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ABSTRACT The expression of a gene can vary across individuals in the general population, as well as between monozygotic twins. This
variable expression is assumed to be due to the influence of both genetic and nongenetic factors. Yet little evidence supporting this
assumption has been obtained from empirical data. In this study, we used expression data from a large twin cohort to investigate the
influences of genetic and nongenetic factors on variable gene expression. We focused on a set of expression variability QTL (evQTL)—
i.e., genetic loci associated with the variance, as opposed to the mean, of gene expression. We identified evQTL for 99, 56, and 79
genes in lymphoblastoid cell lines, skin, and fat, respectively. The differences in gene expression, measured by the relative mean
difference (RMD), tended to be larger between pairs of dizygotic (DZ) twins than between pairs of monozygotic (MZ) twins, showing
that genetic background influenced the expression variability. Furthermore, a more profound RMD was observed between pairs of MZ
twins whose genotypes were associated with greater expression variability than the RMD found between pairs of MZ twins whose
genotypes were associated with smaller expression variability. This suggests that nongenetic (e.g., environmental) factors contribute to
the variable expression. Lastly, we demonstrated that the formation of evQTL is likely due to partial linkages between eQTL SNPs that
are additively associated with the mean of gene expression; in most cases, no epistatic effect is involved. Our findings have implications
for understanding divergent sources of gene expression variability.

VARIATION and variability are central concepts in biology
(Hallgrímsson and Hall 2005). Although often used in-

terchangeably in the scientific literature, the two are not
synonymous. Variation refers to the differences among indi-
viduals, whereas variability refers to the potential of a popu-
lation to vary (Wagner 1995; Wagner and Altenberg 1996).
In many cases, greater phenotypic variability (e.g., transcrip-
tional noise) is disadvantageous (Kemkemer et al. 2002;
Bahar et al. 2006; Wang and Zhang 2011) unless it gives rise
to greater organismal plasticity—first at the level of an individ-
ual organism and eventually at the population level. Genetic
factors resulting in more variable phenotypes become favored
when they enable a population to more effectively respond to

environmental changes (Hill and Zhang 2004; Kaern et al.
2005; Acar et al. 2008; Zhang et al. 2009). Thus, understand-
ing to what extent and in what ways genotypes influence
phenotypic variability is of fundamental importance.

Much effort has been focused on identifying genetic loci
such as expression quantitative trait loci, or eQTL (Stranger
et al. 2005, 2007; Choy et al. 2008; Montgomery et al. 2010;
Pickrell et al. 2010; Montgomery and Dermitzakis 2011), that
affect the average value of a phenotype, while ignoring those
that affect the variance of a phenotype. However, there is
increasing evidence across species for genetic loci that affect
the variance of phenotype (Queitsch et al. 2002; Jimenez-
Gomez et al. 2011; Ronnegard and Valdar 2011; Perry et al.
2012; Shen et al. 2012; Yang et al. 2012). Recently we in-
troduced the concept of expression variability QTL, or evQTL
(Hulse and Cai 2013). By definition, an evQTL is a genetic
locus linked to or associated with genetic variation influencing
the variance of gene expression in a population. To identify
evQTL, we previously adapted the method developed by
Ronnegard and Valdar (2011) for detecting vQTL based on the
double generalized linear model (dglm) (Verbyla and Smyth
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1998). The dglm method tests for expression variances and
measures the contribution of genetic variants to the expression
heteroscedasticity. It compares the fit of a full model, which
takes into account the contribution of genotype to both the
mean and the variance of gene expression simultaneously,
and a mean model, which only takes into account the contri-
bution of genotype to the mean and ignores the contribution to
the variance. A significant result of a dglm test shows the non-
random association between genotypes and gene expression var-
iances. Using this method, we have conducted a genome-wide
scan for evQTL in the human genome (Hulse and Cai 2013).

How an evQTL is created in the first place is not clear. We
consider two possible scenarios, emphasizing either the role
of environmental or genetic factors. The first possibility is
that specific genetic variants disrupt the stabilizing genetic
architecture that buffers stochastic variation in phenotype.
As a result of such an effect of decanalization, along with the
sensitization of the stabilizer (e.g., heat-shock protein 90),
the phenotype becomes more sensitive to external environ-
ment and varies more greatly between individuals (Ronne-
gard and Valdar 2011; Hulse and Cai 2013).

The other possible scenario concerns the role of genetic
interactions in the formation of evQTL. Through either
epistatic or nonepistatic (e.g., additive and dominance)
effects within or between loci, genetic interactions contrib-
ute to genotypic variance. Epistasis may increase the vari-
ance of a quantitative trait (Pare et al. 2010; Ronnegard and
Valdar 2012). However, it is extremely difficult to distin-
guish the contributions of epistatic or nonepistatic effects
to variable expression of genes. Epistasis, in particular, is
known to produce predominantly additive and dominance
genetic variance when the low-frequency alleles of some
SNPs are involved (Cheverud and Routman 1995).

Here we investigated the distribution and formation of
evQTL by leveraging the existing dataset (Grundberg et al.
2012) derived from a population-based cohort of twin stud-
ies (Moayyeri et al. 2013). We interrogated this dataset for
evQTL and investigated the roles of genetic and nongenetic
factors in the formation of the evQTL we identified. The
twin cohort offered a unique advantage for studying the
relative contributions of various factors that influence ex-
pression variability. Importantly, comparing expression data
of monozygotic and dizygotic twins allowed us to distin-
guish between genetic and nongenetic effects. In the follow-
ing sections, we present the descriptive statistics for
expression variability in the twin cohort, describe the detec-
tion of evQTL, and finally estimate the relative contributions
of genetic and nongenetic factors, as well as epistatic and
nonepistatic effects, to the creation of evQTL.

Materials and Methods

The TwinsUK dataset

We obtained the TwinsUK dataset including both genotype
and expression data, which had been used in the eQTL study
of Grundberg et al. (2012). Here, we briefly describe the co-

hort and data processing performed in this previous study
(Grundberg et al. 2012). The TwinsUK cohort includes 856
female individuals of European descent recruited from the
TwinsUK adult twin registry (Spector and Williams 2006;
Moayyeri et al. 2013). Subcutaneous adipose tissue, skin tis-
sue, and lymphoblastoid cell lines (LCLs) were collected from
each individual. Genotyping was performed with a combina-
tion of Illumina HumanHap300, HumanHap610Q, 1-M Duo
and 1.2-M Duo 1-M chips. Genotypes were called with the
Illuminus calling algorithm (Teo et al. 2007), and SNPs were
filtered for minor allele frequency (MAF) of .5%. Gene ex-
pression levels were measured in LCLs, skin, and adipose
(Grundberg et al. 2012). Expression profiling of the samples,
each with either two or three technical replicates, was
performed using Illumina Human HT-12 V3 BeadChips
(Illumina). All samples were randomized before array hybrid-
ization, and replicates were hybridized on different Bead-
Chips. Raw data were imported to Illumina BeadStudio
software, and probes with fewer than three beads present
were excluded. Log2-transformed expression signals were
normalized separately per tissue, with quantile normalization
of the replicates of each individual followed by quantile nor-
malization across all individuals (Nica et al. 2011).

