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ABSTRACT Local protein structure prediction efforts
have consistently failed to exceed -70% accuracy. We char-
acterize the degeneracy of the mapping from local sequence to
local structure responsible for this failure by investigating the
extent to which similar sequence segments found in different
proteins adopt similar three-dimensional structures. Se-
quence segments 3-15 residues in length from 154 different
protein families are partitioned into neighborhoods contain-
ing segments with similar sequences using cluster analysis.
The consistency of the sequence-to-structure mapping is
assessed by comparing the local structures adopted by se-
quence segments in the same neighborhood in proteins of
known structure. In the 154 families, 45% and 28% of the
positions occur in neighborhoods in which one and two local
structures predominate, respectively. The sequence patterns
that characterize the neighborhoods in the first class probably
include virtually all of the short sequence motifs in proteins
that consistently occur in a particular local structure. These
patterns, many of which occur in transitions between second-
ary structural elements, are an interesting combination of
previously studied and novel motifs. The identification of
sequence patterns that consistently occur in one or a small
number of local structures in proteins should contribute to the
prediction of protein structure from sequence.

Most studies of local sequence-structure relationships have
involved the tabulation of statistics on sequences that occur in
structural motifs of interest (1-4) (Fig. 1A). Our approach
(Fig. 1B) is essentially the inverse. Instead of investigating the
sequence patterns found in predefined local structural envi-
ronments, we first identify recurring sequence patterns and
then investigate their structural correlates.

It is well established that the local sequence-to-structure
mapping is not one to one over all of sequence space: identical
pentapeptide sequences exist in completely different tertiary
structures in proteins (5). Furthermore, local structure pre-
diction efforts consistently fail to exceed -70% accuracy (6),
suggesting that the mapping from local sequence to structure
is likely to be degenerate for a significant fraction of sequence
space. In this paper we characterize the degeneracy of the
mapping by determining the number of sequence segments in
neighborhoods (regions of sequence space) in which the
sequence-to-structure mapping is one to one, one to two, and
one to three (Fig. 1B).
The definition of local sequence neighborhoods requires a

measure of distance between short sequence segments. Most
sequence comparison methods rely on a single global substi-
tution matrix compiled by averaging over all positions in a large
set of aligned protein sequences (7). However, at different
positions in proteins, different amino acid residues are likely to
substitute for each other, and thus the use of a global substi-
tution matrix is potentially problematic. These problems can be
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circumvented if the two segments being compared are both
derived from protein families with multiple members: se-
quence profiles (8) constructed from sets of aligned sequences
contain position-specific information on amino acid substitu-
tion patterns.

In previous work (9), we utilized a measure of the distance
between sequence profiles generated from multiple sequence
alignments to identify sequence patterns that transcend pro-
tein family boundaries. A similar distance measure is used in
this paper, and the term "segment" below refers to a segment
of a profile generated from a multiple sequence alignment.
The earlier work focused on the identification and character-
ization of recurring sequence patterns; the focus of the current
paper is on the structural correlates of these patterns.

Methods
The clustering procedures have been described in detail in ref.
9. In brief, 29,921 segments of profiles derived from a nonre-
dundant subset [PDB-select 25 (10)] of the HSSP database
(11) of multiple sequence alfgnments were subdivided into
1200 neighborhoods containing sets of related segments using
the K means algorithm (12) and the city block metric

N 20

d(i, j) = E \IFi(k, n) Fj(k, n)
n=l k=l

where Fi(k, n) (a profile segment) is the frequency of the kth
amino acid in the nth position of segment i and N is the
segment length. Because the PDB-select 25 subset contains
very few pairs of alignments from even distantly related
families, segments in a given neighborhood are necessarily
derived from quite different protein families. To capture
patterns of different lengths, the procedure was repeated for
segment lengths ranging from 3 to 15 residues. Frequently,
segments of length 9 to 15 that belonged to neighborhoods with
strong sequence-to-structure correlations contained shorter
segments, which also belonged to such neighborhoods. To
avoid overcounting, the statistics in the tables for a given
segment length exclude positions already included in the
statistics for a longer segment length.

