
Review Article
Oncolytic Immunotherapy: Where Are We Clinically?
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Following a century of preclinical and clinical work, oncolytic viruses are now proving themselves in randomized phase 3
trials. Interestingly, human data indicates that these agents have potent immunostimulatory activity, raising the possibility that
the key consequence of oncolysis might be induction of antitumor immunity, especially in the context of viruses harboring
immunostimulatory transgenes. While safety and efficacy of many types of oncolytic viruses, including adenovirus, herpes, reo,
and vaccinia seem promising, few mechanisms of action studies have been performed with human substrates. Thus, the relative
contribution of “pure” oncolysis, the immune response resulting fromoncolysis, and the added benefit of adding a transgene remain
poorly understood. Here, the available clinical data on oncolytic viruses is reviewed, with emphasis on immunological aspects.

Since the “War on Cancer” was launched in the 1970s, the
treatment of most cancers has improved steadily. Neverthe-
less, most metastatic solid tumors remain incurable. There-
fore, new agents with novelmechanisms of action and lacking
cross-resistance to the currently available approaches are
needed.

Due to hypothetical safety concerns, cancer gene therapy
approaches have traditionally been based on viruses that are
unable to replicate. Although such “vectors” have provided
high preclinical efficacy and good clinical safety data, trials
have suggested that their efficacy may be limited when faced
with advanced and bulky disease, because of limited pene-
tration from the needle tract into further area of the tumor.
Nevertheless, in the context of local disease, even replication
deficient viruses could have their uses when combined
optimally to routine therapies [1, 2].

In the context of cancer therapy, nonreplicating viruses
have largely been abandoned in favor of replication compe-
tent platforms, since there are few advantages to the former, as
safety of the latter has proven excellent. Moreover, one could
argue that there are few caveats to arming a virus, over an
unarmed virus, assuming that the arming device adds to effi-
cacy. Thus, armed replication competent viruses are now the
most popular cancer gene therapy approach.

Viruses featuring selective replication in tumor cells, also
known as oncolytic viruses, can improve penetration of and
dissemination within solid tumor masses [3–5]. Emerging
data also suggests their ability to reach distant metastases
through vasculature, following release fromdying tumor cells
[6].

One of the first events during virus replication is ampli-
fication of the genome, including the transgene expression
cassette, and thus the oncolytic platform allows for high level
transgene expression [7, 8]. Further amplification is provided
by subsequent cycles of viral replication, release, and infec-
tion of more tumor cells. However, a key design aspect is the
lysis of the infected tumor cell. If expression on the cell mem-
brane, or inside the cell, is requisite for the transgene product,
lysis of the cell might compromise efficacy [8, 9]. Further,
expression of molecules with intracellular activity may be
superfluous, since the infected tumor cell is expected to
die through oncolysis anyway [8]. Thus, oncolytic transgene
products should optimally have either paracrine or systemic
modes of action.

Historically, oncolytic viruses were intimately associated
with infection and immunity. Case reports described tumor
regressions following viral infection, with concomitant “flu-
like” symptoms. Observations were followed by purposeful
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contraction of patients, and when toxicity and evenmortality
were encountered, a less toxic approach was tested, featuring
vaccine strains [10]. Following a quiet period of several
decades, during which chemotherapy development domi-
nated, oncolytic viruses reemerged in the latter part of the
20th century.Thiswas the era ofmolecular biology and genet-
ics; the popular laboratorymodels were cell lines grown in the
Petri dish or as xenografts in immunodeficientmice, and thus
immunological concepts were overlooked since neither of the
popular systems incorporates an intact immune system.

Following high profile descriptions of tumor selective
herpes, adenoviral and vaccinia strains [11–13], the field was
reinvented by molecular biologists and oncologists. The for-
mer attempted to design highly selective viruses to be tested
in rigorous in vitro experiments, while the latter wanted to
just put the viruses into patients and see if tumors would
disappear.Modern trial regulations, however, had established
a barrier between the bench and the bedside, and thus the
key scientists never met any patients treated with their virus,
while treating physicians did not usually understand the sci-
ence in a profoundmanner.Thus, the flow of informationwas
compromised.The blind were leading the deaf and vice versa.

