing between benign and malignant enhancement
patterns when such small lesions are analyzed. Table 4.1 also shows a significant
improvement in performance when using 20 binarizing thresholds, rather than 15 or lower,
to extract the Minkowski Functionals. This suggests that using too few thresholds does not
provide such features enough resolution to disccriminate between the two classes of lesions.
Using more than 20 thresholds did not significantly improve classification performance
which indicates that too many thresholds do not provide additional information at
distinguishing between benign and malignant classes of lesions in our dataset.
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As seen in Figures 4–7, the best classification performance was observed when non-linear
dimension reduction methods such as Sammon’s mapping and XOM are used in conjunction
with RBFN-FA, rather than with linear methods such as PCA. However, while such non-
linear algorithms offer more sophistication in terms of their algorithmic properties, they also
include more free parameters whose specification is not trivial. When one considers both the
classification performance and the degree of feature compaction achieved, both XOM and
Sammon’s mapping were able to achieve high classification performance using 2-D and 3-D
projections. This clearly demonstrates that such methods can be successfully utilized in
CADx methodology to maintain classification performance while simultaneously enabling a
high degree of feature compaction. Such compaction allowed for an efficient representation
of information that achieved the best separation between the two classes of patterns.

Table 4.4 compares the classification performance achieved with Sammon’s mapping and
XOM, to that achieved with feature selection using mutual information. As seen here, both
Sammon’s mapping and XOM were able to achieve comparable classification performance
to mutual information. More importantly, Sammon’s mapping and XOM were able to
achieve this classification performance while reducing the original 100-D feature set to a
smaller feature set (2-D or 3-D) while mutual information required a significantly larger
feature set to represent the reduced feature set. This can be related to the fact that feature
selection calls for explicit inclusion or exclusion of features which does constitute some loss
of information. Dimension reduction, on the other hand, allows all features to influence the
final low-dimension representations in some weighted manner as determined by the
algorithm used. This could potentially streamline the collection of information pertaining to
the classification task while also making the representation of this information more
compact, i.e., through a low-dimension output feature space.

Table 5 compares the performance achieved with 2-D and 3-D projections of all Minkowski
functionals, obtained with different dimension reduction techniques, using both CADx
methodologies outlined in Figure 1. The results observed here suggest that our proposed
CADx methodology, while maintaining strict separation of training and test data, does not
cause any deterioration in classification performance, when compared to the current
approach used in the literature. However, we anticipate that the performance observed with
our approach will deteriorate as the size of the data (and in turn the training set) becomes
smaller, which could affect the performance of the non-linear dimension reduction
algorithms. Given that small datasets are not uncommon in studies focused on CADx
research, specifically in dynamic breast MRI [6, 26], this effect could be significant interest
and will be studied in more detail in future studies.

One limitation of this study regards the treatment of t-SNE. As seen in Figure 7 and Table
4.4, the worst performance with this dataset of small lesions was noted with t-SNE
regardless of which CADx methodology was used. The poor performance could be tied to
the default settings used for the internal parameters of t-SNE. As acknowledged by the
authors in [30], these default settings were best suited for tasks involving visualization of
high-dimension data in 2-D or 3-D, and thus, perhaps not for processing the feature vectors
of our dataset or for the classification task investigated in this study. Another limitation
concerns the handling of datasets with different spatial resolution in this study. Since the
feature extraction approach pursued in this study was not resolution-invariant, we processed
all ROIs with higher spatial resolution with bilinear interpolation to match the lower spatial
resolution of the remaining ROIs. While this ensured that such differences in spatial
resolution did not contribute any bias to the feature extraction and subsequent classification,
future studies should also investigate the development and use of resolution-invariant
features for this task.
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While integrating dimension reduction into CADx presents an interesting innovation and is
accompanied by promising results such as those reported in this study, it is important to be
aware of certain inherent drawbacks with this approach. The goal in CADx is to identify the
separation between different classes of feature vectors in a collection of high-dimension
data. Dimension reduction, on the other hand, aims to best represent high-dimension data in
a low-dimension space through some optimization paradigm (preservation of distances,
similarities, topologies etc). Thus, the goals of both may not always converge and as a result,
integrating dimension reduction into CADx may not always yield desirable results. As future
outlook, we propose to explore dimension reduction techniques that incorporate some form
of class discrimination while computing the low-dimension representations of the high-
dimension feature vectors. Supervised dimension reduction variants of learning vector
quantization approaches such as generalized matrix learning vector quantization (GMLVQ)
[48], limited rank matrix learning vector quantization (LiRAM LVQ) [49], or of the
neighbor retrieval visualize (NeRV) algorithm [40], would be better suited to integration
with our CADx methodology proposed in this study.

6. Conclusion
This study describes a new approach to integrating dimension reduction into the CADx
methodology while concurrently maintaining a strict separation between training and test
sets required for supervised learning components. Such a strict separation, achieved by
restricting the application of dimension reduction to the training data alone while processing
the test data with out-of-sample extension techniques, ensured that the integrity of the test
set was not compromised prior to the classification task.

Our proposed CADx methodology was demonstrated in the research context of classifying
small diagnostically challenging breast tissue lesions (mean lesion diameter of 1.1 cm) on
DCE-MRI. The results observed suggest that incorporating such a methodology can
facilitate improvements in the classification performance achieved with such lesions when
compared to previous work in this area. Non-linear algorithms for dimension reduction
exhibited better classification performance than linear approaches, when integrated into our
CADx methodology. Finally, we note that while such dimension reduction techniques may
not necessarily provide an improvement in achievable classification performance over
feature selection, they do allow for a high degree of compaction in the feature reduction
step.

