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While there has been an enormous amount of research on face recognition under pose/illumination/expression changes and image
degradations, problems caused by occlusions attracted relatively less attention. Facial occlusions, due, for example, to sunglasses,
hat/cap, scarf, and beard, can significantly deteriorate performances of face recognition systems in uncontrolled environments such
as video surveillance. The goal of this paper is to explore face recognition in the presence of partial occlusions, with emphasis on
real-world scenarios (e.g., sunglasses and scarf). In this paper, we propose an efficient approach which consists of first analysing
the presence of potential occlusion on a face and then conducting face recognition on the nonoccluded facial regions based on
selective local Gabor binary patterns. Experiments demonstrate that the proposed method outperforms the state-of-the-art works
including KLD-LGBPHS, S-LNME OA-LBP, and RSC. Furthermore, performances of the proposed approach are evaluated under

illumination and extreme facial expression changes provide also significant results.

1. Introduction

Face recognition [1], the least intrusive biometric technique
in terms of acquisition, has been applied to a wide range
of commercial and law enforcement applications. State-of-
the-art face recognition systems perform with high accuracy
under controlled environments, but performances drastically
decrease in practical conditions such as video surveillance
of crowded environments or large camera networks. The
main problems are due to changes in facial expressions,
illumination conditions, face pose variations, and presence
of occlusions. With emphasis on real-world scenarios, in the
last decade, problems related to pose/illumination/expression
changes and image degradations have been widely inves-
tigated in the literature. In contrast, problems caused by
occlusions received relatively less investigations, although
facial occlusion is quite common in real-world applications
especially when individuals are not cooperative with the
system such as in video surveillance applications.

Facial occlusions may occur for several intentional or
undeliberate reasons (see Figure 1). For example, facial acces-
sories like sunglasses, scarf, facial make-up, and hat/cap
are quite common in daily life. Medical mask, hard hat,
and helmet are required in many restricted environments
(e.g., hospital and construction areas). Some other people
do wear veils for religious convictions or cultural habits. In
addition, facial occlusions are often related to several severe
security issues. Football hooligans and ATM criminals tend
to wear scarves and/or sunglasses to prevent their faces from
being recognized. Bank robbers and shop thieves usually
wear a cap when entering places where they commit illegal
actions.

Because partial occlusions can greatly change the original
appearance of a face image, it can significantly deteriorate
performances of classical face recognition systems (such
as [2-4], since the face representations are thus largely
distorted). To control partial occlusion is a critical issue
to achieve robust face recognition. Most of the literature
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FIGURE I: Illustration of different types of facial occlusions: (a) ordinary facial occlusions in daily life; (b) facial occlusions related to severe

security issues (ATM crimes, football hooligans, etc.).

works [5-17] focus on finding corruption-tolerant features
or classifiers to reduce the effect of partial occlusions in
face representation. However, information from the occluded
parts can still hinder the recognition performance. Recently,
researchers [18-21] demonstrated that prior knowledge about
the occlusion (e.g., type, location, and size) can be used to
exclude the information from occluded parts, so as to greatly
improve the recognition rate. Hence, explicit occlusion anal-
ysis is an important step in occlusion-robust face recognition.
In this paper, we propose an occlusion analysis method
to improve local Gabor binary pattern based face recog-
nition [11], which outperforms literature works including
[17-21].

The proposed approach consists of first detecting and
segmenting occluded parts (e.g., sunglasses/scarves) and then
applying face recognition on the nonoccluded facial regions.
To do so, the presence of occlusion is first analysed in the
patch-level using Gabor wavelets, PCA and SVM. Then we
segment the occluded part more precisely from the other
facial regions by a generalized Potts model Markov random
field (GPM-MREF) [22]. This allows us to identify the presence
of occlusion at the pixel-level so as to preserve as much
as possible face information for the recognition. After the
computation of an occlusion mask indicating which pixel
in a face image is occluded, we propose a variant of local
Gabor binary pattern histogram sequences (LGBPHS) [11]
to efficiently represent occluded faces by excluding features
extracted from the occluded pixels. Finally, we compared our
approach with traditional approaches [2, 4, 11], our previous
results [21], and state-of-the-art methods [13, 19, 20] on AR
face database [23] and obtained the best results. Our exper-
iments also suggested that, in comparison with weighting
based method [20], occlusion exclusion (i.e., weighting as 0
or 1) is more appropriate to handle the occlusion problem in
face recognition.

