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Abstract
High-dimensional data common in genomics, proteomics, and chemometrics often contains
complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods
have gained attention in these areas as dimension reduction techniques in the context of supervised
data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the
SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys
many advantages including flexibility, general penalties, easy interpretation of results, and fast
computation in high-dimensional settings. We also outline extensions of our methods leading to
novel methods for non-negative PLS and generalized PLS, an adoption of PLS for structured data.
We demonstrate the utility of our methods through simulations and a case study on proton Nuclear
Magnetic Resonance (NMR) spectroscopy data.
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1. INTRODUCTION
Technologies to measure high-throughput biomedical data in proteomics, chemometrics, and
genomics have led to a proliferation of high-dimensional data that pose many statistical
challenges. As genes, proteins, and metabolites, are biologically interconnected, the
variables in these data sets are often highly correlated. In this context, several have recently
advocated using partial least squares (PLS) for dimension reduction of supervised data, or
data with a response or labels [1–4]. First introduced by Wold [5] as a regression method
that uses least squares on a set of derived inputs accounting for multicolinearities, others
have since proposed alternative methods for PLS with multiple responses [6] and for
classification [7,8]. More generally, PLS can be interpreted as a dimension reduction
technique that finds projections of the data that maximize the covariance between the data
and the response. Recently, several have proposed to encourage sparsity in these projections,
or loadings vectors, to select relevant features in high-dimensional data [3,4,9]. In this paper,
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we seek a more general and flexible framework for regularizing the PLS loadings that is
computationally efficient for high-dimensional data.

There are several motivations for regularizing the PLS loadings vectors. Partial least squares
is closely related to principal components analysis (PCA); namely, the PLS loadings can be
computed by solving a generalized eigenvalue problem [6]. Several have shown that the
PCA projection vectors are asymptotically inconsistent in high-dimensional settings [10,11].
This is also the case for the PLS loadings, recently shown in Refs 4 and 12. For PCA,
encouraging sparsity in the loadings has been shown to yield consistent projections
[10,13,14]. While an analogous result has not yet been shown in the context of PLS, one
could surmise that such a result could be attained. In fact, this is the motivation for Chun and
Keleş’s [4] recent Sparse PLS method. In addition to consistency motivations, sparsity has
many other qualities to recommend it. The PLS loadings vectors can be used as a data
compression technique when making future predictions; sparsity further compresses the
data. As many variables in high-dimensional data are noisy and irrelevant, sparsity gives a
method for automatic feature selection. This leads to results that are easier to interpret and
visualize.

While sparsity in PLS is important for high-dimensional data, there is also a need for more
general and flexible regularized methods. Consider NMR spectroscopy as a motivating
example. This high-throughput data measures the spectrum of chemical resonances of all the
latent metabolites, or small molecules, present in a biological sample [15]. Typical
experimental data consists of discretized, functional, and non-negative spectra with variables
measuring in the thousands for only a small number of samples. Additionally, variables in
the spectra have complex dependencies arising from correlation at adjacent chemical shifts,
metabolites resonating at more than one chemical shift, and overlapping resonances of latent
metabolites [16]. Because of these complex dependencies, there is a long history of using
PLS to reduce the NMR spectrum for supervised data [17,18]. Classical PLS or Sparse PLS,
however, are not optimal for this data as they do not account for the non-negativity or
functional nature of the spectra. In this paper, we seek a more flexible approach to
regularizing PLS loadings that will permit (i) general penalties such as to encourage
sparsity, group sparsity, or smoothness, (ii) constraints such as non-negativity, and (iii) that
directly account for known data structures such as ordered chemical shifts for NMR
spectroscopy. Our framework, based on a penalized relaxation of the SIMPLS optimization
problem [6], also leads to a more computationally efficient numerical algorithm.

As we have mentioned, there has been previous work on penalizing the PLS loadings. For
functional data, Goutis and Fearn [19] and Reiss and Ogden [20] have extended PLS to
encourage smoothness by adding smoothing penalties. Our approach is more closely related
to the Sparse PLS methods of Lê Cao et al. [3] and Chun and Keleş [4]. In the latter, a
generalized eigenvalue problem related to PLS objectives is penalized to achieve sparsity,
although they solve an approximation to this problem via the elastic net Sparse PCA
approach of Zou et al. [21]. Noting that PLS can be interpreted as performing PCA on the
deflated cross-products matrix, Lê Cao et al. [3] replace PCA with Sparse PCA using the
approach of Shen and Huang [22]. The core of our algorithm with an ℓ1 penalty is similar to
this approach. We show that this algorithm directly solves a penalized generalization of the
SVD problem that is a concave relaxation of the SIMPLS criterion. The major novelty of
our work is from this optimization approach, developing a flexible regularization scheme
that includes general norm penalties, non-negativity constraints, and generalizations for
structured data. Our flexible algorithms lead to interpretable results and fast computational
approaches for high-dimensional data.
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The paper is organized as follows. Our framework for regularized partial least squares
(RPLS) is introduced in Section 2. In Section 3, we introduce two novel extensions of PLS
and RPLS: non-negative PLS and generalized PLS (GPLS) for structured data. We illustrate
the comparative strengths of our approach in Sections 4 and 5 through simulation studies
and a case study on NMR spectroscopy data, respectively, and conclude with a discussion in
Section 6.

2. REGULARIZED PARTIAL LEAST SQUARES
In this section, we introduce our framework for regularized partial least squares. While most
think of PLS as a regression technique, here we separate the steps of the PLS approach into
the dimension reduction stage where the PLS loadings and factors are computed and a
prediction stage where regression or classification using the PLS factors as predictors is
performed. As our contributions lie in our framework for regularizing the PLS loadings in
the dimension reduction stage, we predominately focus on this aspect.