In this study, we used available gene expression data for
both individuals of a twin pair. All 48,804 probe sequences
were mapped by BLAST to the reference genome (hg18),
and probes found to map to more than one location were
not used. Polymorphisms in the target mRNA sequence can
greatly affect the binding affinity of microarray probe
sequences, leading to false-positive and false-negative sig-
nals with any other polymorphisms in linkage disequilibrium
(LD) (Ramasamy et al. 2013). To control for this, we used
a comprehensive compendium of SNPs in European (CEU)
population of the 1000 Genomes Project Consortium (2012)
to remove an additional 13,600 probes found to anneal in
regions with SNPs present at a MAF of .5%. Similarly,
probes mapping to nonautosomal locations were excluded
from further analysis. Finally, 35,078 probes were left for
our analysis.

The coefficient of variation (CV) is used as a normalized
measure of the dispersion of expression distribution (Maheshri
and O’Shea 2007; Ansel et al. 2008; Ronnegard and Valdar
2011). The CV was computed as CV ¼ s=m; where s and m

are the standard deviation and the mean of gene expression
levels, respectively. LD block plots were obtained by using
HaploView (Barrett et al. 2005).

Identification of evQTL using the dglm method

First we used the F–K test filter to greatly reduce the number
of SNPs for computationally intensive model fitting. We
then adapted the dglm method (Verbyla and Smyth 1998)
to test for inequality in expression variances and measure
the contribution of genetic variants to the expression
heteroscedasticity. We considered the following model:
yi ¼ mþ xibþ giaþ ei; ei � Nð0;s2expðgiuÞÞ; where yi indi-
cates a gene expression trait of individual i, gi is the
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genotype at the given SNP (encoded as 0, 1, or 2 for homo-
zygous rare, heterozygous, and homozygous common
alleles, respectively), ei is the residual with variance s2,
and u is the corresponding vector of coefficients of genotype
gi on the residual variance. Age of subjects and the batch of
data collection were modeled as covariates xi. With this full
model, both mean and variance of expression yi were con-
trolled by SNP genotype gi. We coded the fitting procedure
using the dglm package in R. A snippet of R code for the
dglm analysis is available in the supporting information of
Ronnegard and Valdar (2011). We assumed that the input
gene expression data were approximately normally distrib-
uted, conditional on the evQTL and covariates, and set fam-
ily = Gaussian in the dglm R code to specify the error
distribution and link function used. We tested for each input
probe–SNP pair and obtained two P-values: Pdispersion and
Pmean, for the effects of genotypes on the variance and the
mean of expression levels, respectively (Ronnegard and Val-
dar 2011). Probe–gene pairs that did not make the algo-
rithm converge during computation were discarded. To
control for the effect of outlier expression data points, per-
mutation tests (Stranger et al. 2005) were conducted for all
Pdispersion significant pairs. Specifically, for each probe–SNP
pair, we performed 10,000 permutations of expression phe-
notype relative to SNP genotypes. An association was con-
sidered significant if the P-value from the analysis of
the observed Pdispersion was lower than the threshold of the
0.001 tail of the distribution of the Pdispersion from the
10,000 permutations (Ppermutation , 0.001).

Single-cell expression and mRNA decay rate

Expression level of 96 genes was measured in 1440 single
lymphoblastoid single cells by qPCR assays in another study
(Livak et al. 2013). We used this data to compute the CV of
expression of the same gene in different cells. The mRNA
decay rates of 16,823 genes were estimated in 70 human
LCLs (Pai et al. 2012). We obtained the mRNA decay rate
data to compute the average mRNA decay rate for each gene
among these LCL samples.

Identification of interacting SNPs

We used a two-step procedure to identify SNPs that may
“interact” with evSNPs. Assuming an additive interaction be-
tween the SNP to be identified and an evSNP, we first parti-
tioned individuals into L and S groups according to genotypes
of the evSNP, which were associated with large (L) and small
(S) variances of gene expression. Next we scanned genome-
wide SNPs. For each SNP, we computed heterozygosity of the
polymorphic site among individuals in L and S groups as
HetL ¼ 12

Pn
i¼1p

2
i L and HetS ¼ 12

Pn
i¼1p

2
i S; respectively,

where Pi are allele frequencies of SNPs and, for diallelic SNPs,
n ¼ 2. All SNPs were then ranked by the value of HetL 2HetS
and the top 100 SNPs with largest values were selected for
further analysis. In the next step, a typical eQTL (not evQTL)
analysis (Stranger et al. 2005) was conducted among individ-
uals of the L group. In other words, for each top SNP with
high genotype heterozygosity difference, a simple linear re-
gression was performed between the SNP’s genotypes and
gene expression. The most significant SNPs were retained
after applying a Bonferroni adjusted P-value cutoff = 0.05
and were reported as candidate interacting SNPs. To main-
tain sample independence, only one group of the twin sets
was used in this analysis.

Results

Expression and genotype data

To investigate the genetic influences underlying variable
gene expression, we revisited the published expression data
(Grundberg et al. 2012) of the MuTHER (Multiple Tissue
Human Expression Resource) project (Nica et al. 2011). In
that study, gene expression was measured for LCL, adipose
tissue (subcutaneous fat), and skin (tissue biopsies) using
Illumina Human HT-12 V3 BeadChips. These tissues were
sampled from a cohort of 856 female twins from the Twin-
sUK adult registry, including 154 monozygotic (MZ) twin
pairs, 232 dizygotic (DZ) twin pairs and 84 singletons
(Moayyeri et al. 2013). After quality control, expression data

Figure 1 Distributions of expression variability in LCLs. (A) Distribution of CVs of gene expression (probe n = 35,078) measured in MZ and DZ twins. MZ
1 is the set of first pairs of all MZ twins and MZ 2 is the set of second pairs of all MZ twins. Similarly, DZ 1 is the set of first pairs of all DZ twins and DZ 2 is
the set of second pairs of all DZ twins. (B) Scatter plot of CVs of gene expression (probe n = 35,078) in MZ 1 against those in MZ 2 (blue) or DZ 1 (red)
cohorts. (C) Scatter plot of median RMD between pairs of MZ twins against median RMD between pairs of DZ twins. Each blue dot indicates a single
expression probe (or a gene) and the position of the blue dot indicates the median value of RMD of expression between all MZ pairs (MZ 1 2 MZ 2) on
the x-axis and that between all DZ pairs (DZ 12 DZ 2) on the y-axis. The red line is based on quadratic regression to show a more pronounced difference
between MZ and DZ with greater RMD. (D) Scatter plot of CVs of gene expression (n = 59) in single cells against CVs of gene expression in MZ 1. (E)
Scatter plot of mean mRNA decay rate against CVs of gene expression in the MZ 1 cohort. The red line is based on the linear regression.
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for 825 (adipose and LCL) and 705 (skin) individuals were
retained (Grundberg et al. 2012). For each tissue, we down-
loaded the processed MuTHER expression data files depos-
ited at ArrayExpression (http://www.ebi.ac.uk/arrayexpress/)
using accession E-TABM-1140. The data were the quantile-
normalized log2-transformed expression signals. Quantile
normalization was performed first across the replicates of
a single individual and then across all individuals as described
in Grundberg et al. (2012). Along with the expression data,
we also obtained the genotype data of this cohort (Grundberg
et al. 2012). In our analysis, all available twin pairs with
complete expression and genotype information were in-
cluded, corresponding to 134 MZ and 195 DZ pairs with
LCL profiles, 139 MZ and 188 DZ pairs with adipose profiles,
and 105 MZ and 148 DZ pairs with skin profiles. Members
of the TwinsUK cohort have health and lifestyle character-
istics that are comparable to those of population singletons
(Andrew et al. 2001). Because of this, we were able to use
this cohort as a representative general population to investi-
gate both genetic and nongenetic factors behind expression
variability in this study.

