Skip to main content
. Author manuscript; available in PMC: 2014 Feb 5.
Published in final edited form as: Stat Anal Data Min. 2012 Nov 19;6(4):302–314. doi: 10.1002/sam.11169

Algorithm 1.

K-Factor Regularized PLS

  1. Center the columns of X and Y. Let (1) = XT Y.

  2. For k = 1 … K:

    1. Initialize uk and vk to the first left and right singular vectors of (k).

    2. Repeat until convergence:

      1. Set uk=(M^(k))Tvk(M^(k))Tvk2.

      2. Set v^k=argminvk{M^(k)uk-vk22-λkP(vk)}.

      3. Set vk = k/||k||2 if ||k||2 > 0, and set vk = 0 and exit the algorithm otherwise.

    3. RPLS Factor: zk = X vk.

    4. RPLS projection matrix: Set R(k)=[R(k-1)XTzk/zkTzk] and Pk = IR(k) ((R(k))T R(k))−1(R(k))T.

    5. Orthogonalization Step: (k+1) = Pk (k)

  3. Return RPLS Factors z1zK and RPLS Loadings: v1vK.