2.1. RPLS Optimization Problem
Introducing notation, we observe data (predictors), X ∈ ℜn×p, with p variables measured on
n samples and a response Y ∈ ℜn×q. We will assume that the columns of X have been
previously standardized. The possibly multivariate response (q > 1) could be continuous as
in regression or encoded by dummy variables to indicate classes as in Ref. 8, a consideration
which we ignore while developing our methodology. The p × q sample cross-product matrix
is denoted as M = XT Y.

Both of the two major algorithms for computing the multivariate PLS factors, NIPALS [5]
and SIMPLS [6], can be written as solving a single-factor eigenvalue problem of the
following form at each step: maximizev vT M MT v subject to vT v = 1, where v ∈ ℜp are
the PLS loadings. Chun and Keleş [4] extend this problem by adding an ℓ1-norm constraint,
||v|| ≤ t, to induce sparsity and solve an approximation to this problem using the Sparse PCA
method of Zou et al. [21]. Lê Cao et al. [3] replace this optimization problem with that of
the Sparse PCA approach of Shen and Huang [22].

We take a similar algorithmic approach, but seek regularized PLS factors that directly
optimize a criterion related to classical PLS. Notice that the single factor PLS problem can
be re-written as the following: maximizev,u vT Mu subject to vT v = 1 & uT u = 1, where u
∈ ℜq is a nuisance parameter. The equivalence of these problems was pointed out by de
Jong [6] and is a well understood matrix analysis fact. Our single-factor RPLS problem
penalizes a direct concave relaxation of this problem:

(1)

Here, we assume that P() is a convex penalty function that is a norm or semi-norm; these
assumptions are discussed further in the subsequent section. To induce sparsity, for example,
we can take P(v) = ||v||1. Notice that we have relaxed the equality constraint for v to an
inequality constraint. In doing so, we arrive at an optimization problem that is simple to
maximize via an alternating strategy. Fixing u, the problem in v is concave, and fixing v the
problem is a quadratically constrained linear program in u with a global solution. Our
optimization problem is most closely related to some recent direct biconcave relaxations for
two-way penalized matrix factorizations [23,24] and yields similar results to regression
based sparse approaches [3,22,25]. Studying the solution to this problem and its properties
in the subsequent section will reveal some of the advantages of this optimization approach.
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Computing the multifactor PLS solution via the two traditional multivariate approaches,
SIMPLS and NIPALS, require solving optimization problems of the same form as the
single-factor PLS problem at each step. The SIMPLS method is more direct and has several
benefits within our framework; thus, this is the approach we adopt. The algorithm begins by
solving the single-factor PLS problem; subsequent factors solve the single-factor problem
for a Gram-Schmidt deflated cross-products matrix. If we let the matrix of projection

weights Rk ∈ ℜp×k be defined recursively then,  where zk = X
vk is the kth sample PLS factor. The Gram–Schmidt projection matrix Pk ∈ ℜp×p is given by

, which ensures that  for j < k. Then, the
optimization problem to find the kth SIMPLS loadings vector is the same as the single-factor
problem with the cross-products matrix, M, replaced by the deflated matrix, M̂(k) = Pk−1
M̂(k−1) [6]. Thus, our multifactor RPLS replaces M in (1) with M̂(k) to obtain the kth RPLS
factor. While our rank-one optimization problem is closely related to the sparse CCA
approach of Witten et al. [23], the solutions differ in subsequent factors due to the SIMPLS
deflation scheme.

The deflation approach employed via the NIPALS algorithm is not as direct. One typically

defines a deflated matrix of predictors and responses,  and

, with the matrix of projection weights defined as above, and then solves

an eigenvalue problem in this deflated space: maximizewk  subject to

 [5]. The PLS loadings in the original space are then recovered by Vk = Wk (Rk
Wk)−1. While one can incorporate regularization into the loadings, wk (as suggested by Chun
and Keleş [4]), this is not as desirable. If one estimates sparse deflated loadings, w, then
much of the sparsity will be lost in the transform to obtain V. In fact, the elements of V will
be zero if and only if the corresponding elements of W are zero for all values of k. Then,
each of the K PLS loadings will have the exact same sparsity pattern, loosing the flexibility
of each set of loadings having adaptively different levels of sparsity. Given this, the more
direct deflation approach of SIMPLS is our preferred framework.

2.2. RPLS Solution
A major motivation for our optimization framework for RPLS is that it leads to a simple and
direct solution and algorithm. Recall that the single-factor RPLS problem, Eq. (1), is
concave in v with u fixed and is a quadratically constrained linear program in u with v fixed.
Thus, we propose to solve this problem by alternating maximizing with respect to v and u.
Each of these maximizations has a simple analytical solution:

PROPOSITION 1—Assume that P() is convex and homogeneous of order one, that is P()
is a norm or semi-norm. Let u be fixed at u′ such that Mu′ ≠ 0 or v fixed at v′ such that MT

v′ ≠ 0. Then, the coordinate updates, u* and v*, maximizing the single-factor RPLS problem,

(1), are given by the following: Let . Then, v* = v̂/||v̂||2
if ||v̂||2 > 0 and v* = 0 otherwise, and u* = MT v′/|| MT v′||2. When these factors are updated
iteratively, they monotonically increase the objective and converge to a local optimum.