Secondary structure and solvent accessibility data for each
of the segments in each of the neighborhoods were extracted
from the HSSP data base using previously described simplifi-
cations (6). The average consistency of secondary structure
within a neighborhood was evaluated using the simple formula:

N

E max(pihelix, Pi,strand, Pi,turn)
i=l

N
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A: Determination of amino acid propensities
for predefined local structures

Sequence Space Structure Space

B: Determination of structural correlates'
of sequence patterns

Sequence Space Structure Space

FIG. 1. Approaches to studying local sequence-structure relation-
ships.
where thepi are the frequencies of occurrence of the indicated
secondary structure among the segments in the neighborhood
at position i and N is the segment length. For N greater than
seven, the lowest scoring position was excluded from the
average to allow for ambiguities in secondary structure assign-
ments in transition elements.
To test the statistical significance of the results with the

HSSP data set, simulated sequences were generated with the
average occurrences and variances of each of the amino acid
residues in the HSSP data set, but not the interresidue
correlations (9). To preserve the nonrandom sequential cor-
relations in secondary structure elements, the secondary struc-
ture assignments were not shuffled in the simulated set.
The secondary structure consistency within the neighbor-

hoods generated from the HSSP data set frequently exceeded
80%, but it almost never reached 80% in the simulated data
set. A consistency threshold of 80% is used throughout the
paper: for example, the sequence-to-structure mapping was
considered to be one to one if the agreement in secondary
structure among the segments within a neighborhood averaged
80% or greater over the length of the segments.

Tables 3 and 4 include only a subset of the patterns;
unabridged versions are available from the authors by elec-
tronic mail.

RESULTS

Sequence segments ranging from 3 to 15 residues in length
from a nonredundant subset of the HSSP database of multiple
sequence alignments were partitioned into neighborhoods
using the K-means algorithm. Because the HSSP database
includes at least one sequence of known three-dimensional
structure per multiple sequence alignment, the structure

Table 1. Overall distribution of sequence patterns for which a
single local structure predominates

No. of
Length positions H S T HT TH TS

15 300 0 0 0 0 300 0
13 2,847 691 0 0 1,393 763 0
11 3,399 1,973 0 0 840 586 0
9 2,609 1,376 0 0 433 411 359
7 1,711 819 0 559 0 71 262
5 1,327 208 231 888 0 0 0
3 958 0 103 855 0 0 0
Total 13,151 5,067 334 2,302 2,666 2,131 621

The total number of positions in neighborhoods in which the
consistency of the sequence-to-structure mapping was greater than
80% (column 2) and their distribution among different local structures
(H, S, T: helix, sheet, or turn throughout the segment; HT, TH, TS:
helix-turn, turn-helix, and turn-sheet transitions) is given for different
segment lengths. The choice of local structure groupings is primarily
for convenience of presentation; other choices would include the 3D
building blocks of Unger and Sussman (13).

adopted by each of the segments in each neighborhood is
known with reasonable certainty (12).
Approximately 44% of the positions in the input set of

multiple sequence alignments fell into a neighborhood in
which a single local structure predominated (Table 1). For
segment lengths 13 and 15, these predominant local structures
are primarily helix caps; for segment lengths 7 to 11, helices;
and for segment lengths 3 and 5, turns and loops. Although
considerably less frequent than the patterns found in helices
and turns, a number of patterns were found in turn-to-sheet
transitions for segment lengths 7 and 9, and in P-strands for
segment lengths 3 and 5.
To determine the number of distinct structural elements in

the neighborhoods in which the sequence-to-structure map-
ping was not one to one, the K-means algorithm was used to

Table 2. Distribution of sequence segments among neighborhoods
in which the sequence structure mapping is one to one, one to two,
and one to three

