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Despite significant advances in the study of the molecular mechanisms altered in the development and progression of
neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear.
We present an efficient computational method based on protein-protein interaction network (PPI) tomodel the functional network
of NDs.The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association
network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv)
inference of potential molecular mechanism involved in the diseases.The functional links of diseases not only showed overlap with
the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical
overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins
were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided
important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted
the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration.

1. Introduction

Neurodegenerative diseases (NDs) represent a large group
of neurological disorders with heterogeneous clinical and
pathological traits that are characterized by progressive ner-
vous system dysfunction.These disorders are often associated
with atrophy of the affected central or peripheral structures of
the nervous system and they arise for unknown reasons and
progress in a relentless manner.

Neurodegenerative disorders are a major focus of scien-
tific and clinical interest due to their prevalence, complex
biochemistry and pathology, and lack of mechanism-based
treatments. Their number is currently estimated to be a few
hundred, and, among these, many appear to overlap with
one another clinically and pathologically, rendering their
practical classification quite challenging. The most popular
categorization of neurodegenerative disorders is still based
on the predominant clinical feature or the topography of the

predominant lesion or often on a combination of both [1],
but since the associated etiology and neuropathology are still
unknown, there are limitations of the current framework of
neurodegenerative diseases.

The recent expansion of public interactomics databases
allows researchers to advance computational methods for
network medicine [2]. Network medicine aims to explore
the pathogenic mechanism of a particular disease, and
additionally to infer the complex associations of diseases in
a systematic point of view. One of the major approaches
is the exploration of the human protein-protein interaction
(PPI) network to study disease genes via their corresponding
product proteins (disease proteins), which are then used
to construct the disease PPI network [3]. Disease research
based on PPI network has achieved noteworthy results [4–
9]. Among them, some recent studies have analyzed NDs
using PPI; however, theymostly considered a specific disease,
such as Alzheimer’s disease [10–12]. Another work inferred
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overlapping regulators of NDs in different organisms [13],
the direct commonality among NDs in term of pathways
[14], or the reconstruction of the NDs network based on PPI
networks, regulatory networks, and Boolean networks [15].
The previous work mostly concentrated on constructing the
PPI network related to NDs but has not yet quantified the
topological associations among NDs. Moreover, the indirect
network relationships underlying functionality associations
between NDs have not been clarified yet.

We present an efficient computational method based on
PPI network for studying NDs. We selected nine NDs based
on their prevalence and/or on the relevance for the different
molecular, genetic, or clinical aspects of these complex
disorders: Huntington’s disease (HD), prion (P), frontotem-
poral dementia (FTD), Alzheimer’s disease (AD), Friedreich’s
ataxia (FA), Lewy body disease (LBD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and spinal muscu-
lar atrophy (SMA). Clinically, these degenerative disorders of
the brain are characterized by marked loss of memory (AD,
FTD, LBD, and prion), movement disorders (HD, FTD, LBD,
PD, and SMA), and weakness or poor balance (ALS, FTD,
prion, FA).

In addition to the nine NDs, glioblastoma multiforme
(GBM); a cancer affecting the central nervous system (CNS)
was considered to investigate the effects of a disease not
related to neurodegeneration in the ND network pertur-
bation. GBM is the most common and most aggressive
malignant primary brain tumor in humans, involving glial
cells and accounting for the majority of all functional tissue
brain tumor cases.

We first reconstructed the network of disease proteins
related to the ten diseases of interest. We then identified
key nodes of significant influence using topological network
indices, namely, degree, betweenness, closeness, and topo-
logical importance. The highly ranked proteins were found
and biologically interpreted. Shortest paths between pairs
of disease proteins were computed to measure the disease
linkages and to identify sharing proteins and connecting
proteins, most likely responsible for disease linkages. We
modeled the network of diseases by computing different
metrics using a single path length and combination of
various path lengths. The relatedness between diseases in the
network supported the traditional clinical classification of the
diseases but uncovered also relationships among disease pairs
that classically are not so strongly related. The sharing and
connecting proteins were evaluated and the results showed
their significant functionality in the pathogenesis of NDs.
Toll-like receptor (TLR) signaling pathwaywas highlighted to
be a prominent mechanism in the overall connector proteins
providing potential candidate proteins to be targeted by
pharmacological intervention (e.g., TRAF6).

We then applied text mining proposed in [16] to recon-
struct the network of NDs, as a means to complement the
network analysis with a literature-based approach. The text
miningmethod was seemingly biased because the major data
sources were curated literature in both the OMIM database
[17] and the MeSH database [18]. Our proposed method
was based on protein interactions, which are defined inde-
pendently from previous clinical classifications. Moreover,

while text mining method could reveal only the phenotype
similarity, our method quantitatively measured the disease
relatedness based on the network topology and studied more
comprehensively the functional mechanism of linkages in
terms of connector proteins.

In the present study, the interaction network of NDs
was studied to uncover the direct and indirect molecular
mechanisms underlying the connections between NDs. It
is expected that the characterization of a disease protein
interaction network could potentially uncover molecular
relationships that are in common between apparently distinct
diseases and provide important insight into the molecular
networks implicated in disease pathogenesis.

2. Materials and Methods

2.1. Materials. We investigated two main databases: a disease
phenotype database as the Online Mendelian Inheritance
in Man (OMIM) database [17] and a protein interaction
database as the Interologous Interaction Database (i2d)
database [19]. The set of ND genes was curated from the
OMIM database, which is a catalogue of human genes and
genetic disorders. In OMIM, the list of hereditary disease
genes is described in the OMIM morbid map. The pro-
tein interaction network was constructed based on the i2d
database, which is an integrated database of almost all known
experimental and predicted human protein interaction data
sets (including HRPD, BIND, and BioGrid).The comprehen-
sive interaction data published in the i2d database enabled
our analysis on a complete network of disease proteins.
Identifiers of proteins were unified using the protein IDs
defined in the Uniprot database [20]. Our study considered
the database versions released in August 2011.