While the proof of this result is given in the appendix, we note that this follows closely the
Sparse PCA approach of Shen and Huang [22] and the use general penalties within PCA
problems of Allen et al. [24]. Our RPLS problem can then be solved by a multiplicative
update for u and by a simple re-scaled penalized regression problem for v. The assumption
that P() is a norm or semi-norm encompasses many penalties types including the ℓ1-norm or
lasso [26], the ℓ1/ℓ2-norm or group lasso [27], the fused lasso [28], and ℓq -balls [29]. For
many possible penalty types, there exists a simple solution to the penalized regression
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problem. With a lasso penalty, P(v) = ||v||1, for example, the solution is given by soft-
thresholding: v̂ = S(Mu, λ), where S(x, λ) = sign(x)(|x| − λ)+ is the soft-thresholding
operator. Our approach gives a more general framework for incorporating regularization
directly in the PLS loadings that yield simple and computationally attractive solutions.

We note that the RPLS solution is guaranteed be at most a local optimum of Eq. (1), a result
that is typical of other penalized PCA problems [21–25] and sparse PLS methods [3,4]. For
a special case, however, our problem has a global solution:

COROLLARY 1—When q = 1, that is when Y is univariate, then the global solution to the
single-factor penalized PLS problem (1) is given by the following: Let

. Then, v* = v̂/||v̂||2 if ||v̂||2 > 0 and v* = 0 otherwise.

This, then is an important advantage of our framework over competing methods. We also
briefly note that for PLS regression, there is an interesting connection between Krylov
sequences and the PLS regression coefficients [30]. As we take the RPLS factors to be a
direct projection of the RPLS loadings, this connection to Krylov sequences is broken,
although perhaps for prediction purposes, this is immaterial.

2.3. RPLS Algorithm
Given our RPLS optimization framework and solution, we now put these together in the
RPLS algorithm, Algorithm 1. Note that this algorithm is a direct extension of the SIMPLS
algorithm [6], where the solution to our single-factor RPLS problem, Eq. (1), replaces the
typical eigenvalue problem in Step 2(b). Thus, the algorithmic structure is analogous to that
of Lê Cao et al. [3]. Since our RPLS problem is nonconcave, there are potentially many
local solutions and thus the initializations of u and v are important. Similar to much of the
Sparse PCA literature [21,22], we recommend initializing these factors to the global single-
factor SVD solution, Step 2(a). Second, notice that choice of the regularization parameter, λ,
is particularly important. If λ is large enough that vk = 0, then the kth RPLS factor would be
zero and the algorithm would cease. Thus, care is needed when selecting the regularization
parameters to ensure they remain within the relevant range. For the special case where q = 1,

computing , the value at which v̂k = 0, is a straightforward calculation following from
the Karush–Khun–Tucker conditions. With the LASSO penalty, for example, this gives

 [31]. For general q, however, λmax does not have a closed form. While
one could use numerical solvers to find this value, this is a needless computational effort.
Instead, we recommend to perform the algorithm over a range of λ values, discarding any
values resulting in a degenerate solution from consideration. Finally, unlike deflation-based
Sparse PCA methods which can exhibit poor behavior for very sparse solutions, because of
orthogonalization with respect to the data, our RPLS loadings and factors are well behaved
with large regularization parameters.

Algorithm 1

K-Factor Regularized PLS

1 Center the columns of X and Y. Let M̂(1) = XT Y.

2 For k = 1 … K:

a. Initialize uk and vk to the first left and right singular vectors of M̂(k).

b. Repeat until convergence:
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i.

Set .

ii.

Set .

iii. Set vk = v̂k/||v̂k||2 if ||v̂k||2 > 0, and set vk = 0 and exit the algorithm otherwise.

c. RPLS Factor: zk = X vk.

d.
RPLS projection matrix: Set  and Pk = I − R(k)

((R(k))T R(k))−1(R(k))T.

e. Orthogonalization Step: M̂(k+1) = Pk M̂(k)

3 Return RPLS Factors z1 … zK and RPLS Loadings: v1 … vK.

Selecting the appropriate regularization parameter, λ, is an important practical consideration.
Existing methods that incorporate regularization in PLS have suggested using cross-
validation or other model selection methods in the ultimate regression or classification stage
of the full PLS procedure [4,20]. While one could certainly implement these approaches
within our RPLS framework, we suggest a simpler and more direct approach. We select λ
within the dimension reduction stage of RPLS, specifically in Step 2(b) of our RPLS
Algorithm. Doing so, has a number of advantages. First, this increases flexibility as it
separates selection of λ from deciding how many factors, K, to use in the prediction stage,
permitting a separate regularization parameter, λk, to be selected for each RPLS factor.
Second, coupling selection of the regularization parameter to the prediction stage requires
fixing the supervised modeling method before computing the RPLS factors. With our
approach, the RPLS factors can be computed and stored to use as predictors in a variety of
modeling procedures. Finally, separating selection of λk and K in the prediction stage is
computationally advantageous as a grid search over tuning parameters is avoided. Nesting
selection of λ within Step 2(b) is also faster as recent developments such as warm starts and
active set learning can be used to efficiently fit the entire path of solutions for many penalty
types [31]. Practically, selecting λk within the dimension reduction stage is analogous to
selecting the regularization parameters for Sparse PCA methods on M̂(k). Many approaches
including cross-validation [22,32] and BIC methods [24,25] have been suggested for this
purpose; in results given in this paper, we have implemented the BIC method as described
by Allen et al. 24. Selection of the number of RPLS factors, K, will largely be dependent on
the supervised method used in the prediction stage, although cross-validation can be used
with any method. When choosing K for PLS regression, for example, Huang et al. [33]
suggest an automatic approach via regularization.