We hypothesize that such an approach would have clinical significance given the inherent
difficulty in evaluating the dignity of small breast lesions where typical benign and
malignant characteristics are harder to identify. However, larger controlled trials need to be
conducted in order to further validate the clinical applicability of our method.
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Figure 1.
A comparison of the CADx approach previously used in the literature (A) and our CADx
methodology proposed in this study (B). Note the splitting of the data into training and test
sets at different stages in each approach. Our proposed methodology limits the application of
dimension reduction to the training data alone, thus preserving the integrity (independence)
of the test set.
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Figure 2.
Illustration of Minkowski functionals. The upper and middle rows correspond to benign and
malignant lesion examples. Lesions on the far left are binarized for five thresholds in the
interval [110, 190], where the values indicate a brightness level on a gray-level scale of [0
255]. In the bottom row, the three features - area, perimeter, and Euler characteristic, are
plotted as a function of the threshold for the benign (blue) and malignant (red) lesions; the
subset of the five thresholds used to create the binary images are marked as vertical dotted
lines. These curves depict the morphological properties of the binary images and distinguish
between the benign and malignant patterns.
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Figure 3.
Examples of benign and malignant lesion ROIs at five different images of contrast uptake.
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Figure 4.
Comparison of classification performance achieved with Minkowski functionals when PCA
is used in conjunction with out-of-sample extension (through direct mapping) for different
numbers of projected dimensions in the low-dimension space. For each distribution, the
central mark corresponds to the median and the edges are the 25th and 75th percentile. The
best results are obtained with ’area’ and ’perimeter’ for a 20-D low-dimension
representation; however, comparable performance is also achieved with 2-D and 3-D
representations.
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Figure 5.
Comparison of classification performance achieved with Minkowski functionals when
Sammon’s mapping is used in conjunction with out-of-sample extension through Shepard’s
interpolation (red) and RBFN-FA (blue) for different numbers of projected dimensions in
the low-dimension space. For each distribution, the central mark corresponds to the median
and the edges are the 25th and 75th percentile. The best results are obtained with ’area’
and ’perimeter’ with RBFN-FA for a 20-D low-dimension representation; however,
comparable performance is also achieved with 2-D and 3-D representations.
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Figure 6.
Comparison of classification performance achieved with Minkowski functionals when XOM
is used in conjunction with out-of-sample extension through Shepard’s interpolation (red)
and RBFN-FA (blue) for different number of projected dimensions in the low-dimension
space. For each distribution, the central mark corresponds to the median and the edges are
the 25th and 75th percentile. The best results are obtained with ’area’ and ’perimeter’ with
RBFN-FA for a 2-D low-dimension representation; no significant improvement in
performance is observed when the number of projected dimensions is increased further.
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Figure 7.
Comparison of classification performance achieved with Minkowski functionals when t-
SNE is used in conjunction with out-of-sample extension through Shepard’s interpolation
(red) and RBFN-FA (blue); and for different number of projected dimensions in the low-
dimension space. For each distribution, the central mark corresponds to the median and the
edges are the 25th and 75th percentile. The best results are obtained with ’area’ and RBFN-
FA for a 20-D low-dimension representation.
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Table 1

Comparison of the best classification performance (mean AUC ± std) achieved achieved with Minkowski
functionals when different thresholds are used for computation of features. A significant improvement is noted
with perimeter when 20 thresholds are used. No further significant improvement in performance is noted when
the thresholds are increased.

No. of thresholds Area Perimeter Euler Char.

5 0.79 ± 0.11 0.77 ± 0.11 0.66 ± 0.09

10 0.81 ± 0.10 0.80 ± 0.10 0.68 ± 0.09

15 0.81 ± 0.09 0.78 ± 0.10 0.68 ± 0.10

20 0.83 ± 0.09 0.82 ± 0.10 0.68 ± 0.10

25 0.80 ± 0.10 0.84 ± 0.09 0.67 ± 0.10
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Table 2

Percentage of overall variance accounted for by different number of principal components.

No. of Principal Components % of Overall Variance

Area Perimeter Euler Char.

2 65.99 63.52 54.60

3 76.53 73.47 63.04

5 87.40 84.01 74.43

10 95.68 93.40 85.65

20 99.29 98.76 95.14
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Table 3

Comparison of the best classification performance (mean ± std) achieved with feature reduction techniques -
PCA, XOM, t-SNE and MI, as well as the corresponding dimensions of the output feature vectors. The
classification performance achieved without feature reduction (none) is also included. As seen here, the best
results are obtained for area and perimeter when used with Sammon’s mapping or XOM (in conjunction with
RBFN-FA); XOM achieves this with the smallest lower-dimensional representation. All results for PCA,
XOM and t-SNE were obtained with the CADx methodology proposed in this study.

Feature Technique AUC Dimension

Area PCA 0.81 ± 0.09 20

Sammon 0.82 ± 0.08 20

XOM 0.83 ± 0.10 2

t-SNE 0.76 ± 0.11 20

MI 0.81 ± 0.10 50

none 0.83 ± 0.09 100

Perimeter PCA 0.80 ± 0.10 20

Sammon 0.84 ± 0.10 20

XOM 0.82 ± 0.09 2

t-SNE 0.74 ± 0.12 5

MI 0.80 ± 0.09 30

none 0.82 ± 0.09 100

Euler char. PCA 0.72 ± 0.09 3

Sammon 0.70 ± 0.08 3

XOM 0.71 ± 0.11 5

t-SNE 0.71 ± 0.09 5

MI 0.69 ± 0.09 20

none 0.68 ± 0.09 100
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