Positions
(%) H S T HT TH ST TS HTS TST

HSSP 1-1 43.9 17.0 1.1 7.7 8.9 7.1 0.0 2.1 0.0 0.0
HSSP 1-2 27.7 11.0 1.1 10.0 1.9 1.3 0.7 0.9 0.8 0.0
HSSP 1-3 8.3 5.0 0.0 2.0 0.2 0.7 0.0 0.0 0.0 0.4

Total 79.9 33.0 2.2 19.7 11.0 9.1 0.7 3.0 0.8 0.4
SIM 1-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SIM 1-2 2.0 0.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0
SIM 1-3 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 2.5 0.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

To identify neighborhoods that contained two or three different
local structures, the segments within a neighborhood were subdivided
into two or three groups using the K-means algorithm (12) and the
distance measure

d(i, j) = I E IS(n, i, k) - S(n, j, k)l
n= 1,N k=helix,strand,turn

where S(n, i, k) is the frequency of occurrence of secondary structure
type k at position n in segment i, andN is the window length. Column
2 lists the percentage of positions in neighborhoods in which the
overall secondary structure consistency within 1 (row 1), 2 (row 2), or
3 (row 3) subgroups was greater than 80%. Comparison with the
simulated data set showed that for segment lengths of less than nine,
the one to three mapping had little statistical significance, and thus
only positions in segments of at least nine residues are included in the
1-3 mapping statistics. Statistics on positions in neighborhoods with
one to two and one to three sequence to structure mappings exclude
positions falling into neighborhoods with one to one and one to two
mappings, respectively. Rows 5-8 give the results of applying the same
procedures to a simulated data set.
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Table 3. Selected sequence patterns that occur predominantly in a single type of local structure

Pattems JH SA H S T Patterns HeSA H S T Pattems H SA H S T

Amphipathic helices

#1 25
[GPa ] .41 .24 23
[Alr ] .38 .76 24
[Ark ] .38 .72 23
[aVI ] .83 .12 24
[Av ] .81 .28 25
7x .19 .84 25

.35 .56 24
[vLY ] .88 .24 25

.44 .72 21

#2 23
.39 .65 19

[Anq ] .19 .96 22
x .26 .70 22
[gAv ] .75 .09 21
[RKd ] .24 .74 22
x .24 .91 22
[ViL ] .86 .26 22
[Ay ] .75 .13 21
[gAq ] .19 .91 20

Amphipathic strands
#3 58
it .22 .82 6
[G ] .05 .75 4

i .12 .79 3
It .16 .70 4
[Vil ] .66 .15 4
it .35 .50 3
[VIL ] .74 .10 5

#4 39

[VI ]
[TsKE]
[Vi ]
IC

.19

.65

.11

.71

.24

.64

.15

.66

.10

.69

0
0
0
1
2

Less amphipathic helix
#5 28

.52 .50 23
[gAs ] .74 .18 23
[vLF ] .89 .18 24

.54 .46 24
[AvlT] .59 .29 25
[AS ] .76 .21 24
[aVIL] .70 .36 25
[Alsk] .53 .57 22
[gAvL] .61 .43 16

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

9
5

10
33
46
50
50

28
34
38
36
23

1
1
1
1
1
1
1
0
0

Turns/coils with conserved
glycines and prolines
#6 24
[P ] .07 .61 4 6
[AVTR] .33 .48 4 4
7c .17 .77 4 3
xi .24 .80 2 2
[G ] .02 .64 2 0

#7 33
[G ] .04 .48 2 4

.38 .73 2 3
Cx .22 .58 1 2

.55 .42 3 2
(P ] .06 .49 7 2

2
1
2
1
0
0
1
0
4

4
1
1
2
1
1
1
2
3

43
49
45
21
8
5
3

11
5
1
2

14

4
4
3
3
2
3
2
6

12

#8 27
(P ]

[P ]
7C

#9 24

[Pf ]
[GAVf]
[P .]