Computationally, our algorithm is an efficient approach. As discussed in the previous
section, the particular computational requirements for computing the RPLS loadings in Step
2(b) are penalty specific, but are minimal for a wide class of commonly used penalties.
Beyond Step 2(b), the major computational requirement is inverting the weight matrix,

, to compute the projection matrix. As this matrix is found recursively via the Gram-
Schmidt scheme, however, employing properties of the Schur complement can reduce the
computational effort to that of matrix multiplication O(pk) [34]. Finally, notice that we take
the RPLS factors to be the direct projection of the data by the RPLS loadings. Overall, the
advantages of our RPLS framework and algorithm include (i) computational efficiency, (ii)
flexible modeling, and (iii) direct estimation of the RPLS loadings and factors.
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3. EXTENSIONS
As our framework for regularizing PLS is general, there are many possible extensions of our
methodology. Many have suggested, for example, to extend PLS and sparse PLS specifically
for discriminant analysis [8] and for generalized linear models [7,35]. Such extensions are
also possible within our framework. In this section, we specifically focus on two novel
extensions of PLS and RPLS that will be useful for applications to spectroscopy data. These
include generalizations for PLS and RPLS with structured data and non-negative PLS and
RPLS.

3.1. GPLS for Structured Data
Recently, Allen et al. [24] proposed a generalization of PCA (GPCA) that is a appropriate
for high-dimensional structured data, or data in which the variables are associated with some
known distance metric. As motivation, consider NMR spectroscopy data where variables are
ordered on the spectrum and variables at adjacent chemical shifts are known to be highly
correlated. Classical multivariate techniques such as PCA and PLS ignore these structures;
GPCA encodes structure into a matrix factorization problem through positive semi-definite
quadratic operators such as graph Laplacians or smoothing matrices [24,36]. If we assume
that the noise in the data follows the data structure and these quadratic operators capture
aspects of this structure, then Allen et al. [24] showed that GPCA can be interpreted as
finding principal modes of variation that are orthogonal to the structured noise. In the
context of NMR spectroscopy, we seek PLS factors that are independent from the known
noise correlations at adjacent chemical shifts. Similar to GPCA then, we seek to directly
account for known structure in PLS and within our RPLS framework.

Our development of GPLS is motivated by NMR spectroscopy; that is, we seek a quadratic
operator that encodes the known structural relationships, the correlations between adjacent
variables. Let us define then quadratic operator, Q ∈ ℜp×p: Q ≥ 0 which we assume is fixed
and known. For spectroscopy data, for example, Q could be taken as a diagonal tapered
matrix thus accounting for the correlations between adjacent variables. By transforming all
inner-product spaces to those induced by the Q-norm, we can define our single-factor
Generalized RPLS optimization problem in the following manner:

(2)

By finding the RPLS factors in the Q-norm, we find factors separate from the noise structure
of the data. For the multifactor Generalized RPLS problem, the factors and projection
matrices are also changed. The kth factor is given by zk = X Q vk, the weighting matrix,

 as before, and the projection matrix is

 with deflated cross-products matrix M̂(k) = Pk−1 M̂(k−1).
Note that if λ = 0 and if the inequality constraint is forced to be an equality constraint, then
we have the optimization problem for GPLS. Notice also that instead of enforcing

orthogonality of the PLS loadings with respect to the data, , the GPLS problem

enforces orthogonality in a projected data space, . If we let Q̃ be a matrix
square root of Q as defined by Allen et al. [24], then (2) is equivalent to the multifactor
RPLS problem for X̃ = X Q̃ and ṽ = Q̃ v. This equivalence is shown in the proof of the
solution to Eq. (2).
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As with PLS and our RPLS framework, GPLS and Generalized RPLS can be solved by
coordinate-wise updates that converge to the global and local optimum respectively:

PROPOSITION 2
1. GPLS: The GPLS problem, Eq. (2) when λ = 0, is solved by the first set of GPCA

factors of M. The global solution to the GPLS problem can be found by iteratively
updating the following until convergence: v = Mu/||Mu||Q and u = MT Q v/|| MT Q

v||2, where ||x||Q is defined as .

2. Generalized RPLS: Under the assumptions of Proposition 1, let

, then the coordinate-wise updates to Eq. (2)
are given by: v* = v̂/||v̂||Q if ||v̂||Q > 0 and v* = 0 otherwise, and with u* defined as
above. When updated iteratively, these converge to a local optimum of (2).

Thus, the solution to our Generalized RPLS problem can be solved by a generalized
penalized least squares problem. Algorithmically, solving the multi-factor GPLS and
Generalized RPLS problems follow the same structure as that of Algorithm 2.2. The
solutions outlined above replace Step 2(b), with the altered Generalized RPLS factors and
projections matrices replacing Steps 2 (c), (d), and (e). In other words, GPLS or Generalized
RPLS is performed by finding the GPCA or Regularized GPCA factors of a deflated cross-
products matrix, where the deflation is performed to rotate the cross-products matrix so that
it is orthogonal to the data in the Q-norm. Computationally, these algorithms can be
performed efficiently using the techniques described by Allen et al. [24] that do not require
inversion or taking eigenvalue decompositions of Q. Thus, the GPLS and Generalized RPLS
methods are computationally feasible for high-dimensional data sets.

We have shown the most basic extension of GPCA technology to PLS and our RPLS
framework, but there are other possible formulations. For two-way data, projections in the
‘sample’ space may be appropriate in addition to projecting variables in the Q-norm. With
neuroimaging data, for example, the data matrix may be oriented as brain locations, voxels,
by time points. As the time series is most certainly not independent, one may wish to
transform these inner product spaces using another quadratic operator, W ∈ ℜn×n, changing

M to XT W Y and Rk to , analogous to Allen et al. [24].
Overall, we have outlined a novel extension of PLS and our RPLS methodologies to work
with high-dimensional structured data.