The rest of this paper is structured as follows. First, we
review the related works in Section 2. Then, the proposed
approach is described in Section 3. Section 4 presents the
experimental results and analysis. Finally, we draw the con-
clusion and discuss future directions in Section 5.

2. Related Works

The traditional methodology to address face recognition
under occlusion is to find corruption-tolerant features or clas-
sifiers. Toward this goal, numerous previous works confirmed
that locally emphasized algorithms are less sensitive to partial
occlusions. Penev and Atick [5] proposed the local feature
analysis (LFA) to extract local features by second order statis-
tics. Martinez [6] proposed a probabilistic approach (AMM)
which can compensate for partially occluded faces. Tan et
al. [7] extended Martinez’s work by using the self-organizing
map (SOM) to learn the subspace instead of using the mixture
of Gaussians. In [8], Kim et al. proposed a method named
locally salient ICA (LS-ICA) which only employs locally
salient information in constructing ICA basis. In [9], Fidler
et al. presented a method which combines the reconstructive
and discriminative models by constructing a basis containing
the complete discriminative information. Park et al. [10]
proposed to use a line feature based face attributed relational
graph (ARG) model which encodes the whole geometric
structure information and local features of a face. Zhang
et al. [11] proposed a nonstatistical face representation—
local gabor binary pattern histogram sequence (LGBPHS),
to exploit the multiresolution and multiorientation Gabor
decomposition. In [12], Jia and Martinez proposed the use of
partial support vector machines (PSVM) in scenarios where
occlusions may occur in both the training and testing sets.
More recently, facial occlusion handling under the sparse
representation based classification (SRC) [13] framework has
demonstrated impressive performances in face recognition
with occlusions. The idea of using SRC for occluded face
recognition is first introduced by Wright et al. [13], where an
occluded face is represented as a linear combination of the
whole face gallery added by a vector of errors (occlusion)
in the pixel-level and the classification is achieved by LI
minimization. Zhou et al. [14] extend [13] by including a
Markov Random Fields (MRF) model to enforce spatial
continuity for the additive error vector to address contiguous
occlusions. In [15], Yang and Zhang applied compressible
image Gabor features instead of original image pixels as the
feature vector used in SRC to reduce computations in the
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TABLE 1: Summary of literature works in occluded face recognition.

Category Abbreviation Full name/brief description
LFA [5] Local feature analysis.
AMM [6] Gaussian mixture modelling of part-based Eigenface.
SOM-AMM [7] Self-organizing map modelling of part-based Eigenface.
Locality emphasized LS-ICA [8] Local salient-independent component analysis.
features/classifiers. RD-Subspace [9] Combining reconstructive and discriminative subspace.
ARG [10] Attributed relational graph.
LGBPHS [1]] Local Gabor binary patterns histogram sequence.
PSVM [12] Partial support vector machines.
SRC [13] Sparse representation based classification.
MREF-SRC [14] Markov random field to enforce spatial continuity in SRC.
SRC based methods.

Gabor-SRC [15]
SIFT-SRC [16]

Compressible Gabor feature used in SRC.
SIFT feature used in SRC.

RSC [17] Robust sparse coding.
Explicit occlusion analysis Part-PCA [18] Occlusion analysis + part-based Eigenface.
facilitated local S-LNMF [19] Selective local nonnegative matrix factorization.
feature/local component KLD-LGBPHS [20] Local Gabor binary patterns based on Kullback-Leibler divergence.
based methods. OA-LBP [21] Occlusion analysis + LBP (our preliminary work).

presence of occlusions. Liao and Jain [16] incorporated the
SIFT descriptor into the SRC framework to achieve alignment
free identification. Yang et al. [17] proposed a robust sparse
coding (RSC) method which seeks the maximum likelihood
estimation (MLE) solution of the sparse coding problem for
non-Gaussian/Laplacian occlusions in an iterative manner.
Even though the SRC based methods achieve significant
identification results on occluded faces from standard face
databases (i.e., AR face database [23]), the prerequisite of
those methods relies on the large number of training samples
of each identity with sufficient variations. But in many
practical face recognition scenarios, the training samples
of each subject are often insufficient (the “curse of the
dimensionality” [24] problem, in the extreme case, only one
template face per subject is available).