Expression variability in the twin cohort

Here we present basic, descriptive statistics for expression
data (independent of genotype information), with particular
attention to disparities in gene expression among individu-

als. We chose to focus on the LCL data for this analysis, due
to the availability of additional expression-related statistics
(such as single-cell expression data and mRNA decay data).

We used the quantile-normalized log2-transformed ex-
pression data in all analyses throughout the article unless
otherwise indicated. From this data, we first determined
that expression values for most probes (n= 35,078) approx-
imately fit the normal distribution: 97% of probes were with
a skewness between 20.80 and 0.80 and a kurtosis of �3.0
(Supporting Information, Figure S1A); ,7% of probes were
rejected by Shapiro–Wilk test of normality with Bonferroni
adjustment to the level of a = 0.01. These justified the use
of the Gaussian error distribution and link function in our
dglm model (Materials and Methods). Retrospectively, we
showed that the profile distributions for evQTL probes are
approximately normal before and after Box–Cox transforma-
tion (Figure S1B).

To measure the level of dispersion of gene expression
values, we computed the CV for each probe. The CVs ranged
from 0.0024 [for ILMN_1765043 (RPL38)] to 0.2115 [for
ILMN_1715169 (HLA-DRB1)], with a median of 0.0154. The
distributions of CVs measured in subcohorts are indistin-
guishable from one another such as when comparing one
group of MZ twin sets with the other (i.e., MZ 1 vs. MZ 2) or
comparing a group of MZ twin sets with a group of DZ twin
sets (e.g., MZ 1 vs. DZ 1) (Figure 1A). Probe data points are

Figure 2 Numbers of evQTL in LCL, skin, and fat. (A) Venn diagrams of evQTL genes detected in two groups of twin sets. Each group of the twin sets is
composed of one set of unrelated twin individuals. Overlapping areas of the Venn diagrams contain numbers of validated evQTL genes identified with
both sets of twins. (B) Numbers correspond to evQTL genes within a subset of tissues. (C) One example of evQTL shared by all three tissues: evQTL at
SEMA4G.
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located along or close to the 1–1 diagonal line in the CV–CV
scatter plot for the majority of probes, regardless of the CV–
CV comparison between MZ 1 and MZ 2 or between MZ 1
and DZ 1 (Figure 1B). These results indicate that the extent
and overall distribution of expression variability measured
between individuals across different MZ and DZ cohorts are
highly similar when all genes are taken into account.

Next, we measured expression differences between each
pair of twins. For each probe, we computed the relative mean
difference (RMD) in expression between MZ twin pairs and DZ
twin pairs, separately. For a pair of MZ twins, for example, the
RMD was computed using RMD ¼ ðð1=2Þ � j yMZ1 2 yMZ2 jÞ=y;
where y is the arithmetic mean of the expression levels, yMZ1

and yMZ2, for the MZ twin pair. For most probes, the median

RMD of expression between DZ pairs is larger than it is be-
tween MZ pairs, as indicated by the fact that most genes are
located above the 1–1 diagonal line in the scatter plot (Figure
1C). That is to say, the normalized difference in gene expres-
sion between DZ pairs (DZ 1 and DZ 2) tends to be larger than
that between MZ pairs (MZ 1 and MZ 2), suggesting that
genetic factors influence expression variability for most of these
genes.

To determine the influence of single-cell expression
variability on population-level expression variability, we
computed the CVs of expression for a selection of genes
whose expression levels have been measured in single LCL
cells (Livak et al. 2013). No correlation between the single-
cell CVs and the between-individual CVs measured was

Figure 3 Dissection of genetic and nongenetic effects of evQTL using twins data. (A) The evQTL between AXIN2 and rs740026. The expression data
points from pairs of MZ twins are linked. (B) Same as A except that DZ twins are linked. (C) CDFs of RMD between twins classified into four groups,
namely MZ-S, DZ-S, MZ-L, and DZ-L (see main text for definitions). The double arrow highlights the highly significant discrepancy in RMD distribution
between MZ-L and DZ-L (K–S test, P , 0.01). Insert shows the same CDFs of RMD recomputed after randomly shuffling identities of corresponding MZ
and DZ pairs. (D) Same as C except that data are randomly sampled from non-evQTL genes.
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detected for MZ 1 (Spearman’s correlation test, P= 0.21, n=
59; Figure 1D). This suggests a limited contribution of sin-
gle-cell expression variability (or transcriptional noise at
the single-cell level) to the variability between individuals
(or transcriptional noise at the population level).

Finally, we hypothesized that variable gene expression
may be due to different mRNA decay rates for different
genes. To test this, we used the mRNA decay rate data from
the study of Pai et al. (2012). The correlation between mean
mRNA decay rate and CV of expression among genes is not
specific as shown by the opposite signs of two correlation
coefficients: Spearman’s r = 20.027 (P = 0.00498) and
Pearson’s r = 0.044 (P = 4e-6, n = 11,083; Figure 1E).
Thus, gene expression variability showed no signs of corre-
lation with the mRNA decay rates of genes.

Genetic variants underlying expression variability

To systematically assess the genetic influence on expression
variability, we identified genome-wide evQTL using the
method we previously established (Hulse and Cai 2013).
We focused on cis-acting evQTL by limiting our search to
those SNPs that flanked probes within 1.0 Mb on either side.

After filtering for quality control (Materials and Methods),
a total of 35,078 probes were available for analysis. On
average, each probe corresponded to 1212 SNPs in the 2-
Mb cis-region (i.e., 6 SNPs per 10 kb). For each SNP–probe
pair, we conducted a three-step test to determine the evQTL
relationship as described previously (Hulse and Cai 2013).
Briefly, we first tested for the homogeneity of variances in
gene expression among different genotype groups using the
Fligner–Killeen (F–K) test (Fligner and Killeen 1976). Only
those SNPs with a P , 0.01 (following Fraser and Schadt
2010) were carried on to the next step of analysis. We then
applied the dglm method (Ronnegard and Valdar 2011) to
each SNP–probe pair, ultimately computing Pdispersion for
a total of 1,251,611 SNP–probe pairs. To account for multi-
ple tests performed between these probe and SNP pairs, we
used the threshold of Pdispersion , 1 3 1028, which is
roughly equivalent to Bonferroni-adjusted P , 0.01, to as-
sess the genome-wide significance. Finally, we conducted

permutation tests for each significant SNP–probe pair to
control for the influence of outlier data points on the dglm
results (Materials and Methods). The detection of evQTL was
performed independently for each of the two groups of twin
sets. The assignment of individual twins to each group was
random and did not influence the overall results. Each
evQTL detected with one group of twin sets was then vali-
dated with the other group of twin sets to confirm its au-
thenticity. For all three tissues, concordance was prevalent
(Figure 2A) and the cases of discordance were mostly due to
outliers present in one group of twins but not in the other
group. The direction of effect (association with increased or
decreased gene expression variability) was the same be-
tween the two groups of the twin sets for all evaluated SNPs.