3.2. Non-Negative PLS
Many have advocated estimating non-negative matrix factors [37] and non-negative
principal component loadings [38] as a way to increase interpret-ability of multivariate
methods. For scientific data sets such as NMR spectroscopy in which variables are naturally
non-negative, enforcing non-negativity of the loadings vectors can greatly improve
interpretability results and the performance of methods [36]. Here, we illustrate how to
incorporate non-negative loadings into our RPLS framework. Consider the optimization
problem for single-factor non-negative RPLS:

(3)

Solving this optimization problem is a simple adaption of Proposition 1; the penalized
regression problem is replaced by a penalized non-negative regression problem. For many
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penalty types, these problems have a simple solution. With the ℓ1-norm penalty, for
example, the soft-thresholding operator in the update for v is replaced by the positive soft-
thresholding operator: v = P(Mu, λ) = (Mu − λ)+ [36]. Our RPLS framework, then, gives a
simple and computationally efficient method for enforcing non-negativity in the PLS
loadings. Also, as in Ref. 36, non-negativity and quadratic operators can be used in
combination for PLS to create flexible approaches for high-dimensional data sets.

4. SIMULATION STUDIES
We explore the performance of our RPLS methods for regression in a univariate and a
multivariate simulation study.

4.1. Univariate Simulation
In this simulation setting, we compare the mean squared prediction error and variable
selection performance of RPLS against competing methods in the univariate regression
response setting with correlated predictors. Following the approach in Section 5.3 of Chun
and Keleş [4], we include scenarios where n is greater than p and where n is less than p with
differing levels of noise. For the n > p setting, we use n = 400 and p = 40. For the first n < p
setting, we use n = 40 and p = 80. For these cases, 75% of the p predictors are true
predictors, while the remaining 25% are spurious predictors that are not used in the
generation of the response. We also include an additional n < p setting where the underlying
signal is more sparse. In this case, we use n = 40 and p = 200 with 25% of the p predictors as
true predictors. For the low and high noise scenarios, we use signal-to-noise ratios (SNR) of
10 and 5.

To create correlated predictors as in Ref. 4, we construct hidden variables H1, …, H3, where
Hi ~ (0, 25In). The columns of the predictor matrix Xi are generated as the sum of a hidden
variable and independent random noise as follows. For the cases where 75% of the p
predictors are used in the generation of the response, Xi = H1 + εi for 1 ≤ i ≤ 3p/8, Xi = H2 +
εi for 3p/8 < i ≤ 3p/4, and Xi = H3 + εi for 3p/4 < i ≤ p, where εi ~ (0, In). When 25% of
the p predictors are used in the generation of the response, Xi = H1 + εi for 1 ≤ i ≤ p/8, Xi =
H2 + εi for p/8 < i ≤ p/4, and Xi = H3 + εi for p/4 < i ≤ p, where εi ~ (0, In). For all cases,
the response vector Y = 3H1 − 4H2 + f, where f ~ (0, 25In/SNR). Training and test sets for
all settings of n, p and SNR are created using this approach.

For the comparison of methods, X and Y are standardized, and parameter selection is carried
out using 10-fold cross validation on the training data. For the sparse partial least squares
(SPLS) method described by Chun and Keleş [4], the spls R package [39] is used with η
chosen from the sequence (0.1, 0.2, …, 0.9) and K from 5 to 10. Note that for our methods,
we choose to select K automatically via the lasso penalized PLS regression problem as in
Ref. 33. Thus for RPLS, lasso penalties were used with λ and γ chosen from 25 equally
spaced values between 10−5 and log(max(|X′Y|)) on the log scale. For the lasso and elastic
net, the glmnet R package [31] is used with the same choices for λ.

The average mean squared prediction error (MSPE), true positive rate (TPR), and false
positive rate (FPR) across 30 simulation runs are given in Table 1. The penalized regression
methods clearly outperform traditional PLS in terms of the mean squared prediction error,
with RPLS having the best prediction accuracy among all methods. SPLS and RPLS are
nearly perfect in correctly identifying the true variables, but SPLS tends to have higher rates
of false positives. In contrast, the lasso and elastic net have high specificity, but fail to
identify many true predictors.
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4.2. Multivariate Simulation
In this simulation setting, we compare the mean squared prediction error of regularized PLS
against competing methods for multivariate regression. As in the univariate simulation, we
include scenarios where n > p and n < p with varying levels of noise, but now our response
Y is a matrix of dimension n × q with q = 10. For the n > p scenario, we use n = 400 and p =
40 with 5 true predictors. For the moderate n < p scenario, we use n = 40 and p = 80 with 10
true predictors. We also include a more extreme scenario where we use n = 40 and p = 200
with 25 true predictors. In each case, we test the methods using SNR of 2 and 1.

The simulated data is generated using eight binary hidden variables H1, …, H8 with entries
drawn from the Bernoulli (0.5) distribution. The coefficient matrix A contains standard
normal random entries for the first ptrue columns, with the remaining columns set to 0. The
predictor matrix X = H · A + E, where the entries of E are drawn from the (0, 0.12)
distribution. The coefficient matrix B contains entries drawn from the (0, SNR · n · q/
tr(HH′)) distribution. The response matrix Y = H · B + F, where the entries of F are drawn
from the standard normal distribution. Both training and test sets are generated using this
procedure, and both X and Y are standardized.