Lately, a few works have revealed that prior knowledge
of occlusions can significantly improve the accuracy of local
feature/local component based face recognition. Rama et al.
[18] empirically showed that prior knowledge about occlusion
(manually annotated) can improve Eigenface in local patches.
In [19], Oh et al. have proposed an algorithm based on
local nonnegative matrix factorization (LNMF) [25], named
selective LNMF (S-LNMF) that automatically detects the
presence of occlusion in local patches; face matching is
then performed by selecting LNMF representation in the
nonoccluded patches. Zhang et al. [20] proposed to use
Kullback-Leibler divergence (KLD) to estimate the proba-
bility distribution of occlusions in the feature space, so as
to improve the standard LGBPHS based method [11] for
partially occluded face. In our preliminary study [21], we
also demonstrated that explicit occlusion analysis can greatly
improve LBP based face recognition. In these studies, [18, 19,
21] discard all information from the components which are

occluded, whereas [20] assigns a weight (between 0 and 1) to
each component. In this paper, we consider the first case as
occlusion exclusion and the later one as occlusion weighting
(note that occlusion exclusion can be regarded as a special
case of occlusion weighting, where the weights are either 0 or
1). Because many of the algorithms we have discussed so far
will be extensively analysed and compared in the experiments
section, we summarize and categorize the literature works in
Table 1 (for which abbreviations will be used in later sections).

Based on our preliminary work [21], in this paper, we pro-
pose a complete and fully automatic framework to improve
face recognition in the presence of partial occlusions. Besides
the occlusion detection module (which was introduced in
[21]) which can detect the presence of occlusion in patch-
level, we adopted GPM-MREF to detect occlusion in pixel-level
to facilitate later recognition. We then propose a customized
corruption-tolerant local descriptor selective LGBPHS which
summarizes features from nonoccluded pixels for efficient
face representation and recognition. Unlike [11, 20], our
approach applies occlusion exclusion (by assigning weights
as 0 or 1) based on our explicit occlusion analysis. Our
results demonstrate that occlusion exclusion is more efficient
than occlusion weighting, since weighting based methods
still preserve some information from the occluded region.
In addition, because the proposed occlusion analysis is an
independent module from the face matching part and no
model learning step (such as Eigenface [2], Fisherface [3]
or SRC [13]) is required in our approach, the proposed
method is not limited by the number of training samples.
As a consequence, unlike SRC based methods [13-17], the
proposed approach can be applied to face recognition with
very limited training samples (one sample per person in the
extreme case).
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FIGURE 2: System flowchart.
3. Approach where y and y are the orientation and scale of the Gabor

A comprehensive overview of the proposed system is given
in Figure 2. Given a target (i.e., probe) face image (which can
be occluded or not) to be recognized, the possible presence
of occlusion is first analysed. The probe image is divided into
a number of facial components for occlusion detection. Each
component is individually analysed by an occlusion detection
module. As a result, potential occluded facial components
are identified. Then, an occlusion mask is generated by a
more precise segmentation approach to supervise the feature
extraction and matching process. Based on the resulting
occlusion mask, its LGBPHS representation is computed
using the features extracted from the nonoccluded region
only, namely, selective LGBPHS. The recognition is per-
formed by comparing the selective LGBPHS from the probe
image against selective LGBPHS from the template images
using the same occlusion mask. The nearest neighbour (NN)
classifier and Chi-square (y*) distance are adopted for the
recognition.

3.1. Occlusion Detection in Local Patches. As depicted in
Figure 3, our occlusion detection starts by dividing the face
image into different facial components. The number and
the shape of the components are determined by the nature
of the occlusion. Since our focus in this work is scarf and
sunglasses, we accordingly divide the face images into two
equal components as shown in Figure 3. The upper part is
used for analysing the presence of sunglasses while the lower
part is used for detecting scarf.