Scientists like to profile their work as “paradigm shifting,”
and when exciting laboratory results did not lead to patient
tumors regularly melting away in oncolytic virus trials per-
formed at the turn of the millennium, the “experts” decided
that “oncolytic viruses do not work.” Although one or two
pioneering clinicians, who understood the science and had
treated the patient, attempted to voice their opinions [14],
nearly a decade passed before the community started realiz-
ing that tumor size may not be a good measure of the activity
of oncolytic viruses, especially when armed with immunos-
timulatory transgenes [15]. No one is Pope in their own
land and thus it required Big Pharma data with anti-CTLA4
antibodies [16], a potent form of immunotherapy mediated
by downregulation of inhibitory circuits, before “the experts”
realized that inflammatory “pseudoprogression” might apply
also to oncolytic viruses, resulting in the conclusion that
efficacy evaluation should not depend on tumor size mea-
surements alone. However, this required realization that
immunology plays a role in therapy with oncolytic viruses
[17]. And this data could not be obtained with immunode-
ficient mice.

In 2005, I was advised by the Finnish Medicines Agency
that if my goal was to treat patients, and not to do drug
development, I could treat patients, even with drugs not yet
approved for sale [18]. Following two years of infrastructure
development, production validation, and all kinds of testing,
personalized oncolytic virotherapy was started in 2007, in the
context of the Advanced Therapy Access Program. It did not
takemany patients to realize that a lot was going on immuno-
logically. Rubor, color, ardor, and tumor, as described by Cel-
sus in 47 BC, were seen. Particularly relevant in the context
of assessing efficacy was tumor, that is, swelling. If the virus
replicated and caused inflammation, the cancer might ini-
tially be larger than before treatment, but thismight notmean
lack of efficacy [15]. One could even postulate that inflamma-
tion associated danger signals could associate with efficacy
[3].

However, in 2007, few people in the oncolytic virus com-
munity had any immunological vision. Even in our labo-
ratory, it required an immune-inspired approach for us to
realize that immunology is relevant for all oncolytic viruses
[17, 19–25]. While we were the first to describe that oncolytic
viruses work in part through induction of an immune
response, many others have since agreed [26, 27]. Indeed,
there seems little doubt that “dangerous” cell death, such
as oncolysis, triggers pathogen associated molecular pattern
receptor signaling, resulting in reduction of tumor-induced
immunotolerance [3, 28]. With regard to adenovirus, one
of the most popular oncolytic platforms, even some mech-
anisms have been identified [28]. Adenovirus is recognized
by pathogen sensing receptors such as TLR9, which leads
to “danger signaling,” which is critical for immunity versus
tolerance [28].

Unfortunately, it is quite difficult to study the immunol-
ogy of oncolytic viruses. Many of these viruses are quite
species specific, and even if a degree of semipermissivity has
been proposed for certain exotic laboratory models such as
adenovirus in Syrian hamsters [29], immunological conse-
quences typically differ between different animals. Also, it is
fairly obvious that a tumor grown for 10 days in a laboratory
animal cannot represent the level of immunosuppressiveness
and evasiveness that human tumor has acquired over a
decade. Immunological signaling molecules typically feature
even more species specificity, often being completely species
incompatible, and thus armed viruses are even more chal-
lenging to study in the laboratory. Moreover, laboratory
reagents are typically scarce when moving beyond human
andmurine substrates and thus some of themore uncommon
models, such as Syrian hamsters, pose analytical problems
[29].

Thus, human data has a prominent role in understanding
oncolytic viruses. In this regard, it is unfortunate that very few
oncolytic virus trials have collected samples for immunologi-
cal analyses. Not only does the immunotherapeutic potential
of most viruses remain poorly understood, but also we lack
critical information onmechanisms of action, which compli-
cates optimal administration of the agents and combination
with other regimens. An ongoing problem in the field is the
disconnect between business management and understand-
ing of the science, leading to poorly informed clinical devel-
opment decisions and suboptimal trial design, which in turn
is counterproductive to the business, slowing down the drug
development progress. Ultimately, these issues complicate
and delay patients’ access to new therapeutics.