2.2. Methods. The framework of the analysis is shown in
Figure 1. Based on the set of curatedNDgenes, we first identi-
fied the network of disease proteins related to the ten diseases
of interest. To assess the topological features of the proteins,
we measured several centralities in the network, namely,
degree, betweenness, closeness, and topological importance.
The network of diseases was later modeled by calculating
disease linkages in terms of shortest paths between pairs
of disease proteins. We identified sharing proteins and con-
necting proteins as the main components that were most
likely responsible for disease linkages. The functionality of
connecting proteins was studied by the GO enrichment
analysis. The following sections present the framework in
details.

2.3. Modeling Interaction Network of Disease Proteins. To
investigate the NDs from the network point of view, we first
modeled the interaction network of diseases proteins. Disease
proteins are product proteins of disease genes that are related
to specific neurodegenerative disorders. From the morbid
map published in the OMIM database, we obtained the list of
disease genes related to the 10 diseases. In order to construct
the protein interaction network related to the 10 diseases, we
mapped the disease genes to disease proteins based on the
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Figure 1: The framework of studying functional interactions network of NDs.

mapping scheme of the Uniprot database.The interactions of
those disease proteins were then obtained by exploring the
experimentally validated interactions from the i2d database.
All the homologous predicted protein interactions in the
i2d database were excluded to increase the reliability of
protein interaction data. The final interaction network of
interest contained the disease proteins (nodes) and their
direct interacting partners (edges).We took into account only
direct interactions (i.e., first degree neighbors). The network
was undirected and weighted because we considered the
binary interactions.

2.4. Modeling Interaction Network of NDs. Based on the
constructed network of the disease proteins, we modeled
the network of NDs with metanodes and metaedges that
represented the diseases and the connections between dis-
eases, correspondingly. A meta-node was defined as a cluster
of the disease proteins related to one disease. A meta-edge
connecting from one disease to the other was defined as
a cluster of the paths between their disease proteins. The
meta-edges were weighted using different score functions 𝑟

𝑖

to demonstrate the strength of the association between two
diseases. For example, the two meta-nodes, named ALS and
SMA, consisted of all the proteins related to ALS and SMA
correspondingly. For each pair of proteins (one belonging to
ALS, one belonging to SMA), we computed paths connecting
them and then grouped all of the paths together to identify a
meta-edge, named ALS-SMA (undirected edge) with weight
calculated by 𝑟

𝑖
. The meta-edges are visible if the score

𝑟
𝑖
> 0.

2.5. Analyzing the ND Network Using the Network
Mining Approach

2.5.1. Computing Topological Properties of Protein Interaction
Network. To understand networks and their participating
proteins, we evaluated the centrality of proteins in the
network. The functional importance of proteins might be
inferred from their central roles in the network [21–24]. Since
each centrality describes a unique structural feature, reliable
predictions of the biological properties can be achieved by
combinations of these measures, rather than relying on a sin-
gle index.We computed a number of centralities varying from
local scale (degree and eigenvector scores) to intermediate
scale (topological importance up to 1 and 3 steps) and finally
to global scale (betweenness and closeness).

A number of centralities have been used to characterize
the networks studied as follows:

(i) The first, the degree centrality or connectivity (𝐷) of
a protein V

𝑖
, indicates how many interactions 𝑒

𝑖𝑗
the

protein has to the other proteins V
𝑗
. This is the most

popular to evaluate the local centrality in the network
[25].

(ii) The second, betweenness centrality (𝐵), is a measure
of the positional influence of proteins in the networks.
The betweenness centrality of a protein V

𝑖
is defined as

the number of shortest paths 𝑝 between pairs of other
proteins that run through V

𝑖
over the total number of

shortest paths between pairs of other proteins [25].
(iii) The third, the closeness centrality (𝐶), measures how

close a protein is to others. The farness of a node
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V
𝑖
is defined as the sum of its distances to all other

nodes, and its closeness is defined as the inverse of the
farness. Closeness considers the distance of the path
than the number of the path like 𝐵 does. A protein
with high 𝐶 easily catches other proteins in a short
time [25].

(iv) The fourth, the topological importance (TI𝑛) index,
quantifies indirect interactions of various lengths
𝑛 separately. It is based on the relative number
of interactions connecting one protein to its sur-
rounding proteins, under the consideration of the
whole arrangement of interactions (direct or indirect)
among those satellite proteins [26].

2.5.2. Computing the Association Scores between NDs. We
carried out three steps to compute the association scores
between NDs by using the shortest path information.

Given two ND diseases, A and B, the procedure was
presented as follows.

Step 1. Find all the shortest paths 𝑝
𝑘
between V

𝑖
and V
𝑗
, for all

protein pairs (V
𝑖
, V
𝑗
), where V

𝑖
is a protein related to disease A,

V
𝑗
is a protein related to disease B.

Step 2. Calculate the length/distance 𝑙
𝑘
of the path 𝑝

𝑘
.

Step 3. Compute the score between A and B based on single
path lengthmetric 𝑟

1
or combined path lengthmetrics, 𝑟

2
and

𝑟
3
.

The shortest path problem is to find a path 𝑝
𝑘
having

the minimal path length. A Breadth-First Search algorithm
[27, 28] has been employed to find the shortest paths between
two proteins (the start protein V

𝑖
and the end protein V

𝑗
).