3.1.1. Gabor Wavelet Based Feature Extraction. Gabor wa-
velets are used for extracting features from the potentially
occluded regions. The choice of using Gabor wavelets is
motivated by their biological relevance, discriminative power,
and computational properties. A Gabor wavelet consists of
a complex sinusoidal carrier and a Gaussian envelope which
can be written as

2
Y, (2) = "kgzy” oKy 1121 126%) [ ur? _ 6—62/2]’ )

kernels, z = (P,Q) is the size of the kernel window, | - ||
denotes the norm operator, k,, = k],e“pf‘ is a wave vector,
where k, = k. /f? and ¢, = 7mu/8, Ky, is the maximum
frequency, and f is the spacing factor between kernels in the
frequency domain.

In our system, we set z = (20,20), § = 2m, k., = 71/2,
and f = V2 as also suggested in [20]. Five scales yelo,...,4]
and eight orientations y € [0, ..., 7] are selected to extract the
Gabor features. In total, 40 Gabor wavelets are generated.

Once the Gabor wavelets are generated, feature extraction
is performed by convolving the wavelets with the face image
I:

Cuy (6, 3) =1(x,9) * y,, (2). ()

Because the phase information of this transform is time
varying, we only explore the magnitude information. The
computed Gabor magnitude pictures (GMPs) thus form a set
Q = {Cw,y € [0,7],y € [0,4]}, in which an augmented
feature vector is constructed by concatenating all the GMPs.
The obtained feature vector is downsampled by a factor A
(here A = 5) for further processing. Note that GMPs are not
only used in occlusion detection but also used to compute
the face representation selective LGBPHS as described in
Section 3.3.

3.1.2. Dimensionality Reduction Using PCA. Because the size
of extracted Gabor feature is rather big, in order to reduce
the dimension of the feature vectors while preserving its
discriminative power, we apply principal component analysis
(PCA) to maximize the variance in the projected subspace
for the Gabor features. To compute the PCA subspace, we
consider a training dataset consisting of feature vectors from
both occluded and nonoccluded image patches. Let us denote
the feature vectors from the nonoccluded patches by X°
and let us denote the feature vectors from the occluded
patches by X°. The training dataset S can be formed as: S =
(X, X5 ..., 5\/1/2’ 3\4/2+1>-"’X12v1}> where M is the size of
the training dataset. The eigenvectors associated with the k
largest eigenvalues of (S— $)(S=9)T (the covariance matrix of
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F1GURE 3: Our occlusion detection scheme.

S) are thus computed to describe the eigenspace. The Gabor
wavelet based features are then projected onto the computed
eigenspace for dimensionality reduction.

3.1.3. SVM Based Occlusion Detection. Occlusion detection
can be cast as a two-class classification problem. Since
nonlinear support vector machines (SVM) are proven to be a
powerful tool for discriminating 2 classes of high dimensional
data, we adopted then a nonlinear SVM classifier for occlu-
sion detection. Let us consider a training set consisting of N
pairs {x;, y;} |, where x; refers to a reduced feature vector
of a facial component i, and y; € {-1,1} is the label which
indicates if the sample x; is occluded or not. SVM finds the
optimal separating hyper-plane {«;,i € [1, N]} by solving a
quadratic programming problem [26] and predicts the label
of an unknown face x by

N
o). o
j=1

where {x]-, j € [1,N]} are the support vectors. Nonlinear
SVM applies kernels K(x;, x;) to fit the maximum-margin
hyper-plane in a transformed feature space. In our system, the
Radial Basis Function (RBF) kernel is used. The implementa-
tion of the nonlinear SVM is provided by LIBSVM [27].

3.2. Occlusion Segmentation. In order to efficiently exploit
the information of facial occlusion for face recognition,
we generate a binary mask 8 (1 for occluded pixels and 0
for nonoccluded pixels) indicating the location of occluded
pixels to facilitate later feature extraction and matching in
the recognition phase. This mask generation process is called
occlusion segmentation. To generate an accurate occlusion
mask (which can remove the occluded part meanwhile
preserving as much as information from the nonoccluded
part), we adopt a generalized Potts model Markov random
field (GPM-MRF) [22] to enforce structural information
(shape) of occlusion, so as to identify if a given pixel is
occluded or not.