A total of 99, 75, and 59 genes were identified and
confirmed to have at least one validated cis-evQTL SNP
(evSNP) in LCLs, fat, and skin, respectively (Table S1). Eight
genes (corresponded to 4.2% of all unique evQTL genes)
were shared in all three tissues (Figure 2B). One of these
shared evQTL genes, SEMA4G, is given as an example to
illustrate the consistent influence of genotypes on the vari-
ance of gene expression across the three tissues (Figure 2C).
All evQTL shared across tissues showed the same directional
effect, defined as either increasing or decreasing the vari-
ance of gene expression. That is to say, the directionality of
some evQTL effects is not tissue- or cell-type specific. How-
ever, understanding regulatory variability in many different
tissues might yield insights into the basic biological pro-
cesses that influence tissue differentiation.

Given that many evQTL genes have more than one cis-
evSNP, we examined the structure of haplotypes of these
multiple cis-evSNPs. We found that cis-evSNPs of the same
gene are likely to be located within the same LD block and
that typically these blocks contained only a few prominent
haplotypes (see Figure S2 for an example involving gene
ALG11). This suggests that multiple evSNPs are likely to be
linked with the same causal variant. We furthermore retrieved
the ancestral allele information for SNPs from the 1000
Genomes Project Consortium (2012). The prediction of ances-
tral alleles was based on the phylogenetic trees constructed

Figure 4 Schematic and example of an
interacting SNP that helps the creation of
an evQTL. (A) L indicates the group of indi-
viduals with evSNP genotype (C/C) associ-
ated with large variance in gene expression,
while S indicates that with evSNP genotype
(A/A) associated with small variance. The
interacting SNP shows large genotype het-
erogeneity in the L group and small or no
genotype heterogeneity in the S group. (B)
Real example of evSNP rs742090 and inter-
acting SNP rs3799378 at BTN3A2. Individ-
uals with rs742090-CC genotype are
further broken down by rs3799378 into
three subgenotype groups, which are asso-
ciated with different means of gene expres-
sion levels (shadowed panel).
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with sequences of human, chimpanzee, orangutan, and rhe-
sus macaque. We found that ancestral alleles of evSNPs are
more likely to be associated with smaller expression variabil-
ity than derived alleles (Fisher’s exact test: P= 0.0036, 0.022,
and 0.036 for LCLs, skin, and fat, respectively).

Dissect genetic and nongenetic effects of evQTL

Twin data facilitated the dissection of the contributions of
genetic and nongenetic factors. Variability measured be-
tween pairs of DZ twins is expected to be larger than that
between pairs of MZ twins, as the phenotypic difference
between DZ pairs may result from both genetic and
environmental (nongenetic) effects while differences be-
tween genetically identical MZ pairs are attributable to the
environment, assuming that the environments influencing
MZ and DZ twin individuals are essentially identical. Figure
3 depicts the difference in expression level of evQTL gene
AXIN2 in three genotypes (GG, AG, and AA) defined by
rs740026. Figure 3, A and B illustrate genotypes at
rs740026 by linking the two data points for each twin pair
by a straight line: Figure 3A shows genotype similarities
between MZ twins, while in Figure 3B, similarities between
DZ twin pairs are shown. Note that linkers between DZ twin
pairs with different genotypes at the SNP site (i.e., DZ 1 6¼
DZ 2) are not plotted. The expression difference between
a pair of twins can be visually quantified by the slope of the
straight line: a steeper line reflects a more dissimilar expres-
sion level between the twins. In the case of AXIN2, it is
apparent that expression differences between DZ pairs tend
to be larger than between MZ pairs. This is especially true
for the AA genotype group, which shows a larger variance in
expression between individuals.

For each evSNP and its associated genes in LCLs, we
computed the RMD in gene expression between all pairs of
MZ or DZ twins, as long as the genotypes of two individuals
of the pair of twins were both identical to each other and
homozygous at the SNP site. By definition, each evSNP allele
is associated with either larger (L) or smaller (S) variance
in gene expression. Thus, the RMD values (for evSNPs and
associated genes) were separated according to whether
homozygous genotypes defined by evSNPs were associated
with L or S variances in gene expression. The cumulative
distribution functions (CDFs) of these RMD values were
plotted (Figure 3C). The curves were based on the RMD
values calculated between all possible twin pairs for all
evSNPs and genes and classified into four groups: MZ-S,

MZ-L, DZ-S, and DZ-L. The MZ-S and DZ-S groups included
pairs whose genotypes showed a small (S) amount of var-
iance, while the MZ-L and DZ-L groups included pairs
whose genotypes were associated with large (L) variances.
In the end, the four groups—MZ-S, MZ-L, DZ-S, and DZ-
L—contained 3629, 2548, 3825, and 2520 RMD values,
respectively. Detailed statistics for the distributions of
RMD values in each of these four groups are provided (Ta-
ble S2). We found that CDF curves for the large-variance
groups (MZ-L and DZ-L) were shifted toward the right
compared to those for small-variance groups (MZ-S and
DZ-S) [Kolmogorov–Smirnov (K–S) test, all P , 1025].
This indicated that the distribution of RMD between twin
pairs (either MZ or DZ) in the large-variance groups was
significantly different from that of the small-variance
groups, with a larger RMD median for the large-variance
groups. This difference (in RMD distribution between L
and S groups) remained even when we randomly assigned
the identities of MZ and DZ pairs (see insert in Figure 3C).
Together, these results suggested that the increased discrep-
ancy in gene expression between twin pairs (shown as a larger
median RMD) contributed to the elevated variability in ex-
pression, which is true for both MZ and DZ twins. Because
MZ twins are genetically identical, the increased RMD be-
tween MZ pairs was likely due to an increased sensitivity of
gene expression to environmental factors.

More importantly, we found a significant discrepancy in
distribution of RMD between MZ and DZ: DZ groups tended
to have larger RMD values than MZ groups. This trend
applied to both L and S groups, but was more obvious in the
L group (all K–S tests, P , 0.01) (Figure 3C). These results
suggested that the different genetic backgrounds resulted in
a larger difference in gene expression between DZ twin
pairs, which is more pronounced than that observed be-
tween MZ twin pairs.

For comparison, we randomly selected the same number
of genes and cis-SNPs and conducted the same analysis of
RMD distribution. There was no difference between CDFs of
RMD in these non-evQTL genes in regard to either MZ or DZ
twins, larger or smaller variance groups, as well as before or
after shuffling of the twin identities. CDFs of all groups were
more similar to each other (K–S test, all P . 0.025, except
between MZ-S and DZ-L, P = 2.9e-4; Table S2, Figure 3D).
That is to say, the influence of genetic and/or environmental
effects on variable expression was not detected at the geno-
mic level for all genes, but was limited to evQTL regions.