[PaLT]
[VTS ]
[PLSD]

[GpvI ]
([ PYFE]

.05

.42

.35

.10

.31

.37

.23

.46

.10

.32

.45

.28

.48

.29

.17

.47

.58

Other tur/coil
#10 32
[PAtS] .14
[GASd] .11
[AS ] .17
[S ] .08
[tSnq] .11

.70

.81

.67

.78

.63

.54

.50

.63

.58

.92

.75

.83

.63

.75

.67

.67

.54

.75

.78

.84

.81

.71

0
0
0
3
6

0
0
0
2
3
4
2
2
2
2
3
3

7
6
4
2
2

2
0
2
2
3

2
2
1
2
2
2
1
1
1
1
3
4

1
0
0
0
3

Helix N-cap
#11 61
[GkdE] .16

it .16
.41

[TSND] .06
T .27
[AkDE] .16
[qDE ] .08
[aVIL] .64
x .28
x .19
[AVLM] .52
[ILmf] .49
x .16

21
23
24
27
29

27
28
30
28
24

25
27
25
22
18

22
22
23
20
19
18
21
21
21
21
18
17

24
26
28
30
27

.75

.80

.41

.83

.77

.95

.78

.13

.63

.91

.26

.42

.88

Schellman Helix C-cap
#12 68
7x .25 .70 53 2 13
[aILf] .59 .16 58 1 9
[AVL ] .47 .35 58 1 9
[rKDE] .12 .79 60 1 7
n .28 .58 59 1 8
[L ] .69 .16 57 0 11
[ARKE] .22 .82 52 1 15
7C .16 .89 48 2 18
[ALRk] .32 .69 27 2 39
[G ] .06 .70 11 3 54
[aviL] .49 .44 13 8 47

Schellman Helix-Turn-Sheet
#13 67
[ArKd] .33 .75 53 7 7

.52 .40 56 7 4
[AL ] .82 .16 58 4 5
[AiLn] .41 .75 56 4 7
[AqKd] .27 .88 49 3 15

.47 .72 17 2 48
[G ] .07 .79 1 1 65
[AVI ] .68 .33 2 4 61
[arKD] .17 .74 4 24 39
[VIL ] .62 .37 7 43 17
[VIL ] .72 .31 7 48 12
[GVIL] .60 .36 6 49 12

.70 .30 6 45 16

subcluster the segments in each neighborhood into different
structural classes (Table 2). A substantial fraction of the
neighborhoods contained two different types of local struc-
tures (Table 2, row 2). To assess the statistical significance of
the results, parallel experiments were carried out on a simu-
lated data set in which the sequence-structure relationships of
the individual segments were randomized. Importantly, se-

quence segments in the same neighborhood are restricted to
one, two, or three local structures far more often in the HSSP
data sets than in the simulated data sets (Table 2). Thus, the
sequence-structure relationships we observe are distinctly
nonrandom.
The sequence patterns strongly associated with particular

local structures are an interesting combination of previously
studied and new motifs (Table 3). Familiar motifs include
amphipathic patterns with hydrophobic residues separated by
two or three positions almost exclusively found in a-helices
(Table 3, patterns 1 and 2), or with hydrophobic residues
separated by one position very frequently occurring in surface
(3-strands (Table 3, patterns 3 and 4). A less strongly amphi-
pathic pattern (pattern 5) was found in somewhat buried

helices. A number of short patterns with conserved glycine and
proline residues occur predominantly in turns as expected
[Table 3, patterns 6-9 (14)]. Pattern 10 is a serine-rich turn.
Pattern 11 is similar to a classic N-terminal helix cap motif (3)
and indeed is found predominantly in helix N caps. Pattern 12
is close to the Schellman helix C-cap (2, 15) and is found
predominantly at the C termini of a-helices.