Our occlusion segmentation can be formulated as a
typical energy-minimization problem in computer vision.
Let us consider the face image (consists of multiple facial
patches) as an undirected adjacency graph G = (V, E) where
V = {v,i € [1,N]} denotes the set of N pixels (vertex)
and E denotes the edges between neighbouring pixels. Given
a set of observations O = {o;,...,05} corresponding to
the set of vertex V, we want to assign a label (occluded: 1,
nonoccluded: 1) to each vertex. We model the set of labels

L = {l,,i € [1,N]} (discrete random variables taking values
in A = {-1,1}) as a first-order Markov random field. The
structural prior is incorporated into the MRF by a generalized
Potts model. Then our goal is to find the label set L that
maximizes the posterior probability P(L|O), which can be
achieved by the maximum a posteriori (MAP) estimation
[28] that maximizes the joint probability P(O, L), where

P(O,L)=P(O|L)P(L)

4)
LGy (
= —ex ,
- <Xp
where Z is the partition function and T is the temperature.
U(L) is the sum of potentials from all cliques C = {¢;,i €

[1, N1}, which can be written as

U(L)= ) V(L)

ceC
5
=Y¥(o 1)+ Y @(l1), ®
leL (1.1))€E

where w is a weighting parameter controlling the importance
of MREF prior (the choice of w is based on experiments on
a validation set). The unary potential ¥ is defined by the
likelihood function:

¥ (o 11)=-Inp(o; |1). (6)
We approximate the occlusion likelihood (I = 1) as follows:

e! ifo > 1

7
1-e' else, @

ploll=1)= {
where 0 < T < 1 and the face likelihood (I = —1) as a constant
ce[0,1]:

plll=-1)=c (8)

Because we have already identified the type of occlusion
(obtained by our occlusion detector), we can give an initial
guess of observations O (the seed of occlusion mask, see
Figure 4(b)) to each type of occlusions. The structural infor-
mation is enforced into this initial guess via the isotropic MRF
prior P(L), where the pairwise potential ®([;, /;) has the form
of generalized Potts model as defined in [22]:

© (1) =u(i)- (1= (L - 1)), ©)

where &(-) represents the unit impulse function; then,
d)(li,lj) = 2u(i, j) if i and j have different labels (/; ;élj) and
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(e)

FIGURE 4: Illustration of our occlusion segmentation: (a) examples of faces occluded by scarf and sunglasses; (b) initial guess of the observation
set according to the results from our occlusion detector; ((c)(d)) the visualization of u(i, j) in horizontal and vertical directions, respectively;

(e) the generated occlusion masks (w = 150).

zero otherwise. The structural information u(i, j) is obtained
as the first-order derivative after Gaussian filtering (with ker-
nel size (5, 5)) from the original image. Note that maximizing
the joint probability P(O, L) is equivalent to minimizing the
cliques potential U(L), and this energy minimization problem
can be solved exactly using graph cuts [29-31] in polynomial
time. The obtained label set L (see Figure 4(e)) is converted to
the segmentation mask f3 € [0, 1] for later recognition task.

3.3. Selective LGBPHS Based Face Representation and Recog-
nition. To perform the recognition step, we propose a variant
of LGBPHS [11] based face representation (namely, selective
LGBPHS) which selects features from nonoccluded pixels
only. The choice of using LGBPHS based representation is
based on the following facts: (1) it takes the advantage of both
Gabor decomposition (multiresolution and multiorientation
for enhanced discriminative power) [6] and LBP description
(robustness to monotonic gray scale changes caused by,
e.g., illumination variations) [4]; (2) block-based histogram
representation makes it robust to face misalignment and
pose variations to some extent; (3) it provides state-of-the-art
results in representing and recognizing face patterns under
occluded conditions [11, 20]; (4) Gabor features in LGBPHS
share the same computation as in our occlusion detection
module.

3.3.1. LGBPHS. Given a face image and its Gabor magnitudes
pictures (GMPs) QO = {Cw,y € [0,7],y € [0,4]}
computed by the method described in Section 3.1.2, the
GMPs are further encoded by an LBP operator, resulting
in a new feature description—local Gabor binary patterns
(LGBP). The LBP operator forms labels for the image pixels
by thresholding the 3 x 3 neighbourhood of each pixel
with the center value and considering the result as a binary
number. The histogram of these 2° = 256 different labels
can then be used as a texture descriptor. Each bin (LBP code)
can be regarded as a microtexton. Local primitives which are

codified by these bins include different types of curved edges,
spots, and flat areas.