The shortest paths may have different path lengths (𝑙
𝑘
=

0, 𝑙
𝑘
= 1, 𝑙

𝑘
= 2, 𝑙

𝑘
= 3, etc.). In the example shown in

Figure 2, there are different shortest paths from start protein
𝐴
1
related to disease A to end proteins 𝐶

2
, 𝐶
3
, 𝐶
4
related

to disease C, with 𝑙
𝑘
= 1 (𝐴

1
→ 𝐶

2
), 𝑙
𝑘
= 3 (𝐴

1
→

𝐷
1
→ 𝐶

4
→ 𝐶

3
), and 𝑙

𝑘
= 2 (𝐴

1
→ 𝐷

1
→

𝐶
4
) correspondingly. Here we defined connector proteins as

proteins visited along the path except the start protein and
the end protein. We note that in this work we considered the
one-step connector proteins only because this work focused
on close links between diseases. The larger set of connector
proteins has been under investigation and would be analyzed
in future work.

If the path length 𝑙
𝑘
equals to 0, this demonstrates the

occurrence of one common protein at least between two
NDs, for example, protein 𝐴𝐶1 between diseases A and C
or proteins 𝐴𝐵1, and 𝐴𝐵2 between diseases A and B. If the
path length 𝑙

𝑘
equals 1, this signifies a direct connection, for

example, two proteins𝐴
1
and𝐶

2
are directly connected. If the

path length 𝑙
𝑘
equals to 2, the path consists of three nodes:

a start protein (𝐴
1
), a connector protein (𝐷

1
), and an end

protein (𝐶
4
). Using this form of analysis the path lengths were

used to obtain the scores between two NDs.
For analyzing how close two NDs are, we proposed three

metrics based on the path length, 𝑟
1
, 𝑟
2
, and 𝑟

3
.

(i) Score 𝑟
1
(𝐷
1
, 𝐷
2
) is defined as the number of paths

𝑛
𝑘
between two disease metanodes by considering

separately three path lengths 𝑙
𝑘
= 0, 𝑙

𝑘
= 1, and

𝑙
𝑘
= 2.The score 𝑟

1
shows how two diseases are related

in different network distances. Given a specific path
length, two diseases aremore related if they havemore
paths. For example, in Figure 2, when considering
𝑙
𝑘
= 0, two diseases A and B being interlinked by

two paths and two diseases A and C being interlinked
by one path, then 𝑟

1
(A,B) > 𝑟

1
(A, C). As a result,

disease B has probably a closer association to disease
A than disease C does.

(ii) Score 𝑟
2
(𝐷
1
, 𝐷
2
) is defined as the combination of the

three most significant paths with length 𝑙
𝑘
= 0, 𝑙
𝑘
= 1,

and 𝑙
𝑘
= 2. Consider

𝑟
2
= 2 ∗ 𝑛

𝑙=0
+ 1 ∗ 𝑛

𝑙=1
+

1

2

∗ 𝑛
𝑙=2
, (1)

where 𝑛
𝑙=0

, 𝑛
𝑙=1

, and 𝑛
𝑙=2

are the number of pathswith
𝑙
𝑘
= 0, 𝑙
𝑘
= 1, and 𝑙

𝑘
= 2, correspondingly.

(iii) Score 𝑟
3
(𝐷
1
, 𝐷
2
) is defined as the combination of all

of the found. Consider

𝑟
3
(𝐷
1
, 𝐷
2
) = 𝛿
0
+ (1 −

𝐿

∑

𝑖=1

1

𝑙
𝑖

∗ 𝑛
𝑖
) , (2)

where

𝛿
0
=

{
{

{
{

{

1 if 𝑛
0
̸= 1 (there is at least one common

protein between two diseases) ,
0 otherwise;

(3)

𝑛
𝑖
: the number of paths with length 𝑙

1
(= 1), 𝑙

2
(=

2), . . . , 𝑙
𝐿
(= 𝐿), correspondingly;

𝐿: the maximum length corresponding to the furthest
path found.

The network analysis was implemented in CoSBiLab-
Graph [29] and Centralities in Biological Networks [30]. The
network mining and text mining were performed by Python
script [31]. The network visualization was performed by the
software NAViGaTOR (Network Analysis, Visualization, and
Graphing Toronto) [32].

2.6. Analyzing the ND Network Using Text Mining Approach.
Here we used phenotype similarity data developed by van
Driel [16].Their workmined the textual data from theOMIM
database and the hierarchical structure of the anatomy and
the disease sections of the medical subject headings vocab-
ulary (MeSH) [18] and calculated the phenotype similarity.
The pairwise matrix was produced for over 5000 disease
phenotypes. We mined the OMIM database and obtained
all of the phenotypic terms associated to the ten diseases
of interest. The submatrix of those terms was generated to
calculate the correlation between the NDs. The weights of
meta-edges in the disease network were assigned by using the
correlation values in the submatrix.
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Figure 2: A toy model for analyzing the ND network based on shortest paths. An illustration showing how the shortest path and scores
discussed in the report are calculated. Red, yellow, and green proteins are involved in three diseases A, B, andC correspondingly. Pink proteins
𝐴𝐵
1, and𝐴𝐵2 are shared between the two diseases A and B, while a blue protein𝐴𝐶1 is shared between the two diseases A and C. Considering

protein 𝐴
1
relating disease A as start protein and proteins 𝐶

2
, 𝐶
3
, 𝐶
4
relating disease C as end proteins, there are 𝑝

1
= (𝐴

1
→ 𝐶

2
) and

𝑙 = 1; 𝑝
2
= (𝐴
1
→ 𝐷

1
→ 𝐶
4
→ 𝐶
3
) and 𝑙 = 3; 𝑝

3
= (𝐴
1
→ 𝐷

1
→ 𝐶
4
) and 𝑙 = 2.The orange protein𝐷

1
is a connector protein mediating

the connection between two diseases B and C (𝐵
3
→ 𝐷

1
→ 𝐶
4
).