Several patterns extend and/or refine previously character-
ized motifs. Pattern 13 is an extension of the Schellman motif;
following the characteristic helix-turn transition is a hydro-
phobic stretch that is almost always part of a (3-sheet. Pattern
14 is very similar to a previously described motif [the a-L motif
(2)], but surprisingly it appears primarily in strand C-caps
rather than in the helix C-caps where it was originally de-
scribed.
A number of the patterns that correlate very strongly with

local structure have not been explicitly singled out in the
literature. A strongly hydrophobic stretch in pattern 15 is
almost always found in buried 3-strands (note low average
solvent accessibility in column SA). Patterns 16 and 17 are
found in transitions from amphipathic helices through an

9 7
6 8
4 9
4 7

44 1
51 1
54 3
56 2
53 2
51 2
50 1
47 0
43 0

45
47
48
50
16
9
4
3
6
8

10
14
18
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Table 3. (Continued).
Pattems He SA H S T Patterns H. SA H S T Patterns H SA H S T

aL,Strand C-cap
#14 48
X .25 .58

.40 .54
[VIl ] .88 .15
[pAVi] .63 .25
[VI1 ] .78 .19
[VIF ] .66 .29
[GA ] .30 .19

.43 .38
[G .05 .52
C .33 .62
[GPVn] .34 .58

Buried strand
#15 37
[AVI1] .82 .16 5
[ViLm] .75 .13 4
[IL ] .88 .08 4
[VILf] .81 .16 3
[G ] .06 .21 2

Other Helix-Tur-Sheet
#16 34

.54 .44 26
[aVIL] .65 .32 25

.40 .73 24
[ALsK] .44 .74 25
[aViL] .69 .47 22

.42 .76 21
x .34 .85 16
xI .26 .94 12
x .30 .73 4
[PaVi] .50 .41 5
[aDE ] .14 .77 5
[aVIL] .72 .18 5
[VIL ] .85 .15 5
[AVIL] .71 .17 5

.60 .26 5

2 21 25
1 33 14
1 41 6
1 40 7
2 41 5
2 34 12
3 23 22
3 15 30
2 9 37
6 6 36
6 7 35

29
32
32
30
23

2
4
4
4
3
1
1
1
2
3
6

22
25
27
26

#17 41
[ASRK] .22
x .27
[AiLy] .61
[G ] .03
[gAV ] .72
x .20
[VIL ] .77

.87

.90

.46

.85

.29

.75

.36

34
30
17
3
3
4
4

1
0
0
0
5

20
29

6
11
24
38
33
17
8

Other helix C-cap
#18 56
[VILf]
[AKDE]

[ILM ]
[atRK]
IC

[aLf ]
[G ]

[sNKD]

#19 41

[aLd ]
[VILy]
[AqrK]
[lqRk]
[IL ]
[LRK ]

[SNKD]

3
1
1
4

12

6
5
6
5
9

12
17
21
28
26
23
7
4
2
3

.64

.25

.11

.43

.59

.13

.15

.44

.04

.37

.09

.41

.24

.72

.82

.28

.26

.81

.40

.19

.22

.24

.37

.07

.44

.87

.23

.10

.78

.87

.62

.83

.58

.76

.56

.68

.22

.17

.81

.68

.22

.66

.85

.76

.71

.81

49
51
52
53
49
46
36
20
5
6
9

34
35
38
37
38
36
34
30
24
15
9

13

3
2
2
2
2
2
1
1
0
2
7

0
1
1
1
2
2
1
1
1
0
2
4

Sheet N-cap
#20 44
x .17 .86
[G ] .09 .84
x .16 .72
[VTrK] .19 .81
[VI ] .71 .20
[AViT] .37 .47
[VILw] .74 .11
[ViFT] .47 .31
[GAiS] .33 .43

#21 41
[Gk ]
[As ]
[avkD]
[aVir]
[VI ]
[VILs ]
[VIL ]