The calculation of LGBP codes is computed in a single
scan through each GMP using the LBP operator. The value of
the LGBP code of a pixel at position (x,, y,) of each scale y
and orientation y of GMPs is given by

pP-1
s 5 5 P
LGBPLY = Y s (gp" - 9t7) 2", (10)
p=0

where gtV corresponds to the intensity of the center pixel
(x> y.) in the GMP C,, , gg’y refers to the intensities of P
equally spaced pixels on a circle of radius R, and s defines a
thresholding function as follows:

if x>0

s(x) = {1 (1)

0 otherwise.

u x y LGBP maps {G,,, 4 € [0,7],y € [0,4]} are thus gen-
erated via the above procedure. In order to exploit the spatial
information, each LGBP map G, is first divided into r local
regions from which histograms are extracted and concate-
nated into an enhanced histogram h,,,, = (h,,,;,..., ).
Then the LGBPHS is obtained by concatenating all enhanced
histograms H = (h g, ..., hy ).

3.3.2. Selective LGBPHS. The original LGBPHS summarizes
the information from all pixels of a face image. Given an
occlusion mask f3 (generated by our occlusion segmentation),
our interest is to extract features from the nonoccluded
pixels only. Hence, we compute each bin h; of the histogram
representation using a masking strategy as follows:

b= R 0=Bley) 1 (o) =i, vie[n2"-1],
’ (12)
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where i is the ith LGBP code, h; is the number of nonoccluded
pixels with code i, and

1 A is true

Ay = {0 A is false. (13)

Then the histograms extracted from all local regions of all
GMPs are concatenated into the final representation, which
is named selective LGBPHS. During matching, selective
LGBPHS is computed for both probe face and template faces,
based on the occlusion mask generated from the probe.

In the selective LGBPHS description, a face is represented
in four different levels of locality: the LBP labels for the
histogram contain information about the patterns on a pixel-
level; the labels are summed over a small region to produce
information on a regional-level; the regional histograms are
concatenated to build a description of each GMP; finally
histogram from all GMPs are concatenated to build a global
description of the face. This locality property, in addition to
the information selective capability, is behind the robustness
(to facial occlusions) of the proposed descriptor.

4. Experimental Results and Analysis

To evaluate the proposed approach, we performed a set of
experiments on AR face database [23] and compared our
result against those of seven different methods including
Eigenface [2], LBP [4], OA-LBP [21], LGBPHS [11], KLD-
LGBPHS [20], S-LNMF [19], and RSC [17]. Among the
selected methods, KLD-LGBPHS, S-LNMF, and OA-LBP
(our previous work) are the state-of-the-art works which
explicitly exploit automatic occlusion analysis (whereas Part-
PCA [18] is based on manual annotation) to improve face
recognition according to our survey in Section 2. LBP and
LGBPHS are selected to represent the locally emphasized
methods without explicit occlusion analysis. Because RSC
reports the most recent and very competitive result among
all SRC based methods [17], we select it as the representative
algorithm of SRC based methods for comparison.

4.1. Experimental Data and Setup. For our experimental
analysis, we considered the AR face database [23] which
contains a large number of well-organized real-world occlu-
sions. The AR database is the standard testing set for the
research of occluded face recognition, and it is used in
almost all literature works [6-21]. It contains more than
4000 face images of 126 subjects (70 men and 56 women)
with different facial expressions, illumination conditions, and
occlusions (sunglasses and scarf). Images were taken under
controlled conditions but no restrictions on wearing (clothes,
glasses, etc.), make-up, hair style, and so forth were imposed
to participants. Each subject participated in two sessions,
separated by two weeks (14 days) of time. The original
image resolution is 768 x 576 pixels. Some examples of face
images from the AR face database are shown in Figure 5.
Using eye and nose coordinates, we cropped, normalized, and
downsampled the original images into 128 x 128 pixels.

For occlusion detection, we randomly selected 150 nonoc-
cluded faces, 150 faces occluded with scarf, and 150 faces
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FIGURE 6: The face images are divided into 64 blocks for selective
LGBPHS representation.

wearing sunglasses for training the PCA space and SVM. The
upper parts of the faces with sunglasses are used to train
the SVM-based sunglass detector while the lower parts of
the faces with scarf are used to train the SVM-based scarf
detector. The 150 nonoccluded faces are used in the training
of both classifiers.