2.7. GO Term Enrichment Analysis. We used the Cytoscape
plug-in ClueGO [33] to identify gene ontology (GO) terms
(from level 3 to level 8 of the GObiological process hierarchy)
that were significantly enriched with the complete set of
connector proteins and the connector proteins of twodiseases
pairs ALS-PD and FTD-PD. To increase specificity of results,
only GO terms containing at least 10 connector proteins and
with at least 10% coverage of the term by connector proteins
were considered. A one-sided hypergeometric test was used
to determine significantly enriched GO terms; 𝑃-values were
corrected using the Benjamini and Hochberg method, and
those terms with corrected 𝑃-value < 0.1 were considered
significant [34]. ClueGO requires selection of a minimum
threshold for the kappa score, whichmeasures the association
strength between overlapping GO terms (see [31] for details
on the kappa index). For this analysis we used a threshold of
0.3 (i.e., GO term pairs with kappa score ≥ 0.3 are connected
in the ClueGO network). All other default parameters were
used.

3. Results

3.1. Interaction Network of ND Proteins. We obtained 75
disease proteins based on the extracted data from the OMIM
database. Among the 75 disease proteins, 71 have interactions
published in the i2d database. The complete list of disease

proteins and their corresponding diseases are presented in
additional file 1: Suppl.1 (see Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2014/686505). From
the set of the 71 disease proteins, we constructed the inter-
action network of proteins related to the ten diseases. The
network consisted of 1,222 proteins and 1,521 interactions.The
network is not fullyconnected, having six separated compo-
nents (or six subnetworks).The largest component contained
1,198 proteins and 1,502 interactions, corresponding to the
giant component of the network (the one forwhichwemainly
carried out network analysis). Table 1 shows the statistics of
the six components and the list of proteins corresponding
to the six components is provided in the additional file 1:
Suppl.2.

A number of indices were calculated for highlighting the
key proteins in the network.The top 20 proteins ranked by the
four indices, that is, 𝐷, 𝐵, 𝐶, and TI3, are shown in Table 2.
The ranks using 𝐷, 𝐵, and TI3 were almost identical. The
most central proteins are v-erb-b2 erythroblastic leukemia
viral oncogene homolog 2, neuroglioblastoma derived onco-
gene homolog (avian), TATA box binding protein, and prion
protein.

Tv-erb-b2 erythroblastic leukemia viral oncogene hom-
olog 2 (Uniprot ID: P04626), the highest-ranked protein, is
a member of the epidermal growth factor (EGF) receptor
family of receptor tyrosine kinases. ERBB2 is considered an

http://dx.doi.org/10.1155/2014/686505
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Table 1: Statistics of six components in the ND PPI network.

Component Nodes Edges Density Min degree Max degree Avg degree
C1 1198 1502 0.002 1 133 2.508
C2 10 9 0.200 1 9 1.800
C3 3 2 0.667 1 2 1.333
C4 4 3 0.500 1 3 1.500
C5 5 4 0.400 1 4 1.600
C6 2 1 1.000 1 1 1.000

Table 2: The top 20 proteins ranked by four network indices.

Rank Uniprot ID 𝐷 Uniprot ID 𝐶 Uniprot ID 𝐵 Uniprot ID TI3

1 P04626 133 P10636 0,000283 P04626 138806,9 P04626 223,9606
2 P20226 125 P62993 0,000277 P20226 124955,9 P20226 191,1601
3 P04156 83 P37840 0,000273 P04156 112084,5 P04156 140,9858
4 Q16637 82 P20226 0,000273 P37840 91931,3 Q16637 140,258
5 P55072 78 P04626 0,00027 Q16637 89120,94 P55072 121,1479
6 P37840 72 Q14203 0,000267 P55072 84506,5 P49768 101,3766
7 O60260 67 P62988 0,000267 P62993 83655,6 P42858 99,16651
8 P49768 67 P04156 0,000266 P10636 78425,93 P37840 96,52639
9 P42858 64 P42858 0,000266 P42858 77523,24 O60260 95,05239
10 P10636 58 P49768 0,000261 P49768 67333,14 P37231 88,60983
11 P37231 57 P09936 0,00026 O60260 62325,74 P01023 84,57448
12 Q14203 51 P55072 0,00026 P01023 62196,92 Q14203 82,81538
13 P35637 49 P35637 0,000258 P37231 58762,26 P10636 71,14661
14 P01023 47 P51587 0,000258 Q14203 55777,51 P35637 70,99781
15 P21675 44 O60260 0,000256 P51587 51505,59 P51587 64,43589
16 P51587 42 Q16637 0,000249 P62988 49875,5 P21675 52,16238
17 P22314 31 Q9UNE7 0,000247 P35637 46745,78 Q6Y7W6 46,97096
18 Q6Y7W6 30 P21675 0,000247 Q6Y7W6 38551,43 P43354 41,79592
19 P43354 28 P05067 0,000247 P05067 37130,13 P22314 41,70855
20 P09936 26 P37231 0,000247 P09936 29961,11 P28799 32,43995
The “gene symbol” column shows the corresponding genes of top 20 proteins (in UniprotID) ranked by degree values.

oncogene and it promotes cellular growth and survival [35].
This protein has no ligand binding domain of its own, but it
does bind tightly to other ligand-bound EGF receptor family
members to form aheterodimer [36]. It is an essential compo-
nent of a neuregulin-receptor complex, although neuregulins
do not interact with it alone [37]. Although ERBB2 has been
strongly associated to cancer, several recent findings suggest
a role of neuregulin signaling in synaptic maintenance and
possibly neurodegenerative diseases [38]; thus, being the
highest ranked key node in the network could support the
hypothesized strong involvement of this protein not only in
cancer, but also in neurodegeneration.