There is no dispute that preclinical studies utilizing
oncolytic viruses for treating cancer have been highly promis-
ing. In contrast, data from clinical trials has been more com-
plicated to interpret [3]. While there is no disagreement that
the safety of these approaches has been very good, variability
in the frequency of tumor size reductions, typically measured
at early time points, has discouraged some analysts [15]. How-
ever, possibly the success of other immunotherapeutics will
propagate understanding of immunological pseudoprogres-
sion and allow “experts” and regulators alike to take mecha-
nistic aspects into account.
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Clinical trial results with oncolytic viruses indicate that
while single-agent efficacy is seen, striking tumor reductions
are relatively few. A likely reason is that early trials typically
feature patients with advanced high volume disease refrac-
tory to routine therapies. Such tumors are able to rapidly
develop resistance to any therapeutic, and unfortunately this
extends to oncolytic viruses and other immunotherapeutics,
implying that also conventional drugs might have immuno-
logical effects. In other words, tumors resistant to chemother-
apy and “targeted therapies” are also more immunoedited
and immunosuppressive than näıve tumors. One common
resistance mechanism may be upregulation of interferon
signalling, intriguingly not by the tumor cells themselves, but
evidently by the tumor stroma [30]. Moreover, emerging data
suggests that pathways responsible for resistance to apoptosis
are also involved in immunity.

These considerations constitute a striking example of the
low predictive power of laboratory models. There are few or
no animal models which would be fully compatible with all
the relevant aspects of oncolytic viruses: replication permis-
siveness, innate and adaptive immunity, activity of the trans-
gene, human tumor tissue, human immunological cells, and
so forth. Thus, more than ever, now that the field is maturing
towards routine use, it remains critical to obtain human data.

To summarize our own learning curve, which especially
in the latter part has been strongly influenced by human data
from the AdvancedTherapy Access Program [18] but initially
began as a laboratory project, we initially thought that safety
would be an issue and consequently progressed from pro-
totype, relatively low-selectivity viruses to more selective
variants but then proceeded to agents designed formaximum
efficacy.

The first generation of oncolytic adenoviruses we studied
is embodied by, for example, “delta-24,” a beautifully simple
viruswith just onemodification, a 24-base pair deletion in the
E1 gene, which gives the virus selectivity towards the p16/Rb
pathway [19, 31]. In the laboratory, at least, it is difficult to
infect advanced tumor specimens with unmodified serotype
5 adenovirus, which initiated the field of adenovirus target-
ing, where capsid modifications, or secretory adapters, are
used to enhance gene delivery [32, 33].Thebiology behind the
phenomenon is that the serotype 5 receptor, the Coxsackie-
Adenovirus Receptor, is an adhesion molecule and many
adhesion properties are abnormal in advanced tumors [34].

Preclinical considerations and natural caution dictated
that safety was foremost, and thus we and many others pro-
ceeded to enhance the selectivity of oncolytic adenoviruses
[35]. One step in this direction was utilization of tumor
specific promoters, which exert their effect prior to E1 (the
first gene activatedwhen adenovirus replicates) expression, in
contrast to “delta-24” type viruses [36]. Thus, when the pro-
moter is inactive, as in most normal tissues, no E1 expression
results, leading to less adenoviral materials in normal cells,
in comparison to deletion-mutant viruses, whose selectiv-
ity is mediated at steps after E1A expression. “Promoter-
bashing” became a field in its own right, aiming at optimizing
complex and often large genomic promoter areas into com-
pact fragments that could be used in virus construction [37].

To scientists it was logical that the next step would be
to combine promoters and deletion mutants and then to
combine this with capsid modification to create “an optimal
oncolytic adenovirus” according to the contemporary infor-
mation [38]. In fact, a triplemodified virus appealing inmany
ways in the laboratory was the first virus we took into patients
in the AdvancedTherapy Access Program (ATAP) [38–40].

With safety established, but not all patients benefiting
from treatment, improving efficacy became top priority. Cau-
tiously, with patient safety foremost in mind, we took a step
back andwent back to a nonmodified capsid, but this time the
virus was armed with granulocyte-macrophage colony stim-
ulating factor, GMCSF. Treatments with this virus were safe
and in some patients tumors disappeared [17] while survival
also appeared to be promising.

The logical next step to improve patient benefit was to
enhance gene delivery with capsid modification, and two
approaches were utilized in this regard. Taking the fiber knob
from serotype 3 adenovirus and placing it into the serotype 5
capsid allow avoiding the problematic Coxsackie-Adenovirus
Receptor, which is often downregulated in advanced tumors
[41]. This design was then improved by adding GMCSF,
resulting in a potent triple modified virus, Ad5/3-D24-
GMCSF [19].