For the penalized methods including sparse PCA (SPCA) and regularized PLS (RPLS) the
penalty parameter λ is chosen from 25 equally spaced values between −5 and log(max(|X
′Y|)) on the log scale using the BIC criterion. For RPLS, γ, the PLS regression penalty
parameter for selecting K, is chosen from the same set of options as λ using the BIC
criterion. To obtain the coefficient β = VZ′Ytraining, the columns of V and Z were
normalized. The results shown in Table 2 demonstrate that regularized PLS outperforms
both sparse PCA and standard PLS.

5. CASE STUDY: NMR SPECTROSCOPY
We evaluate the utility of our methods through a case study on NMR spectroscopy data, a
classic application of PLS methods from the chemometrics literature. We apply our RPLS
methods to an in vitro one-dimensional NMR data set consisting of 27 samples from five
classes of neural cell types: neurons, neural stem cells, microglia, astrocytes, and
ogliodendrocytes [40], analyzed by some of the same authors using PCA methods in Ref.
36. Data are pre-processed in the manner described by Dunn et al. [18]: functional spectra is
discretized into bins of size 0.04 ppms yielding a total of 2394 variables, spectra for each
sample are baseline corrected and normalized to their integral, and variables are
standardized. For all PLS methods, the response, Y is 27 × 5 and coded with indicators
inversely proportional to the sample size in each class as described by Barker and Rayens
[8]. For each method, five PLS or PCA factors were taken and used as predictors in linear
discriminant analysis to classify the NMR samples. To be consistent, the BIC method was
used to select any penalty parameters except for the Sparse PLS method of Chun and Keleş
[4] where the default in the R package spls was employed [39]. The Sparse GPCA and
Sparse GPLS methods were applied with non-negativity constraints as described by Allen &
Maletić-Savatić [36] and in Section 3. Finally, for the generalized methods, the quadratic
operator was selected by maximizing the variance explained by the first component; a
weighted Laplacian matrix with weights inversely proportional to the Epanechnikov kernel
with a bandwidth of 0.2 ppms was employed [24].

In Table 3, we give the training and leave-one out cross-validation misclassification errors
for our methods and competing methods on the neural cell NMR data. Notice that our
Sparse GPLS method yields the best error rates followed by the Sparse PLS [4] and our
GPLS methods. Additionally, our Sparse GPLS methods are significantly faster than
competing approaches. In Table 4, the time in seconds to compute the entire solution path
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(51 values of λ) is reported. Timing comparisons were done on a Intel Xeon X5680 3.33
Ghz processor with 16 GB RAM using single-threaded scripts coded in Matlab or C as
indicated. (These comparisons should be interpreted keeping in mind that there are possibly
minor speed differences between Matlab and R.)

In addition to faster computation and better classification rates, our method’s flexibility
leads to easily interpretable results. We present the Sparse GPLS loadings superimposed on
the scaled spectra from each neural cell type and sample heatmaps in Fig. 1. For
comparison, we give the first two PLS loadings in Fig. 2 for PLS and Sparse PLS [4]. The
PLS loadings are noisy, and the sample PLS components for PLS and Sparse PLS are
difficult to interpret as the loadings are both positive and negative. By constraining the PLS
loadings to be non-negative, the chemical shifts the metabolites indicative of each neural
cell type are readily apparent with the Sparse non-negative GPLS loadings. Additionally as
shown in the sample PLS heatmaps, the neural cell types are well differentiated. For
example, chemical resonances at 1.30 and 3.23 ppms characterize Glia (Astrocytes and
Ogliodendrocytes) and Neurons (PLS 1), resonances at 1.19 and 3.66 ppms characterize
Microglia (PLS 2), resonances at 3.23 and 2.65 ppms characterize Astrocytes (PLS 3),
resonances at 1.30, 3.02, and 3.55 ppms characterize Ogliodendrocytes (PLS 4), and
resonances at 1.28 and 3.23 ppms characterize Neural stem cells. Note that some of these
metabolites were identified by some of the same authors using PCA methods in Refs 36,40.
Using our flexible PLS approach for supervised dimension reduction, however, gives a
much clear metabolic signature of each neural cell type. Overall, this case study on NMR
spectroscopy data has revealed the many strengths of our method as well as identified
possible metabolite biomarkers for further biological investigation.

6. DISCUSSION
We have presented a framework for regularizing partial least squares with convex and order
one penalties. Additionally, we have shown how this approach can be extend for structured
data via GPLS and Generalized RPLS and extended to incorporate non-negative PLS or
RPLS loadings. Our approaches directly solve penalized relaxations of the SIMPLS
optimization criterion. These in turn, have many advantages including computational
efficiency, flexible modeling, easy interpretation and visualization, better feature selection,
and improved predictive accuracy as demonstrated in our simulations and case study on
NMR spectroscopy.