Although the closeness-rank orders were not totally
overlapping, the list of ten most central proteins was con-
served across most centrality indices. The highest ranked
proteins are microtubule-associated protein tau, growth
factor receptor-bound protein 2 (UniprotID: P10636), and
synuclein, alpha (non-A4 component of amyloid precursor)
(UniprotID: P62993). Those proteins may not have many
direct neighbors (measured by 𝐷) or have many paths

crossing through (measured by 𝐵), but they are likely to be
close to numerous proteins due to their short-distance paths.
Among those, microtubule-associated protein tau (MAPT)
promotes microtubule assembly and stability and might be
involved in the establishment and maintenance of neuronal
polarity [39]. Aggregates of hyperphosphorylated forms of
tau protein participate in the formation of neurofibrillary
tangles, which characterize numerous neurodegenerative
disorders named tauopathies. Tau pathology represents a
primary pathogenic event in various neurodegenerative dis-
eases [40]. More than 40 mutations in the MAPT gene
have been also found to cause frontotemporal dementia with
parkinsonism-17 (FTDP-17) [41]. Being one of the highest
ranked proteins in this CNS disease network, it could play a
key role not only in tauopathies physiopathology, but also in
other neurodegenerative disorders. Pathogenic roles of other
highly ranked proteins are further addressed in Section 4.

Figure 3 shows the distribution diagrams of the four
indices. The three distributions of the indices 𝐷, 𝐵, and
TI3 follow a strongly left-skewed distribution except the
unimodal, normal-like distribution of the 𝐶 index. The
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Figure 3: The distribution diagrams of the four network indices calculated for the network of disease proteins.

ranking tables and distribution diagrams for the three indices
are reported in additional file 1: Suppl.3.

3.2. InteractionNetwork of Diseases Based onNetworkMining.
The interaction network of NDs was investigated for studying
the association between NDs. The network of NDs contains
10 meta-nodes representing the 10 diseases, that is, HD,
P, FTD, AD, ALS, FA, LBD, PD, SMA, and GBM (see
more in Section 2.2). Figure 4 shows the disease network in
protein interaction point of view. In Figure 4, the 10 diseases
are the diamond meta-nodes and proteins interacting with
disease proteins are the circular nodes. The connections
between disease nodes were identified by the use of protein
interactions, for example, a strong connection between FTD
and PD detected by their large cluster of protein interactions.
Investigating the links between diseases could provide newer
insights into diseases pathogenesis [2].

The shortest paths were computed tomeasure the related-
ness of each pair of diseases. For instance, we identified 953
paths between ALS-PD, 753 paths between AD-PD, and 730
paths between FTD-PD. The longest paths computed are of
8-step length. We investigated the three most important path
lengths 𝑙 = 0 (with common proteins), 𝑙 = 1 (with direct
interactions) and 𝑙 = 2 (with indirect interactions mediated
by connector proteins).

It is assumed that if two diseases have a common protein
(𝑙 = 0), they are pathogenically related to each other

[2]. We found 9 proteins shared among 8 pairs of NDs,
that is, PD-HD, HD-P, FTD-PD, FTD-ALS, PD-LBD, FTD-
LBD, ALS-PD, and ALS-SMA. These 8 pairs of NDs are
likely to have strong mutual relationships. Among them,
two proteins, synuclein alpha gene and synuclein beta gene,
were found in FTD, PD, and LBD. Two proteins, transient
receptor potential cation channel, subfamily M, member 7,
and Parkinson disease gene, autosomal recessive, early onset,
were found to be shared among FTD, PD, and ALS. The list
of shared proteins is presented in Table 3. In some case, those
common proteins are well known for their relationships to
a specific disease, such as prion protein, but their relevance
to other diseases has not been discovered yet. The biological
significance of the sharing proteins is discussed in Section 4.

We found 27 direct connections (𝑙 = 1), 24 of which
belonged to the 8 pairs of NDs consisting of shared proteins.
These results confirm that those diseases are likely to be
strongly associated. The other three pairs of NDs with a
direct link were PD-SMA, HD-GBM, and P-GBM. It is of
interest that GBM has direct interactions with HD and P
even though the network regulating neurodegeneration was
well connected. As a result, the pathogenic links between
GBM and neurodegenerative diseases could warrant further
investigation.

A number of 1-step connections (𝑙 = 2) were com-
puted to further explore the indirect connections between
diseases.Those links require at least one connector protein for
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Figure 4: Protein-protein interaction network with collapsed 10 meta-nodes. Disease nodes are the diamond nodes and proteins interacting
with disease proteins are the circular nodes.

mediating the linkage between diseases. Totally, we obtained
714 indirect connections, which covered almost all of the ND
pairs, except FTD-FA, AD-FA, FA-SMA, HD-FA, P-FA, and
FA-LBD.The results suggested that the networkmining could
reveal the indirect association between the NDs. Moreover,
it is known that “the network-neighbor of a disease gene
is likely to cause the same or a similar disease” [4–7, 42].
The connector proteins are putative disease proteins implying
pleiotropic effects.