Human data proved to be highly exciting and eventually
115 patients were treated in ATAP [24]. The serotype 3 knob
binds to desmoglein 2, which is also an adhesion molecule,
seemingly similar to the Coxsackie-Adenovirus Receptor, but
in fact desmoglein 2 is not downregulated during carcino-
genesis [42]. A variant of this approach utilized incorporating
of alpha-v-beta integrin binding RGD-4C in the adenovirus
fiber HI-loop [20, 31, 43]. Integrins are adhesion molecules
again reminiscent of the usual adenovirus serotype 5 receptor,
but as desmoglein 2 they are not downregulated during car-
cinogenesis [44]. This capsid modification proved to be safe
in patients [23], and especially with GMCSF arming, efficacy
was also seen [20].

Taking the desmoglein 2 binding approach further, we
constructed a fully serotype 3 based oncolytic adenovirus,
which proved to be safe in patients, and some efficacy was
also seen, even in the absence of arming [21]. Intriguingly,
intravenous administration was employed in some patients,
resulting in signs of efficacy, especially when combined with
monoclonal antibodies. The scientific rationale for the com-
bination is that binding to desmoglein 2 opens tight junctions
which enhances the effect of many types of anticancer ther-
apy, includingmonoclonal antibodies [45]. An attractive next
step would be arming of the serotype 3 adenovirus [21, 46].

The 5/3 chimerism approach was taken to yet another
level by combining a tumor specific promoter (E2F) and the
“delta-24” deletion with the GMCSF expression cassette.This
quadruple modified design proved to be highly compatible
and resulted in a large proportion of treated patients benefit-
ing [47].

Although GMCSF has many appealing characteristics, a
possible caveat is its effects of myeloid derived suppressor
cells [17, 19].This is one reasonwhywe have been interested in
also other transgenes, such as CD40 ligand (CD40L), a mul-
tifunctional protein which can cause apoptosis of tumor cells,
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but it can also deactivate suppressive circuits including regu-
latory T-cells. Moreover, it can modulate the tumor microen-
vironment from a T-helper type 2 towards a T-helper type 1
situation, with the latter being more conducive to cellular
immune responses [48, 49]. Another embodiment of com-
bining the “gas pedal” of oncolysis with “releasing the brake”
of immunosuppressiveness is arming the virus with an anti-
CTLA4 antibody [50]. As suggested by animal data, this
approachmight also be appealing from the perspective of sys-
temic toxicity versus local efficacy, as antibody production at
the tumor seems to result in favorable distribution. In essence
local production restricted to the tumor might enhance
antitumor efficacy while reducing systemic toxicities.

Utilizing the capability of sodium iodide symporter hNIS
to concentrate radioiodide in tumors is in theory a highly
appealing approach which could be in theory used in the
treatment of almost any tumor type [51, 52]. The rationale
is “plagiarized” from the treatment of thyroid cancer with
radioiodide. Thyroid cells naturally express hNIS but the
cDNA can be placed into a virus, resulting in transgene
expression in any cell allowing virus replication, which is
tumor cells in the case of tumor selective oncolytic viruses.
However, although the preclinical data was highly promising
[51, 52], it was not until we treated the first patient that we
realized that very little radioiodide accumulation was seen in
tumors. We think this is because the time window between
transgene expression and tumor cell lysis is too small to allow
concentration of radioiodide to such a degree that could be
detected with themost sensitive imaging techniques available
[9, 52].

Others have used a virus construct which features less
replication, increasing the time window for hNIS expression,
and they have been able to detect radioiodide accumulation in
the injected tumor. However, following dosimetry calcula-
tions, even these authors reported that they were a long way
away from therapeutic doses [53]. These depressing results
might be caused in part by lack of organification (“incor-
poration”) of iodide in nonthyroid tissues; even if iodide is
transported inside, it will leak out.

Of the 10 viruses used in the Advance Therapy Access
Program, Ad5/3-D24-GMCSF, also known as CGTG-102,
emerged as the most promising candidate for clinical trials.
I cofounded Oncos Therapeutics Ltd. in 2008, and following
several years of preclinical development and testing, the
company’s first clinical trial was started in 2012. Although
initially planned as a phase 1-2 trial with an efficacy endpoint,
the Finnish regulators (FIMEA) requested restricting the trial
to just phase 1. All of the allowed 12 patients have recently
completed enrollment and thus trial results are anticipated in
2014. One can assume that the company will then proceed
to further trials, possibly aiming at randomized settings,
to avoid issues with pseudoprogression and slow response,
which are typical of immunotherapy.