For face recognition, the face images are then divided
into 64 blocks as shown in Figure 6. The size of each block
is 16 x 16 pixels. The selective LGBPHS is extracted using
the operator LBP’;)Z2 (using only uniform patterns, 8 equally
spaced pixels on a circle of radius 2) on the 40 GMPs, yielding
feature histograms of 151040 bins.

To test the proposed algorithm, we first selected 240
nonoccluded faces from session 1 of the AR database as
the templates images. These nonoccluded faces correspond
to 80 subjects (40 males and 40 females), with 3 images
per subject under neutral expression, smile, and anger. To
build the evaluation set, we considered the corresponding
240 nonoccluded faces from session 2, the 240 faces with
sunglasses of session 1, and the 240 faces with scarf of session
1, under three different illuminations conditions.

4.2. Results of Occlusion Detection. The proposed occlusion
segmentation, feature extraction, and subsequent recognition
all rely on the correct occlusion detection. To justify the
proposed occlusion detection method, we show the detection
rates on all 720 testing images. Table 2 illustrates the results
as a confusion matrix. Note that only 2 images (faces with
very bushy beard) from the nonoccluded faces are wrongly
classified as faces with scarf. The correctness of our occlusion
detection ensures the correct feature selection in the later
recognition steps.
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TABLE 2: Results of occlusion detection.

No-occlusion

Scarf

Sunglass Detection rate

Non occlusion 238
Scarf 0
Sunglass 0

2 0
240 0
0 240

99.17%
100%
100%

4.3. Results of Occluded Face Recognition. Figure 7 shows the
face recognition performance of our approach on three differ-
ent test sets: clean (nonoccluded) faces, faces occluded with
scarf, and faces occluded with sunglasses. For comparison, we
also report results of the state-of-the-art algorithms (for the
name abbreviations, please refer to Table 1) for both standard
face recognition and occluded face recognition. Eigenfaces
[2] (i.e., PCA) and LBP [4] are among the most popular
algorithms for standard face recognition. We also tested the
approaches which incorporate our occlusion analysis (OA)
with the standard Eigenface and LBP, namely, OA-PCA and
OA-LBP [21]. Similarly, we denote the proposed approach by
occlusion analysis assisted LGBPHS (OA-LGBPHS). In order
to justify that the proposed method is more appropriated for
occluded faces, we also tested the standard LGBPHS [11] and
its variant KLD-LGBPHS [20] on the same data set, where
LGBPHS, KLD-LGBPHS, and OA-LGBPHS apply different
preprocessing methods to the same face representation. The
method RSC [17] is selected to represent the family of
algorithms based on sparse representation [13-17], in which
RSC is one of the most robust algorithms according to
the reported results. It should be noticed that, in the pool
of selected algorithms, KLD-LGBPHS, OA-LBP, and RSC
stand for the state-of-the-art algorithms for occluded face
recognition in each of the 3 categories as we reviewed in
Section 2 (see Table 1).

In Figure 7, it is clear that the proposed approach (OA-
LGBPHS) obtains the highest identification rates in all 3
cases (99.17%, 95.83%, and 87.08% for clean, scarf, and
sunglass faces, resp.). Without explicit occlusion analysis,
facial occlusions such as scarf and sunglasses can greatly
deteriorate the recognition results of PCA and LBP; in
contrast, OA-PCA and OA-LBP surpass their original algo-
rithms significantly. With a long length feature vector (151040
bins), LGBPHS demonstrates satisfactory robustness to facial
occlusions. Without occlusion analysis, LGBPHS can already
yield close results to OA-LBP under the occlusion conditions.
KLD-LGBPHS improves LGBPHS by associating a weight
with each block (which indicates the level of occlusion) to
ameliorate the impact from occluded regions and the weight
is measured as a deviation of the target block from the pre-
defined mean model based on Kullback-Leibler divergence.
Although KLD-LGBPHS greatly increases the results in
comparison to LGBPHS (especially for faces occluded by
sunglasses), its performance is still inferior to OA-LGBPHS.
This result reveals that occlusion exclusion is more efficient
than occlusion weighting, since distortions due to facial
occlusions do not affect the process of recognition when the
occluded regions are completely discarded.