Based on shortest path computation, we then modeled
the disease network in a weighted graph of meta-nodes and
meta-edges (see more in Section 2.2). We first considered
the three path lengths separately by calculating 𝑟

1
. Figure 5

shows the networks of NDs constructed by using the single
path length, that is, 𝑙 = 0, 𝑙 = 1, and 𝑙 = 2. When

considering the length 𝑙 = 0, the connection between
FTD-PD was the strongest having 5 proteins in common,
FTD-ALS ranked second having 3 proteins in common,
and LBD-PD and ALS-PD were in the third order having
2 proteins in common. When considering the length 𝑙 =
1, the FTD-PD connection remained the closest (with 9
direct interactions); however, LBD-PD and ALS-PD (with
6 and 3 direct interactions correspondingly) became more
significant. When considering the length 𝑙 = 2, two pairs of
NDs, ALS-PD and HD-PD, were more visible owing to the
number of 57 and 41 connections correspondingly.

It is interesting to combine the above three length
measures to find out how the NDs connect to each other
both directly and indirectly. By calculating the score 𝑟

2
, the

networkwas illustrated in Figure 6. Twometa-edges FTD-PD
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Table 3: Common proteins between NDs.

Disease Uniprot ID Gene symbol Gene name
PD, HD P20226 TBP TATA box binding protein
HD, P P04156 PRNP Prion protein

FTD, PD

P37840 SNCA Synuclein, alpha
P10636 MAPT Microtubule-associated protein tau
Q96QT4 TRPM7 Transient receptor potential cation channel, subfamily M, member 7
Q16143 SNCB Synuclein, beta
Q99497 PARK7 Parkinson disease (autosomal recessive, early onset) 7

FTD, ALS
Q96QT4 TRPM7 Transient receptor potential cation channel, subfamily M, member 7
Q13148 TARDBP TAR DNA binding protein
Q99497 PARK7 Parkinson disease (autosomal recessive, early onset) 7

PD, LBD P37840 SNCA Synuclein, alpha (non-A4 component of amyloid precursor)
Q16143 SNCB Synuclein, beta

FTD, LBD P37840 SNCA Synuclein, alpha (non-A4 component of amyloid precursor)
Q16143 SNCB Synuclein, beta

ALS, PD Q96QT4 TRPM7 Transient receptor potential cation channel, subfamily M, member 7
Q99497 PARK7 Parkinson disease (autosomal recessive, early onset) 7

ALS, SMA O95292 VAPB VAMP (vesicle-associated membrane protein)

and ALS-PD were highlighted because they obtained the
highest score 𝑟

2
. For FTD and PD, this is probably due to the

fact that there is an autosomal dominant disorder, Frontotem-
poral dementia and parkinsonism linked to chromosome
17 (FTDP-17), which displays clinical features in common
between the two diseases [43]. ALS and PD obtained a high
score possibly because they belong to a common group of
movement disturbances.

Finally, we were interested in investigating all paths found
with the wide range of lengths. Based on the score 𝑟

3
, we

constructed the network to observe the effect of the complete
set of the paths; see Figure 7. We found that the three of
the four strongest connections are ALS-SMA, FTD-ALS, and
HD-PD.

Our results confirm the connection between ALS-SMA,
motor neuron disorders with the cardinal feature in the loss
of spinal cord neurons. Although they differ in the disease
development, our findings could suggest a commonality not
only in the anatomical localization of the neurodegenerative
process, but also in some molecular pathogenic pathways.
HD and PD are related to movement disturbances, and both
involve neurodegeneration in the basal ganglia; however, PD
is characterized by hypokinesis and HD by hyperkinesis.
Therefore, further studies are needed to uncover the potential
hidden molecular alterations common to both diseases.
Regarding the link between FTD-ALS, recent studies have
allowed a better understanding of the overlapping spectrum
of ALS and FTD, both from the clinical and the molecular
point of view with a protein called TDP-43 found in the
damaged tissues of both diseases [44].Thus, our finding could
strengthen this hypothesis, supported also by the clinical
evidence that many people with FTD have motor neuron
disease and ALS patients have subtle cognitive impairment
resembling FTD.

3.3. Interaction Network of NDs Based on Text Mining. To
enhance the understanding of the ND network, we used

an alternative approach to infer the network (see Figure 8).
In this case, the weights of the meta-edges represent the
phenotype similarities. The diseases characterized clinically
with dementia (FTD, AD, LBD, prion) were properly found
to be highly linked. Compared to the network obtained by
network mining, some connections are more evident (e.g.,
FTD-LBD, LBD-PD), but some of them are less visible (e.g.,
FTD-PD, ALS-PD). In Section 4, we will discuss the FTD-
PD and ALS-PD disease pairs, suggesting the potential of the
network approach to uncover the link between diseases that
even with text mining approaches are unrelated.

3.4. GO Term Enrichment Analysis. Figure 9 illustrates the
GO terms that were significantly enriched with the ND
connector proteins (𝑃 < 4.56𝑒 − 05, after correction for
multiple testing). The ClueGO algorithm identified four
primary functional groups among the significantly enriched
terms. Two of these groups were predominantly composed of
inflammatory processes, including T cell receptor signaling,
T cell costimulation, TRIF-dependent TLR signaling, and
TLR 4 signaling. Protein structural regulation was also
overrepresented, including regulation of protein complex
assembly and regulation of protein catabolic process. Finally,
apoptotic processes were among the enriched GO terms,
including regulation of cysteine-type endopeptidase activity
involved in apoptotic process and the apoptotic signaling
pathway.