There are many future areas of research related to our methodology. As many have
advocated using PCA, or even supervised PCA [41], as a dimension reduction technique
prior supervised modeling, RPLS may be a powerful alternative in this context. While we
have briefly discussed the use of our methods for general regression or classification
procedures, specific investigation of the RPLS factors as predictors in the generalized linear
model framework [7,35], the survival analysis framework [42], and others are needed.
Additionally, following the close connection of PLS for classification with the classes coded
as dummy variables to Fisher’s discriminant analysis [8], our RPLS approach may give an
alternative strategy for regularized linear discriminant analysis. Further development of our
novel extensions for GPLS and Nonnegative PLS is also needed. Finally, Nadler and
Coifman [12] and Chun and Keleş [4] have shown asymptotic inconsistency of PLS
regression methods when the number of variables is permitted to grow faster than the
sample size. For related PCA methods, a few have shown consistency of Sparse PCA in
these settings [10,13]. Proving consistent recovery of the RPLS loadings and the
corresponding regression or classification coefficients is an open area of future research.
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Finally, we have demonstrated the utility of our methods through a case study on NMR
spectroscopy data, but there are many other potential applications of our technology. These
include chemometrics, proteomics, metabolomics, high-throughput genomics, imaging,
hyperspectral imaging, and neuroimaging. Overall, we have presented a flexible and
powerful tool for supervised dimension reduction of high-dimensional data with many
advantages and potential areas of future research and application. An R package and a
Matlab toolbox named RPLS that implements our methods will be made publicly available.
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APPENDIX

PROOFS
Proof of Proposition 1

The proof of this result follows from an argument in Ref. 24, but we outline this here for
completion. The updates for u are straightforward. We show that the subgradient equations
of the penalized regression problem, , for v* as defined in the stated
result are equivalent to the KKT conditions of Eq. (1). The subgradient equation of the latter
is, Mu − λ∇P(v*) − 2γ* v* = 0, where ∇P() is the subgradient of P() and γ* is the Lagrange
multiplier for the inequality constraint with complementary slackness condition, γ*((v*)T v*

− 1) = 0. The subgradient of the penalized regression problem is Mu − v̂ − λ∇P(v̂) = 0.
Now, since P() is order one, we this subgradient is equivalent to  for any
c > 0 and for ṽ = cv̂. Then, taking c = 1/||v̂||2 = 1/2γ* for any v̂ ≠ 0, we see that both the
complimentary slackness condition is satisfied and the subgradients are equivalent. It is easy
to verify that the pair (0, 0) also satisfy the KKT conditions of Eq. (1).

Proof of Corollary 1
The proof of this fact follows in a straightforward manner from that of Proposition 1 as the
only feasible solution for u is u* = 1. We are then left with a concave optimization problem,
maximizev vT M − λP(v) subject to vT v ≤ 1. From the proof of Proposition 1, we have that
this optimization problem is equivalent to the desired result. As we are left with a concave
problem, the global optimum is achieved.

Proof of Proposition 2
First, define Q̃ to be a matrix square root of Q as in Ref. 24. In this paper, they showed that
Generalized PCA was equivalent to PCA on the matrix X̃ = X Q̃ for projected factors V =
Q̃†Ṽ. In other words, if X̃ = ŨD̃Ṽ is the singular value decomposition, then the GPCA
solution, V can be defined accordingly. Here, we will prove that the multi-factor RPLS
problem for X̃ and ṽk is equivalent to the stated Generalized RPLS problem (2) for λ = 0.
The constraint regions are trivially equivalent so we must show that

. The PLS factors, z̃k = X̃ṽk = X Q vk = zk, are equivalent.
Ignoring the normalizing term in the denominator, the columns of the projection weighting
matrix are R̃k = X̃Tz̃k = Q̃T X zk = Q̃T Rk. Thus, the ij th element of

 as stated. Putting these together, we have

 which simplifies to the
desired result.

Following this, the proof of the first part is a straightforward extension of Theorem 1 and
Proposition 1 in Ref. 24. The proof for the second part follows from combining the
arguments in Proposition 1 and those in the proof of Theorem 2 in Ref. 24.
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Fig. 1.
Sparse non-negative GPLS loadings and sample PLS heatmaps for the neural cell NMR
data. The loadings are superimposed on the mean scaled spectral intensities for each class of
neural cells. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Fig. 2.
The first two PLS and Sparse PLS [4] loadings and sample PLS heatmaps for the neural cell
NMR data. The loadings are superimposed on the mean scaled spectral intensities for each
class of neural cells. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Allen et al. Page 16

Stat Anal Data Min. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Allen et al. Page 17

Ta
bl

e 
1

C
om

pa
ri

so
n 

of
 m

ea
n 

sq
ua

re
d 

pr
ed

ic
tio

n 
er

ro
r 

(M
SP

E
),

 tr
ue

 p
os

iti
ve

 r
at

e 
(T

PR
) 

an
d 

fa
ls

e 
po

si
tiv

e 
ra

te
 (

FP
R

) 
w

ith
 s

ta
nd

ar
d 

er
ro

rs
 (

SE
).

Si
m

ul
at

io
n 

1:
 n

 =
 4

00
, p

 =
 4

0,
 S

N
R

 =
 1

0
Si

m
ul

at
io

n 
2:

 n
 =

 4
00

, p
 =

 4
0,

 S
N

R
 =

 5

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

PL
S

50
4.

2 
(2

93
.8

)
PL

S
65

5.
2 

(2
12

.9
)

Sp
ar

se
 P

L
S

72
.6

 (
4.

1)
1.

00
 (

0.
00

)
0.

61
 (

0.
27

)
Sp

ar
se

 P
L

S
14

3.
7 

(9
.8

)
1.

00
 (

0.
00

)
0.

66
 (

0.
29

)

R
PL

S
66

.4
 (

3.
8)

1.
00

 (
0.

00
)

0.
22

 (
0.

35
)

R
PL

S
13

1.
4 

(9
.3

)
1.

00
 (

0.
00

)
0.

19
 (

0.
37

)

L
as

so
70

.9
 (

4.
9)

0.
60

 (
0.

07
)

0.
00

 (
0.

02
)

L
as

so
13

9.
3 

(9
.5

)
0.

49
 (

0.
07

)
0.

00
 (

0.
00

)

E
la

st
ic

 n
et

70
.5

 (
4.