Table 1 SNPs associated with gene expression variability and human complex traits

Gene (evSNP) Tissue GWAS complex trait Risk allele Reference

PAX8 (rs11123170) LCL, fat, skin Renal function-related traits (BUN) rs11123170-GL Okada et al. (2012)
WDR41 (rs163030) LCL, fat, skin Caudate nucleus volume rs163030-AL Stein et al. (2011)
HCG22 (rs2517532) LCL Hypothyroidism rs2517532-GS Eriksson et al. (2012)
TBKBP1 (rs8070463) LCL Multiple sclerosis, ankylosing spondylitis rs8070463-TS Patsopoulos et al. (2011)

rs8070463-CL Evans et al. (2011)
L and S indicate that individuals carrying homozygotic genotype of the risk allele have large and small variance in gene expression, respectively. GWAS, genome-wide
association studies; LCL, lymphoblastoid cell line.
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Finally, we repeated the CDF analyses using the RMD values
computed from the Box–Cox normalized log2-transformed ex-
pression data, as well as using the absolute difference (instead
of RMD) in gene expression. In both cases, our findings were
highly similar to those obtained above (Figure S3), which sup-
ports the robustness of the results presented above.

Possible evQTL replicated by using RNA-seq data and
SNPs of the 1000 Genomes Project

We obtained genotype data for fully sequenced samples of
European ancestry (CEU) from the phase 1 release of the
1000 Genomes Project (1000 Genomes Project Consortium
2012), along with short reads from RNA-seq experiments in
LCLs for these same individuals (n= 43) (Montgomery et al.
2010). After mapping the short reads, we estimated the
expression level in fragments per kilobase of exon per mil-
lion fragments (FPKM) (Trapnell et al. 2013) for all genes.
For the same evQTL gene–SNP pairs detected in LCLs (i.e.,
those included in Table S1), we plotted the relationships
between genotype and FPKM value for each. Many evQTL
relationships could be recognized by visual inspection
(examples are presented in Figure S4), though none were
statistically significant due to the small sample size. It is
noteworthy that the algorithm for computing FPKM models
the dispersion in a transcript’s fragment count with a nega-
tive binomial distribution (Trapnell et al. 2013), which may
introduce a relationship between the mean and variance of
the count. The relationship should be taken into account in
FPKM-based evQTL analyses.

Partially linked SNPs contribute to variable
gene expression

Recent theoretical work showed that the within-genotype
variance of a quantitative trait varies when a nonadditive
genetic interaction or epistasis is present (Pare et al. 2010;
Struchalin et al. 2010). Alternatively, the variance of a quan-
titative trait may be from the result of the interaction be-
tween genetic variants additively associated with the mean
of the quantitative trait. To test this, we employed a two-
step procedure to identify SNPs partially associated with (or
interacting) with evSNPs through an incomplete haplotype
structure (Materials and Methods). In an ideal scenario (Fig-
ure 4A), the genotype heterozygosity of the partially linked
SNPs is large among individuals whose evSNP genotype is
associated with larger expression variability (L group), while
the genotype heterozygosity is small or equals zero among
individuals whose evSNP genotype is associated with
smaller expression variability (S group). If the interacting
SNP is associated with the mean level of gene expression,
then the association between the evSNP genotype and
greater expression variability is likely due to the partial link-
age between the evSNP and the interacting SNP.

Given these considerations, we performed a genome-
wide search to identify a set of candidate interacting SNPs
for each evQTL SNP and then used simple linear regression
analysis to evaluate whether the potential interacting SNPs

are significantly associated with gene expression among L-
group individuals (Materials and Methods). For the 99
evQTL in LCLs, we identified 56 with at least one interacting
SNP (Table S3). Among these interacting SNPs, 54 are lo-
cated within the cis-region of the evSNPs with which they
interact. Figure 4B presents one such relationship between
evSNP rs742090 and interacting SNP rs3799378, both at
BTN3A2. Individuals with a CC genotype for evSNP
rs742090 were further sorted by rs3799378 genotypes.
Clearly, the expression level of BTN3A2 in individuals with
the rs742090-CC genotype is significantly influenced by
rs3799378 genotypes. The increased variability in gene ex-
pression showed in individuals with rs742090-CC genotype
is caused by the heterogeneity of rs3799378 genotypes.
These results suggest that local haplotype structure between
SNPs contributed to the creation of evQTL.

Linking evQTL with complex disease phenotypes

Several studies have utilized eQTL data to interpret the discov-
eries of association studies of complex traits (Emilsson et al. 2008;
Nica et al. 2010; Nicolae et al. 2010). Along this same vein, we
identified evQTL associated with complex traits from the catalog
of published genome-wide association studies (GWAS) (http://
www.genome.gov/gwastudies/). From the results of these
GWAS, we identified 61 reported genes as evQTL genes (Table
S4). In four cases, the exact same SNP was found to be both an
evSNP and a marker SNP associated with risk or susceptibility
to the complex trait (Table 1). Intriguingly, the “T” allele of
rs8070463, associated with smaller expression variability of
TBKBP1, is a reported risk allele in multiple sclerosis (Patso-
poulos et al. 2011), while the “C” allele for this same SNP,
associated with larger expression variability, is linked with risk
for ankylosing spondylitis (Evans et al. 2011).

Discussion

There is empirical evidence across several species that the
variance among phenotypes is genotype dependent (Ansel
et al. 2008; Wolc et al. 2009; Hill and Mulder 2010; Jime-
nez-Gomez et al. 2011). Understanding genetic control of
phenotypic variability has become increasingly important in
evolutionary biology, human medicine, the agricultural indus-
try and other branches of biological science (Gibson 2009;
Yang et al. 2012). Despite the importance, few research pro-
grams focus on genetic variants associated with trait variance,
while studies of trait averages abound. Recently, a powerful
statistical framework based on the dglm model has been de-
veloped for studying phenotypic variability of complex traits
(Ronnegard and Valdar 2011). Given that gene expression is
a complex trait with highly variable and heritable patterns
(Stranger et al. 2005; Williams et al. 2007; Montgomery
and Dermitzakis 2011), we have previously adapted the dglm
method to investigate genetic variants controlling expression
variability (Hulse and Cai 2013).

In this study, we further investigated the relative con-
tributions of genetic and nongenetic (environmental) factors
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to expression variability and the roles of these factors in the
formation of evQTL. We started by exploring basic gene
expression statistics measured in the TwinsUK cohort. For
all genes, expression level dispersions were highly similar in
and between both MZ and DZ twins. No correlations with
expression variability were detected when compared be-
tween individuals, between single cells, or relative to the
average mRNA decay rate, highlighting the marked discrep-
ancies in variability measured at population and molecular
levels. Further results showed that the discordance in
expression between each pair of DZ twins was more
pronounced than that between MZ twins, implying that
the increased amount of genetic variation between DZ twins
influences expression variability. Next, we systematically
identified cis-acting evQTL in three tissues of the TwinsUK
cohort. Twin data greatly facilitated the validation of
detected evQTL and revealed overall robust signals that
would otherwise not be appreciable in studies of nontwin
design. Focusing on the detected evQTL, we showed that the
discordance in expression between DZ pairs was larger than
that between MZ pairs, and further showed that the discor-
dance in expression between MZ pairs whose genotypes
were associated with large expression variability was signif-
icantly larger than that between MZ pairs whose genotypes
were associated with small expression variability. It is intrigu-
ing to find that the phenotypic discordance remained even in
the absence of genetic variation between MZ twins. This
might be explained by incomplete penetrance of mutations,
which is frequent in isogenic model organisms in homoge-
neous environments (Horvitz and Sulston 1980; Gartner
1990). This might also be epigenetic: for example, DNA
methylation, which can be influenced by environmental fac-
tors such as diet and lifestyle, is known to affect gene expres-
sion (Badano and Katsanis 2002; Baranzini et al. 2010).
Lastly, much to our surprise, we found that more than half
of evQTL could be explained by a conceptually simple sce-
nario in which the evSNP was occasionally associated with
a nearby SNP that influenced gene expression both additively
and independently. We suspect there should be many differ-
ent ways of nonepistatic interaction between two or more
genetic variants, such as the mode of partial linkage we have
described here, giving rise to genotype-dependent expression
variances. That is to say, the majority of phenotypic variability
across individuals might be explained without invoking epis-
tasis (Hill et al. 2008; Powell et al. 2013).