4
3
2
1
5
8

19
35
51
48
40

7
5
2
3
1
3
6

10
16
26
30
27

.06 .78

.72 .29

.25 .68

.57 .29

.84 .26

.74 .29

.81 .17

Sheet C-cap
#22 38
[ViLy] .74 .15
[AVi ] .73 .18
[VI ] .88 .15
[VILF] .80 .13
[G ] .05 .15
[Gasd] .23 .26
[Gvs ] .30 .50

For each neighborhood, the first row gives the identifier and the number of segments in the
neighborhood; the subsequent rows contain summary statistics on each position. Letters within brackets
indicate the prominent amino acids at the corresponding position in the neighborhood: capitals indicate
frequencies greater than 0.1, lowercase letters, frequencies between 0.07 and 0.1. For example, the third
position in the nine-residue pattern characterizing neighborhood 1 is rich in alanine, arginine, and lysine.
Positions at which more than seven different amino acids occurred with frequencies greater than 0.05 are
represented by r, 4), and . for average hydrophobicities of less than 0.35, greater than 0.65, and between
0.35 and 0.65, respectively. H4) is the sum of the frequencies of occurrence of alanine, valine, isoleucine,
leucine, methionine, proline, phenylalanine, and tryptophan. Solvent accessible surface areas (SA) were
taken directly from the HSSP files and then normalized by the exposed area of amino acids in Ala-Xaa-Ala
tripeptides. Residues with less than 16% of their surface exposed were considered buried. Columns H,
S, and T are the number of segments in the neighborhood that are in helix, strand, or turn-loop
configurations. Patterns 13, 14, 16, and 22 have consistency scores slightly below the 80% threshold.

exposed loop to a buried 3-strand. Pattern 18 is a helix C-cap
with a conserved glycine, but otherwise different than the
Schellman motif. Pattern 19 is a helix C-cap with turn-favoring
residues (Ser, Asn, and Lys) instead of a conserved glycine.
Patterns 20 and 21 are found in transitions from turns to
strands, and pattern 22, in transitions from strands to turns.
The two latter classes of patterns link well-studied short
reverse turns with specific types of P-strands. Analysis of the
three-dimensional contexts in which these patterns occur is
currently under way and should yield insights into the specific
interactions responsible for the prevalence of particular local
structures.

Because nonlocal interactions play an important role in
protein three-dimensional structures, local sequence-
structure relationships are not absolute. It should be noted that
with the 80% consistency threshold used here, up to 20% of the
sequence segments in the neighborhoods described in Tables
1 and 2 may adopt local structures different from that of the
majority of sequence segments in the neighborhood. Further-
more, the -20% of positions in the HSSP data set not
accounted for in Table 2 belong to neighborhoods in which the

consistency of the local sequence-to-structure mapping is not
significantly greater than that observed in the simulated data
set.

DISCUSSION
Our approach uses the vast amount of available sequence data
as a guide to identify natural structural groupings that other-
wise may be hidden by the complexity of protein three-
dimensional structures. The two major results are the descrip-
tion of the overall features of the local sequence-to-structure
mapping (Tables 1 and 2) and the identification of most of the
sequence patterns in proteins that consistently occur in a

particular type of local structure (Table 3). The identification
of sequence patterns that correlate strongly with structure has
proceeded in a rather piecemeal fashion in the past (most
studies have focused on a particular type of local structure and
sought to determine whether the sequences found in the
structural element in proteins have any distinguishing fea-
tures); our automated approach has in one pass probably
identified virtually all of such patterns.