4. Discussion

4.1. Direct Pleiotropic Linkage betweenNDs. Network analysis
has become a very powerful tool to investigate not only a
specific disease-relevant gene, but also to provide hypotheses
on the common pathological mechanism of disorders that
are currently classified as separate maladies, improving the
understanding of the disease etiology and thus, possibly
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Figure 5: The disease network constructed using single path length metric 𝑟
1
. Nodes represent diseases; edges are the connections between

two diseases. The thickness of the meta-edge reflects the score value 𝑟
1
; the stronger connection has a thicker line. (a) The disease network

constructed using single path length metric 𝑙 = 0. (b) The disease network constructed using single path length metric 𝑙 = 1. (c) The disease
network constructed using single path length metric 𝑙 = 2.

leading to the development of better treatments. In the
present study, the associations between different neurodegen-
erative diseases have been explored to try to shed light on
the common molecular causation or the biological pathways
involved in diseases with distinct clinical features and, pos-
sibly, in this way help the clinical characterization. Different
pairs of diseases seem to share specific proteins and most of
the sharing node proteins found are confirming the known
clinical or histopathological association between diseases.
For example, the sharing node proteins for PD and LBD
are alpha-synuclein (Uniprot ID: P37840) and B synuclein
(UniprotID: Q16143), belonging to a family of proteins that

aggregates abnormally in Parkinson’s disease and Lewy body
disease [45]. In fact, both pathologies could be classified as
synucleinopathies.

On the contrary, among the PD and HD shared proteins,
the prion protein (PrP) (Uniprot ID: P04156), surprisingly, is
one of the proteins in common in these two diseases which,
apart from a general motor disturbance phenotype, do not
share many clinical symptoms. This protein is active in the
brain and several other tissues, and although the precise
function of PrP is unknown, it is likely involved in the
transport of charged copper atoms (copper ions) into cells.
Researchers have also proposed roles for PrP in cell signaling,
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cell protection, and the formation of synapses [46]. Prion
gene is known to be associated with genetic prion diseases
which include also Huntington disease-like syndrome [47].
Of greater interest is a recent finding of Lewy pathology
in implanted embryonic dopamine neurons in PD patients,
raising the intriguing possibility that PD might be a prion
disorder [48]. This is in line with the hypothesis that all the
diseases associated to protein misfolding are prion-related,
which is also potentially supported by our findings.

4.2. Indirect Pleiotropic Linkage between NDs. Although the
shared proteins could provide clues to identify biochemical

FTD
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AD
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LBD

FA

HD

Figure 8: The disease network constructed using text mining.
Nodes represent diseases; edges are the connections between two
diseases. The thickness of the meta-edge reflects the phenotype
similarity value; the stronger connection has a thicker line.

pathways that are central to two diseases and potentially
suggest some shared pharmacological treatment, of greater
interest are the connector proteins which could help in
shedding light on the hidden common pathophysiological
mechanisms of diseases with limited clinical and pathological
overlaps, especially in the field of neurodegenerative disease
where the etiology is still unknown and the classification
remains sometimes challenging.

In additional file 1: Suppl.4, the list of connector proteins
of the different diseases is presented and, interestingly, one
of the most represented functional GO annotations is related
to TRIF-dependent TLR signaling pathway. Figure 10 shows
the molecular interactions in the TLR signaling pathway
(from KEGG database), highlighted with the mediator pro-
teins using the DAVID tool [49]. This pathway is central
to the innate immune system and the mediator proteins
are related mainly to the induction of proinflammatory
cytokines. However, there is increasing recognition of the
role of neuroinflammation as an initiation factor of neuron
degeneration [50]. Recently, the innate immune receptors
TLRs have been strongly linked to neurodegeneration [51]. In
mammals there are at least 10members of the TLR family that
recognize specific components conserved among microor-
ganisms. Activation of the TLRs promotes the production of
inflammatory cytokines, creating an environment that could
contribute to neuronal damage. It was recently suggested
that TLRs have an important role in the crosstalk between
neurons and glial cells in the central nervous system (CNS)
[52].

By inducing the production of proinflammatory
cytokines and cell adhesion molecules in immune cells,
TLRs may indirectly damage neurons in conditions such
as ischemic stroke and multiple sclerosis. Recent findings
suggest that neurons also express a subset of TLRs and
that their activation promotes neuronal degeneration in
experimental models of stroke and Alzheimer’s disease [51].

A great deal of experimental evidence points to role
of TLRs in AD and multiple sclerosis, but very sparse
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information is available on the function of these receptors
in other neurodegenerative disorders [51]. Moreover, a recent
investigation onmurinemodels of AD, PD, and ALS revealed
dynamic changes in TLR expression [53]. In the mediator
list associated to TLR pathway we identified the E3 ubiquitin
ligase tumor necrosis factor—receptor-associated factor 6
(TRAF6). This member of TNF receptor-associated factor
(TRAF) protein family has been associated to PD, HD,
AD, and PD [54–56]. Thus, the present results support
the hypothesis of an extensive involvement of TLRs in
neurodegenerative disorders, pointing to the development of
neuroprotective therapies by targeting these TLR-mediated
inflammatorymechanisms, including cytokine-induced neu-
rotoxicity.