In light of our new findings, several related consider-
ations are discussed below.

Methodological considerations for studying
phenotypic variability

The procedure we used for identifying evQTL (Materials and
Methods and Hulse and Cai 2013) consisted of three steps.
First, the F–K test was applied to test for the heterogeneity
of variances of gene expression between different genotypes
and identify corresponding SNPs. Next, the dglm method
was applied to the selected SNPs. The significant results of

the dglm test were then subjected to permutation tests to
reduce the influence of outliers in the data. This procedure is
less likely to be susceptible to issues related to multiple
testing and outliers in input data, though a formal assess-
ment of its statistical power remains to be done.

Statistical methods, including Levene’s test (Pare et al.
2010; Struchalin et al. 2010), squared residual value linear
modeling (SVLM) (Struchalin et al. 2012), and the methods
by Yang et al. (2011), have been applied in studying pheno-
typic variability (see review in Geiler-Samerotte et al. 2013).
As a full parametric approach, the dglm method (Ronnegard
and Valdar 2011) has several advantages. For example, it
accounts for the uncertainty of fitted parameters for both
the mean and the variance aspects of the model and also
allows fitting of covariates (Ronnegard and Valdar 2012); it
is also highly flexible, allowing for any response distribution
from the exponential family (Smyth 2002) (such as binomial,
Poisson, or gamma) to be modeled (see section 2 in the Sup-
porting Theory of Ronnegard and Valdar 2011 for a sample of
modeling the gamma-distributed traits).

Given the flexibility of the dglm method, we acknowledge
that the results of our evQTL analysis are likely to be
dependent on how the dglm analysis was set up. For this
study, we adapted the Gaussian error distribution and link
function because no significant departure from normality was
found in the expression data. The effect of different methods
of normalization on statistical interpretation of gene expres-
sion remains subject to careful scrutiny (Bolker et al. 2009;
Qin et al. 2012; Geiler-Samerotte et al. 2013). For example,
normalizations may perturb the covariance structure of input
data or change the scale of the resulting data. Thus, the
impacts of different methods of data transformation and nor-
malization should be carefully considered in future studies
involving evQTL analysis. Finally, we acknowledge that the
dglm analysis described in this article may be influenced by
the scale effect (e.g., mean–variance relationship). It is not
uncommon for trait variance to change with trait mean, often
causing trait skewness. If this occurs, any SNP associated with
a large increase in mean expression would also be associated
with an increase in variability (Ronnegard and Valdar
2011). Analyses studying a specific phenotype and/or with
a more narrowly targeted focus than that of the broad-based
study described in this article should employ a more conser-
vative approach in which QTL associated strictly with vari-
ance (i.e., those affecting only variability and not the mean)
are identified, using the procedure proposed by Ronnegard
and Valdar (2011).

Additive vs. epistatic effect of genotypes on phenotypic
variation in a population

Quantitative geneticists partition the genetic effect on
phenotypic variation between individuals into additive,
dominance, and epistatic components. The additive compo-
nent describes the variance associated with the independent
contributions of alleles, while dominance describes the
variance contributed by interactions between alleles at the
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same locus, and epistasis refers to the contribution of
interactions between alleles at different loci. For most
complex traits, quantitative genetic theory (Hill et al. 2008;
Crow 2010) suggests that epistasis is unlikely to contribute
substantially to the between-individual variation. That is to
say, most of the variation in a population will be due to the
additive effects of specific allelic combinations. Yet this as-
sertion is not without controversy. The results of empirical
linkage mapping and association studies suggest that epis-
tasis seems to explain considerable variation in complex trait
characteristics within natural populations (Carlborg and
Haley 2004; Zuk et al. 2012).

Our results showed that.50% of evQTL can be explained
by a partial linkage (i.e., partial association between haplo-
types) of the evQTL SNP and another SNP nearby. Our inter-
acting SNP analysis only considered a simplistic scenario of
the association. There are many other possible ways of partial
associations in which SNPs interact. For example, consider
the genotyped SNP “A/a” and the causative expression QTL
“Q/q,” with only three haplotypes segregating in the popula-
tion: AQ, aQ, and aq (as would occur if the novel “q” allele
arose on the “a” haplotype). Then the “a” SNP allele would be
associated with a changed trait mean and a higher trait var-
iance as the expression QTL segregates within that genotype.
If we could take all possible partial associations into account,
we would anticipate that even more evQTL could be
explained by the effect of partial linkage, rather than epista-
sis. We therefore conclude that much variance in a quantita-
tive trait may be explained by partial linkage between local
genetic variants, each additively associated with the trait. Our
view is supported by the results of recent studies. Powell et al.
(2013) conducted a gene expression study using blood sam-
ples from 862 individuals from nuclear families containing
MZ or DZ twin pairs, using both pedigree and genotype in-
formation. They found that the genetic architecture of gene
expression is predominantly additive, with a minority of tran-
scripts displaying nonadditive effects. Hill et al. (2008) eval-
uated the evidence from empirical studies of genetic variance
components and found that additive variance typically
accounts for over half and often close to 100% of the total
genetic variance.

Detecting evQTL as a shortcut for detecting epistasis?

Detection of the variance of a quantitative trait in genetic
association studies is thought to increase knowledge about
the interaction between genetic variants. More specifically,
detecting variability QTL (e.g., evQTL) is considered to be
a shortcut for detecting genetic interactions (Ronnegard and
Valdar 2011, 2012). So far, many methods for detecting
genetic interactions are based on testing for different var-
iances of phenotype between genotypes, with the underly-
ing assumption that the variance of a quantitative trait is
likely to differ under the influence of epistasis (Pare et al.
2010; Ronnegard and Valdar 2011). However, our new dis-
covery that evQTL are formed due to the partial haplotype
association between SNPs refutes this assumption. As stated

above, more than half (and probably many more) of the
evQTL identified could be explained by partial linkage be-
tween SNPs with additive effects. Both additive and epistatic
effects can result in increased phenotypic variation (as sche-
matically illustrated in Figure S5). Merely detecting the var-
iance of a quantitative trait cannot in itself distinguish
between the additive and epistatic effects; thus, no specific
conclusions can be made. The relationship between partially
associated SNPs, each additively associated with phenotypic
variation, needs to be integrated more carefully in the study
of phenotypic variability. Thus, the variance of a quantitative
trait should not serve as a hallmark of genetic interaction or
epistasis.