3
1
0
2
2
2
3
3
3

5
5
5
4
4
4
4

3
3
3
4
3
3
7

6
3
6

30
35
37
39
36
28

3
5

17
32
34
35
33

30
31
31
27
11
6
7

35
40
38
12
7
5
2
5

13

33
31
19
5
3
2
4

5
4
4
7

24
29
24
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Table 4. Selected sequence patterns with two prominent structures

Pattern

1 [GaqE] 4 [ILT] [VILF] [AV] [AVI] [aLmt] [AV] Tr
2 . r. [GD] [AII] [ALmE] [AVLE] [iL] [YhRKE]
3 [LsR] 7r [iL] [ATs] r . 4 r rr
4 . [N] T . [GVsR] b). 7- 7r
5 [As] [qhRKE] . [pVIL] [aviLF] I7. [pLqe] [aRK]
6 7r 7r [LF] . r [AsKDE] [vSnkDE] r7XXr
7 . [pAV] [Lf] [ILf] [GAS] [GAs] [VLh] [G] [G]
8 [aVi] . [VIL] . [VIL] ir Xr [G]
9 [gAT] ir [GIkdE] Tr XT [IL] [VILk] [aRkE] [aVIk]
10 [gAs] [GSDE] [IWRk] [VILe] [VIL] [GAs] 4 [nD].
11 -r [yF] [TND] [PA] rT [AVsR] [PAVi] fr
12 r . [AVL] . [IyFw] [NrD] P 7r [ALSQ]
13 r . [ytnDe] Tr [PsnD] [G] . [VIY]IT
14 [ASK] [G] [SNK] [yFT] Ir rT [AVL] [vIL] [ViL]
15 Tr [G] [nD] [aLQ] . [GAS] [ALs] [aLmF]

H S T HT TH ST TS
19
15
15
11
18
11
10
7
16
14

18
10
11
17

14
10

14
10

1111
19
20

13

11
10

8
19

25
11
13

Abbreviations are as in Tables 1 and 3.

An important issue for approaches to protein structure
prediction is the extent to which a local "stereochemical code"
operates between sequence and structure (2). Our results have
both positive and negative implications for the success of such
a code. First, we do find a number of patterns that correlate
with local structure, and have not been heretofore described
(the a-turn-3 motif in Table 3, for example). Because the
patterns were generated using unsupervised learning methods,
they are probably not optimal for the classification problem
(12), but refinement of neighborhood boundaries using struc-
tural information could yield some improvement in local
structure prediction. However, Table 3 shows that currently
well-studied motifs dominate the set of patterns that correlate
strongly with structure, suggesting that recent success with
helix capping motifs (2, 3) may not generalize to a large
fraction of other local structure elements. Secondary structure
prediction efforts have traditionally had more difficulty with
P-strands, presumably because of their greater dependence on
nonlocal interactions, and indeed, 3-strands are conspicuously
underrepresented in the set of patterns that correlate strongly
with structure (Table 1). With regard to the question of the
contribution of hydrophobicity patterns alone to sequence-
structure relationships, we found that considerable resolution
was lost, particularly in the case of structural transitions, when
sequences were represented using a two-letter hydrophobic-
polar code (data not shown).
The explicit treatment of the ambiguity of the local se-

quence-structure mapping could have useful application to
the prediction of tertiary structure from primary sequence.
Examples of sequence patterns that are found in two distinct
local structures are shown in Table 4. Most work on local
structure prediction has sought to specify uniquely the local
structure of a protein segment given the sequence. The dem-
onstration that sequence patterns may correlate with two
specific local structures out of a larger set of possible structures
has immediate relevance to the global protein structure pre-
diction problem because it suggests a means to greatly reduce
the size of conformational space. Such a reduction in the size
of the space could readily be incorporated into a search
procedure in which only a limited number of local conforma-
tions are allowed as a global energy function involving nonlocal
interactions is minimized.
The use of sequence patterns to identify structural motifs

opens a new paradigm for studies of protein structure. The

amount of available sequence data is vast and growing rapidly,
and one-dimensional sequences are much more amenable to
pattern recognition approaches than are three-dimensional
protein structures. The striking correlation we observe be-
tween a number of sequence patterns and local protein struc-
ture is probably only the first indication of the power of such
"inverse" approaches.
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