Sparse representation based classification (SRC) is well
known for its robustness to partial distortions (e.g., noise,

Ju—
w
T

Identification rate

Clean Scarf Sunglasses
Type of occlusions
mm PCA I LGBPHS
mm OA-PCA I KLD-LGBPHS
mm LBP 3 OA-LGBPHS
mmm OA-LBP =3 RSC

FIGURE 7: Results of PCA, OA-PCA, LBP, OA-LBP, LGBPHS, KLD-
LGBPHS, OA-LGBPHS, and RSC on three different testing sets
(faces are clean and faces are occluded by scarf and sunglasses).

occlusion, etc.) as well as its discriminative power. However,
it also suffers from the “curse of dimensionality” problem,
where in many practical cases, the number of templates
(of each identity) is insufficient to support the recovery
of correct sparse coefficients. On the given data set (240
training faces, with 3 templates for each identity), robust
sparse coding (RSC) yields relatively low identification rates
(86.25%, 56.67%, and 30%).

Comparing the results on the test sets of faces with
sunglasses and scarves, we notice that most methods (except
for PCA) are more sensitive to sunglasses than to scarf. This
is an interesting phenomenon which is in agreement with
the psychophysical findings indicating that the eyes/eyebrows
region plays the most important role in face recognition [32].

4.4. Robustness to Other Facial Variations. We compared
our proposed approach against OA-LBP and S-LNMF [19]
using similar protocol under the more challenging scenario
in which the gallery face images are taken from session 1 of
AR database while the test sets are taken from session 2. Note
that the two sessions were taken at time interval of 14 days.
The comparative results of our approach against OA-LBP and
S-LNMF are illustrated in Table 3.

The results in Table 3 clearly show that our proposed
approach outperforms OA-LBP and S-LNMF in all con-
figurations showing robustness against sunglasses, scarves,
screaming, and illumination changes. The robustness of our
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TABLE 3: Robustness to different facial variations.
Sunglasses Scarf Scream Right light
S-LNMF 49% 55% 27% 51%
OA-LBP 54.17% 81.25% 52.50% 86.25%
OA-LGBPHS 75% 92.08% 57.50% 96.25%
approach to illumination changes and drastic facial expres- ~ Acknowledgment

sion is brought by the use of local Gabor binary patterns,
while the occlusion detection module significantly enhances
the recognition of faces occluded by sunglasses and scarves
even with time elapsing.

Please note that we did not provide the comparative
results of our approach to all the literature works (according
to our survey in Section 2). Instead, we compare our approach
to a number of carefully selected methods. Because our
method exploits explicit occlusion analysis, KLD-LGBPHS,
S-LNME and OA-LBP which belong to the same cate-
gory (see Table1) are selected for the comparisons in our
experiment. RSC is selected to represent the family of SRC
based face recognition. Even though LGBPHS is chosen to
stand for the locally emphasized algorithms without explicit
occlusion analysis, our approach could be directly extended
to other local feature/classifier based methods for potential
improvements.

5. Conclusions

We addressed the problem of face recognition under occlu-
sions caused by scarves and sunglasses. Our proposed
approach consisted of first conducting explicit occlusion
analysis and then performing face recognition from the
nonoccluded regions. The salient contributions of our present
work are as follows: (i) a novel framework for improving the
recognition of occluded faces is proposed; (ii) state-of-the-
art in face recognition under occlusion is reviewed; (iii) a
new approach to detect and segment occlusion is thoroughly
described; (iv) extensive experimental analysis is conducted,
demonstrating significant performance enhancement using
the proposed approach compared to the state-of-the-art
methods under various configurations including robustness
against sunglasses, scarves, nonoccluded faces, screaming,
and illumination changes. Although we focused on occlu-
sions caused by sunglasses and scarves, our methodology can
be directly extended to other sources of occlusion such as
hats, beards, and long hairs. As a future work, it is of interest to
extend our approach to address face recognition under gen-
eral occlusions, including not only the most common ones
like sunglasses and scarves but also beards, long hairs, caps,
and extreme facial make-ups. Automatic face detection under
severe occlusion, such as in video surveillance applications,
is also far from being a solved problem and thus deserves
thorough investigations.
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