Phenotypic variability and implications in complex traits
and diseases

High-throughput sequencing and genotyping technologies
have spurred an increasing number of studies detecting
genotype–phenotype relationships and mapping in complex,
polygenic traits and human diseases (Hindorff et al. 2009).
The remarkable success of GWAS is accompanied by the
issue of the “missing heritability” (Manolio et al. 2009),
namely the fact that the trait-associated SNPs identified
through GWAS often account for only a small proportion
of the observed correlations in phenotype between relatives.
The reason behind this issue has been thought to be that
additional genetic factors remain to be found, and that the
presence of epistasis is a particular cause for concern (Carl-
borg and Haley 2004; Moore and Williams 2009; Ueki and
Cordell 2012). In reality, if the effect of one locus is altered
or masked by effects at another locus, power to detect the
first locus is likely to be reduced and elucidation of the joint
effects at the two loci will be hindered by their interaction.
Consequently, a large amount of research has been devoted to
the detection and investigation of epistatic interactions; a num-
ber of methods for detecting the interaction between SNPs
have been proposed (Pare et al. 2010; Struchalin et al. 2010;
Shang et al. 2011; Daye et al. 2012; Struchalin et al. 2012), yet
there has been much confusion in the literature over defini-
tions and interpretations of epistasis (Cordell 2002).

This study, along with other studies (Hill et al. 2008;
Powell et al. 2013), have clearly pointed out that a detailed
investigation of local haplotype structure between SNPs at
the same locus is necessary to reveal their combined influ-
ences on phenotypes of complex traits. For example, we
have identified a list of evSNPs that are also associated with
human complex traits (see Table 1). Further investigations
on partial linkage between SNPs that may influence these
traits should be performed. The same should also be done
for the FTO (fat mass and obesity associated) gene locus
whose genotype is associated with phenotypic variability
of body mass index (Yang et al. 2012).

Finally, we point out that an interaction detected via
statistical models is different from the biological interaction
(Phillips 1998; Cordell 2002; Wang et al. 2010). The lack of
direct correspondence between statistical and biological
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interactions makes it difficult to make strong inferences con-
cerning biological mechanisms based on interaction terms
from a statistical model (Ueki and Cordell 2012). Therefore,
detection of statistical interaction merely provides a good
starting point for a more focused investigation of the joint
involvement of the relevant factors, which can perhaps be
better addressed through other types of experimental data.
Our findings suggest that there is a lot that can be done at
the statistical level to prioritize those loci that are most likely
to produce significant experimental results.

Conclusions

In conclusion, we used evQTL as a statistical model system
for studying phenotypic variability and dissected the genetic
and nongenetic effects by using the twin data. Our findings
concerning evQTL offer new insights into relative contribu-
tion of genetic and environmental factors in the formation of
evQTL. Dissecting the genetic components underlying phe-
notypic variability into additive and epistatic effects allowed
the dominant role of additive effect to be revealed.
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Figure S1   Normality of expression data measured in LCLs. (A) Distributions of skewness and kurtosis. Red dashed lines indicate 

-0.8 and +0.8 skewness; red solid line indicates kurtosis = 3. (B) Profile distributions of expression data for selected probes (i.e., 

probes involved in evQTLs). (Left) Quantile-normalized expression data; (Right) Box-Cox normalized expression data. 
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Figure S2   Linkage disequilibrium patterns of the genomic region surrounding evQTL at ALG11. The entire region of the analysis 

included 38 SNPs over a ~400 kb span. The cis-evSNPs are indicated with red boxes. The haplotypes in the LD block 

accommodating evSNPs are displayed in insert, with corresponding haplotype frequencies. Of note, alleles of evSNPs resulting 

in larger variance of gene expression are allocated in one haplotype highlighted with blue box. 
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Figure S3   Comparison between results of the CDF analysis for the expression difference between twin pairs in evQTL genes. (A) 

Results obtained using RMD of Box-Cox normalized log2-transformed data between twin pairs. (B) Results obtained using 

absolute difference of log2-transformed data between twin pairs. 
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Figure S4   Comparison between evQTLs depicted using TwinsUK samples (left) and those of the same gene-SNP pairs depicted 

using RNA-seq data (MONTGOMERY et al. 2010) and the 1,000 Genomes Project genotype data (THE-1000-GENOMES-PROJECT-

CONSORTIUM et al. 2012) (right). P-value of Levene’s test for the equality of variances for expression levels calculated for two 

homozygous genotype groups is shown in the subtitle of the right panel in each figure. 
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Figure S5   Schematic shows that both additive (left) and epistatic (right) effects reate similar evQTL signals. “A” and “a” are two 

alleles of evSNP, while “B” and “b” are alleles of interacting SNP. 
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Table S1   List of evQTLs detected in LCL, skin, and fat tissues. 