Themost represented connector protein is the growth fac-
tor receptor-bound protein 2 (GRB2), a widely expressed pro-
tein that is essential for multiple cellular functions. Inhibition

ofGRB2 function impairs developmental processes in various
organisms and blocks transformation and proliferation of
various cell types. A role for GRB2 in the pathogenesis
of AD has been suggested [57]. GRB2 binds to phospho-
A𝛽PP (amyloid beta precursor protein) and it is in complex
with A𝛽PP in human brains. Both of these complexes are
augmented in brains of Alzheimer’s affected subjects. GRB2
is best known for its ability to link the epidermal growth
factor receptor tyrosine kinase to the activation of Ras and its
downstream kinases, ERK1,2 [58]. Experimental data suggest
that chronic activation of ERK plays a role in themechanisms
that trigger neurodegeneration.Thus, this could advocate for
a central role of this protein and the pathways in which it is
involved (e.g., RAS) in the neurodegenerative process and it
could be considered as a potential target for pharmacological
intervention.
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Figure 10: Flow diagram representing the molecular interactions in the Toll-like receptor signaling pathway (from KEGG database). The
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The pairs of diseases with the highest number of shared
connector proteins are FTP-PD, ALS-PD, PD-HD, and FTD-
ALS. Among these, we focused on the FTD-PD and ALS-PD
connectors based on the differential “ranking” in the network
versus the text mining approach of these disease pairs (i.e.,
high similarity according to network analysis, and low simi-
larity in text mining in (additional file 1: Suppl.5)) suggesting
the potential of the network approach to uncover the link
between diseases that even with text mining approaches are
unrelated.

4.3. FTD and PD Link. FTD and PD are neurodegenerative
diseases with distinct clinical and pathological features, with
FTD being a heterogeneous disorder characterized by behav-
ior and language disturbances, associated with degeneration
of the frontal and temporal lobes without major movement
disturbances, while PD is characterized by substantia nigra
dopamine cell degeneration and by the cardinal motor signs
and symptoms including the resting tremor, rigidity, and
akinesia.

The GO terms most strongly enriched among FTD-
PD connector proteins are related to apoptosis (additional
file 1: Suppl.6) underlining the centrality of this process in
this disease pair and, in particular, to signaling by caspase
family having caspase-1, -3, and -8 in the list. Activated
caspase-1 (interleukin-1𝛽 converting enzyme) and caspase-
3 (Yama/Apopain/Cpp32) cleave proteins that are important

in maintaining cytoskeletal integrity and DNA repair and
activate deoxyribonucleases, producing cell death with mor-
phological features of apoptosis [59, 60]. There are various
lines of evidence suggesting that caspases 1, 3 and 8 are
implicated in diverse neurodegenerative diseases. Caspase-
3-dependent proteolytic activation of protein kinase CD
(PKCD) contributes to the degenerative process in dopamin-
ergic neurons [61] and, inMPTP-induced Parkinson’s disease
in mice, gene disruption of caspases 1 and 3 prevents disease
development. Moreover, in Parkinson’s disease, Caspase-8 is
an effector in apoptotic death of dopaminergic neurons [62].

In FTD, there is evidence of activated caspase-3 expres-
sion in neurons and astrocytes, which may contribute to
neuronal cell death and astrocyte degeneration in the FTD
brain [63]. These experimental data are then in line with our
network-based approach, underlining the role of apoptosis
and of caspase in the pathophysiology of PD and FTD
diseases.

4.4. ALS and PD Link. ALS and PD are both movement
disorder, but with specific clinical aspects and histopatholog-
ical markers. In its classic form, ALS affects motor neurons
at upper and lower levels leading to progressive muscle
weakness and atrophy.

The ALS-PD connector proteins are overrepresented in
GO terms related to response to growth factor stimulus (addi-
tional file 1: Suppl.6).The gene expression programs activated
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by these pathways initiate a spectrum of fundamental cellular
activities including proliferation, growth (increase in cell
size), differentiation, and survival [64, 65]. These processes
are critical for normal embryonic development and adult
homeostasis and are frequently aberrantly activated in cancer.

Of interest, a connector protein member of these path-
ways is glycogen synthase kinase 3 (GSK-3𝛽), which is a
proline-directed serine-threonine kinase that was initially
identified as a phosphorylation and inactivation agent of
glycogen synthase. GSK-3𝛽 sits at the convergence of several
signaling pathways that are critical for neuronal viability
and proper function and several apoptotic stimuli, including
A𝛽 peptide, ischemia, and neurotoxins [66–68]. Increased
activity of glycogen synthase kinase-3 (GSK-3) has recently
been emphasized as an important pathogenic mechanism
of neurodegenerative disease, including Alzheimer’s disease
and ALS [69]. ALS is associated with the elevated expression
and/or activation of GSK-3 𝛽 [70] and GSK-3𝛽 has been
suggested to have an activity in motor neuronal cell death
[71]. In addition, several studies demonstrate the importance
of this kinase in the genesis and maintenance of neurode-
generative changes associated with PD since it could interfere
with two of the major degenerative processes associated with
PD: tau hyperphosphorylation and 𝛼-syn-induced toxicity,
due to increased accumulation of this protein [72]. Finally,
compounds that inhibit GSK-3 such as lithium and valproate
are able to delay the onset, reduce neurological deficits, and
prolong survival in an ALS mouse model [73]. In addition,
they have been proposed as therapy for PD since it can pre-
vent both 𝛼-synuclein accumulation and neurodegeneration
in an animal model of the disease [74]. Therefore, our data
support GSK-3 as novel site of intervention in the treatment
and management of these diseases.

5. Conclusions

In conclusion, the present paper has proposed a network-
based approach to efficiently infer the network of neurode-
generative diseases. The network mining showed advantages
on both the construction of the disease network and the
inference of molecular mechanisms underlying the linkage
between diseases. This network-based approach offered the
possibility to explore the molecular pathways involved in
neurodegenerative diseases, identifying Toll-like receptors as
a central molecular signaling pathway in neurodegeneration
and providing potential candidate proteins to be targeted
by pharmacological intervention (e.g., TRAF6). Moreover, it
offered the possibility to investigate the direct and indirect
relationship between apparently distinct diseases, suggesting
commonmolecular alteration, including prion protein inHD
and PD and GSK-3𝛽 in ALS and PD.
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