5)
0.

61
 (

0.
07

)
0.

01
 (

0.
03

)
E

la
st

ic
 n

et
13

9.
0 

(9
.5

)
0.

50
 (

0.
07

)
0.

00
 (

0.
00

)

Si
m

ul
at

io
n 

3:
 n

 =
 4

0,
 p

 =
 8

0,
 S

N
R

 =
 1

0
Si

m
ul

at
io

n 
4:

 n
 =

 4
0,

 p
 =

 8
0,

 S
N

R
 =

 5

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

PL
S

62
4.

1 
(2

56
.5

)
PL

S
61

2.
6 

(2
56

.8
)

Sp
ar

se
 P

L
S

10
4.

9 
(2

6.
3)

0.
99

 (
0.

05
)

0.
77

 (
0.

30
)

Sp
ar

se
 P

L
S

20
6.

4 
(5

3.
9)

0.
98

 (
0.

07
)

0.
70

 (
0.

31
)

R
PL

S
76

.0
 (

20
.8

)
1.

00
 (

0.
00

)
0.

45
 (

0.
43

)
R

PL
S

15
5.

1 
(5

9.
0)

1.
00

 (
0.

00
)

0.
52

 (
0.

43
)

L
as

so
83

.7
 (

19
.7

)
0.

17
 (

0.
04

)
0.

02
 (

0.
06

)
L

as
so

17
8.

3 
(4

9.
7)

0.
12

 (
0.

04
)

0.
01

 (
0.

02
)

E
la

st
ic

 n
et

82
.4

 (
18

.6
)

0.
17

 (
0.

03
)

0.
02

 (
0.

04
)

E
la

st
ic

 n
et

17
2.

7 
(4

6.
0)

0.
12

 (
0.

04
)

0.
01

 (
0.

03
)

Si
m

ul
at

io
n 

5:
 n

 =
 4

0,
 p

 =
 2

00
, S

N
R

 =
 1

0
Si

m
ul

at
io

n 
2:

 n
 =

 4
0,

 p
 =

 2
00

, S
N

R
 =

 5

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

M
et

ho
d

M
SP

E
 (

SE
)

T
P

R
 (

SE
)

F
P

R
 (

SE
)

PL
S

64
9.

7 
(1

75
.8

)
PL

S
69

1.
9 

(1
88

.5
)

Sp
ar

se
 P

L
S

85
.7

 (
20

.4
)

1.
00

 (
0.

02
)

0.
76

 (
0.

32
)

Sp
ar

se
 P

L
S

18
2.

0 
(4

2.
0)

0.
98

 (
0.

08
)

0.
61

 (
0.

36
)

R
PL

S
84

.8
 (

52
.2

)
1.

00
 (

0.
00

)
0.

53
 (

0.
47

)
R

PL
S

15
3.

3 
(4

0.
9)

1.
00

 (
0.

00
)

0.
48

 (
0.

49
)

L
as

so
83

.1
 (

15
.1

)
0.

19
 (

0.
04

)
0.

01
 (

0.
01

)
L

as
so

16
3.

1 
(3

5.
7)

0.
15

 (
0.

04
)

0.
00

 (
0.

01
)

E
la

st
ic

 n
et

82
.2

 (
14

.7
)

0.
19

 (
0.

05
)

0.
00

 (
0.

01
)

E
la

st
ic

 n
et

16
0.

6 
(3

3.
7)

0.
15

 (
0.

03
)

0.
01

 (
0.

02
)

Stat Anal Data Min. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Allen et al. Page 18

Table 2

Comparison of mean squared prediction error (MSPE) with standard errors (SE) for multivariate methods.

Simulation 1: n = 400, p = 40, SNR = 2 Simulation 2: n = 400, p = 40, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 2376.2 (337) SPCA 2204.1 (313)

PLS 2567.7 (316) PLS 2343.3 (281)

RPLS 404.7 (96) RPLS 339.4 (175)

Simulation 3: n = 40, p = 80, SNR = 2 Simulation 4: n = 40, p = 80, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 711.3 (107) SPCA 721.7 (109)

PLS 647.0 (101) PLS 659.9 (81)

RPLS 14.2 (3) RPLS 13.3 (3)

Simulation 5: n = 40, p = 200, SNR = 2 Simulation 6: n = 40, p = 200, SNR = 1

Method MSPE (SE) Method MSPE (SE)

SPCA 1269.9 (211) SPCA 1263.1 (208)

PLS 830.0 (102) PLS 843.7 (87)

RPLS 20.3 (8) RPLS 19.4 (7)
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Table 3

Misclassification errors for methods applied to the neural cell NMR data. Various methods were used to first
reduce the dimension with the resulting factors used as predictors in linear discriminant analysis.

Training error Leave-one-out CV error

Naive Bayes Classifier 0.0370 0.1481

PCA + LDA 0.1167 0.1852

PLS + LDA [6] 0.0000 0.1481

GPCA + LDA [24] 0.1833 0.1481

GPLS + LDA 0.0000 0.1111

SPCA + LDA [22] 0.1167 0.1481

SPLS + LDA [4] 0.0000 0.1111

SGPCA + LDA [36] 0.1833 0.1481

SGPLS + LDA 0.0000 0.0741
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Table 4

Timings comparisons. Time in seconds to compute the entire solution path for the neural cell NMR data.

Time in seconds

Sparse PLS (via RPLS in C) 1.01

Sparse PLS (via RPLS in Matlab) 57.01

Sparse PLS (R package spls) 1033.86

Sparse Non-negative GPLS (in C) 28.16
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