Although oncolytic viruses can and do work as sin-
gle agents, they are appealing for combination with other
regimens, as they lack overlap in side effects with, for
example, radiation and chemotherapy [54–58]. In the setting
of chemotherapy resistant disease, where combination with
active dose chemotherapy is not as appealing as with naı̈ve

disease, particularly promising combinations include low-
dose cyclophosphamide, known to reduce regulatory T-cells,
or low-dose pulse temozolomide, an autophagy enhancer.
Regulatory T-cells can compromise any immunotherapy
approach and since low-dose cyclophosphamide is well tol-
erated, it was easy to implement this in ATAP [59].

Autophagy induction enhances oncolysis, which in fact
is a poorly understood cell death mechanism but may be
related to autophagy [54, 60]. There are several publications
showing that autophagy inducing agents synergize with
oncolytic viruses [25].Therefore, following preclinical testing
and according to the aforementioned scientific rationale, we
incorporated low-dose pulse temozolomide into ATAP, for
the purpose of enhancing the therapeutic effects of oncolytic
viruses, with some promising results [25].

Although many patients have benefited from oncolytic
adenovirus treatment, not all did, and in some cases benefits
were lost over time despite continued therapy. Thus, it is
clear from the clinical data that resistance to therapy can
emerge. This phenomenon has not been studied much, but
we studied a mouse model which becomes resistant to
oncolytic adenovirus and found that interferon response by
the tumor stroma (not the tumor cells per se!) results in the
tumor becoming refractory [30]. Similar findings have been
reported for also other oncolytic viruses [61–63]. An imme-
diate conclusion is that anti-interferon approaches might be
interesting to enhance the effect of oncolytic virotherapy.

Other means for overcoming the resistance generating
capabilities of advanced tumors include treatment of early
disease instead of the usual “phase 1 advanced disease popu-
lation.” In this context, combination with standard therapy is
attractive. There are several studies suggesting enhanced cell
killing activity when oncolytic viruses have been combined
with chemotherapy or radiation [54–58]. In fact, most con-
ventional anticancer approaches can debulk tumor masses,
and since large mass correlates with immunosuppressive
elements, the efficacy of immunotherapy is consequently
enhanced upon debulking.

Moreover, some chemotherapeutics have proposed
immunostimulatory activity even on their own [64–67].
Taken together with nonoverlapping side effect profiles, com-
bination regimens are likely to be feasible [68]. However,
careful planning, based on human data, is required to
optimize regimens in order to reduce immunosuppression
without losing the antitumor immunity generated by the
virus.

Oncolytic viruses have emerged—or in fact reemerged—
as promising thinking-out-of-the-box antitumor agents for
treatment of cancer refractory to more conventional treat-
ments. One could argue that immunotherapy is an unutilized
sector in oncology, and even if it seems to be entering the
mainstream presently with the advent of “passive” mono-
clonal antibodies against immunosuppressive circuits such as
CTLA4 and PD1 [69, 70], active immunotherapeutics such
as oncolytic viruses, which can manufacture a personalized
cancer vaccine in situ, could fulfill an important role currently
absent in the antitumor pie chart.

Excitingly, all phase 3 trials completed heretofore seem to
support these notions. As often seen nowadays in any sector
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of society, the Chinese are ahead of the rest, and a decade ago
they already completed a randomized phase 3 trial with
oncolytic adenovirus H101, in combination with chemother-
apy, for treatment of head and neck cancer. Positive results led
to approval of Oncorine [71]. In the West, the first random-
ized trial compared oncolytic herpes virus coding forGMCSF
to subcutaneous GMSCF and the primary endpoint was met
with a fairmargin in 2013.Moreover, progression free survival
was improved [72].

Uniquely, oncolytic viruses face complex regulatory and
production and intellectual property issues. Overlapping
patents, lay concerns over gene delivery, and standardization
of biological production systems may be more challenging
obstacles than any conceivable scientific issues. Pharmaceu-
tical companies are particularly wary of regulatory require-
ments for lifelong follow-up of patients, which is not justified
by any available data, despite thousands of patients treated.
Particularly if treatments prove to be curative, such require-
ments would result in immense cost.
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