Tissue  Gene # of cis- 
evQTL SNPs 

Representative 
evQTL 
SNP 

Alleles Allele 
associated 
with larger 
expression 
variance 

Ancestral 
allele 

LCL        

 1 AGTPBP1 61 rs7847905 T/C C T 

 2 ALG11 171 rs9526819 G/A G A 

 3 ATP13A1 108 rs4808964 C/A C A 

 4 AXIN2 2 rs740026 G/A A G 

 5 BBS2 41 rs14306 C/A A G 

 6 BRWD2 43 rs729704 T/C T T 

 7 BTN3A2 107 rs742090 C/A A G 

 8 C12ORF28 173 rs775439 G/A A A 

 9 C12ORF54 27 rs2731094 T/C C T 

 10 C16ORF30 15 rs2076441 G/C C G 

 11 C17ORF97 2 rs6565724 T/C T C 

 12 C7ORF28B 3 rs10242703 G/A A A 

 13 CAPN11 1 rs6938938 G/A G G 

 14 CDCP1 3 rs6441894 T/C C T 

 15 CDO1 21 rs698366 T/G T C 

 16 CHST3 11 rs4148929 C/A C C 

 17 COPG2 38 rs12706942 G/C C G 

 18 CORO2A 12 rs12351801 T/C T C 

 19 COX4NB 24 rs301164 T/C C C 

 20 CPA4 74 rs6953940 G/A A G 

 21 CPNE1 205 rs224354 G/C G C 

 22 DDIT4L 64 rs2866194 G/A A A 

 23 EEF1G 6 rs1058678 T/C C A 

 24 EIF5A 1 rs7220464 T/G T G 

 25 EMR1 2 rs4807916 T/C C C 

 26 ERAP2 2 rs6880490 T/A A T 

 27 FLJ10916 15 rs4246598 C/A A C 

 28 GAD1 1 rs13007861 C/A C C 

 29 GDA 19 rs7019060 G/A A? G 

 30 GOLPH4 1 rs13100726 G/A G A 

 31 HCG22 100 rs1064191 T/C C G 

 32 HCLS1 2 rs4472078 T/C T G 

 33 HEY2 36 rs628009 T/G G? A 

 34 HLA-DPB1 59 rs9277341 T/C T C 

 35 HLA-DRB1 27 rs9272723 T/C C T 

 36 HMHB1 3 rs17100739 G/A A G 

 37 HYAL4 8 rs12674456 T/C T T 

 38 IKZF1 14 rs7789635 T/C C T 

 39 IPO8 32 rs1371053 T/C C C 

 40 IRF5 3 rs10156169 G/A A G 

 41 ITIH4 26 rs2240915 T/A T T 

 42 KANK1 17 rs2361106 G/A G A 

 43 KLHDC4 2 rs2012475 T/G G T 

 44 LDHC 19 rs3993291 T/C T C 

 45 LEMD3 77 rs11175680 G/C G A 

 46 LOC440160 8 rs12052294 G/A A G 

 47 LOC642290 1 rs7255207 T/C T C 

 48 LOC648453 3 rs17753176 T/A A A 

 49 LOC650263 44 rs726920 G/C G G 

 50 LOC650557 445 rs1980495 C/A C G 

 51 LTBR 3 rs2364484 C/A A A 

 52 MED4 53 rs9534912 T/C T C 

 53 MFF 29 rs7573035 C/A A A 

 54 MGAT4A 4 rs13032507 C/A C A 

 55 MMRN1 3 rs7693616 T/G G T 
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 56 MOCOS 5 rs1893269 G/C C C 

 57 MTERFD2 16 rs3815291 C/A C A 

 58 MTRR 32 rs327588 G/C C G 

 59 MXRA7 30 rs11077850 T/C T C 

 60 MYEOV 24 rs7939250 G/A G A 

 61 MYH11 18 rs3851702 T/C C G 

 62 N4BP2 1 rs6824761 C/A A A 

 63 NLRP2 5 rs11667481 G/A A G 

 64 NMNAT3 21 rs4367021 C/A A C 

 65 NUDT2 15 rs1337593 T/C T C 

 66 OAS1 70 rs1293742 T/C T A 

 67 PAX8 4 rs2863243 T/C C C 

 68 PGM5 52 rs12685375 T/C C C 

 69 PHACS 4 rs7928485 T/C T T 

 70 PILRB 2 rs5015756 T/C T C 

 71 PJA2 27 rs12719109 T/C C T 

 72 PLXDC2 3 rs2038912 T/C T C 

 73 PPIC 30 rs30063 G/A G T 

 74 PPIL3 2 rs3731714 T/C T G 

 75 PRPF31 19 rs254259 T/C C A 

 76 PTER 8 rs7913889 G/A A C 

 77 RAMP1 10 rs7578855 T/C T T 

 78 RGS17 19 rs3870364 G/A A G 

 79 RPS6KA2 24 rs9356531 G/A G A 

 80 SCD5 49 rs2125171 T/C C G 

 81 SEMA4G 20 rs752974 T/C T G 

 82 SERPINB10 3 rs967538 T/G G T 

 83 SERPINB6 7 rs7759176 T/C C G 

 84 SF1 1 rs563536 T/C C T 

 85 SLC39A8 80 rs151402 G/A A A 

 86 SNCA 124 rs6824979 G/C G G 

 87 SNHG5 8 rs12190637 G/A G A 

 88 STEAP2 101 rs42617 T/A T T 

 89 TBKBP1 55 rs1912483 G/A G A 

 90 TIMM10 49 rs514385 T/C T C 

 91 TIMM22 3 rs2586306 T/A T A 

 92 UBE3C 8 rs1182392 T/C T G 

 93 USP6 61 rs6502843 G/A A A 

 94 WBSCR27 40 rs13244770 T/G T T 

 95 WDR41 109 rs4704434 G/A A A 

 96 XRN2 157 rs804384 G/A A G 

 97 XYLT1 7 rs4238652 T/C C C 

 98 YPEL4 44 rs633129 G/A A C 

 99 ZNF544 1 rs260462 G/A A G 

SKIN        

 1 ACCN1 2 rs7207800 A/G G A 

 2 ACTC1 4 rs8039278 T/G G T 

 3 AGR3 2 rs17629719 G/T G G 

 4 ATP13A1 102 rs741706 A/G G A 

 5 C10ORF53 1 rs751595 A/G G C 

 6 C8ORF42 1 rs17665859 C/T T T 

 7 CACNA1H 1 rs2745167 T/C T C 

 8 CCL23 28 rs864104 C/T C A 

 9 CLLU1OS 4 rs4760407 T/C T C 

 10 COPG2 1 rs10863 A/G A G 

 11 EEF1G 1 rs11231168 T/C T C 

 12 FLJ10916 7 rs1878809 C/G G C 

 13 FLJ35429 1 rs6457121 G/A A G 

 14 FLJ45964 3 rs6713353 G/C G C 

 15 FTHL7 1 rs7991197 C/T T T 

 16 GUCY1B2 31 rs9568497 C/T T T 

 17 HERC6 7 rs713175 C/T T C 

 18 LOC147650 2 rs8102075 A/G A G 
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 19 LOC283398 1 rs10859604 A/G A A 

 20 LOC643453 2 rs4876979 G/T T C 

 21 LOC643747 2 rs12301198 G/A A A 

 22 LOC644366 2 rs3851781 T/C T C 

 23 LOC644889 3 rs11024097 G/A G C 

 24 LOC645351 1 rs7712944 G/A G G 

 25 LOC645797 9 rs7481311 A/G G C 

 26 LOC647541 3 rs2808788 A/G G G 

 27 LOC648226 11 rs7850776 C/T C C 

 28 LOC652367 2 rs860214 C/T T G 

 29 LOC653034 1 rs231674 T/C C C 

 30 LOC653486 1 rs3758653 C/T C T 

 31 LOC730684 2 rs667470 C/T T T 

 32 LTBP3 1 rs2236684 G/T T A 

 33 MDGA1 4 rs7748388 C/T C G 

 34 MED4 69 rs9567986 T/C C T 

 35 MUC16 1 rs12459695 C/G G G 

 36 NOX3 1 rs11756851 C/T C T 

 37 NUPL1 1 rs9507399 A/G A G 

 38 PAX8 5 rs7589901 C/T T A 

 39 PECR 12 rs7570208 C/A C G 

 40 PKD1L2 10 rs9934926 C/T T A 

 41 SEMA4G 18 rs807029 C/T C G 

 42 SH2D4A 7 rs748208 T/C T C 

 43 SOX5 1 rs17468457 C/T T T 

 44 SPINK7 95 rs999741 C\T T C 

 45 TFG 86 rs9878163 A\G G A 

 46 TIMM10 119 rs7943793 A/G G T 

 47 TMEM25 3 rs573971 G/A  A A 

 48 UNC45A 8 rs871078 G/C C A 

 49 UPK1A 15 rs4806197 C/T T C 

 50 USMG5 27 rs4918003 C/G G T 

 51 WDR41 39 rs7714170 C/T T A 

 52 WFIKKN1 20 rs7205409 C/T C C 

 53 XYLT1 1 rs1045885 G/C C C 

 54 ZNF365 63 rs7923561 C/T C A 

 55 ZNF418 63 rs9749429 T/C T C 

 56 ZNF713 1 rs4948003 A/T A T 

FAT        

        

 1 ADH4 30 rs7694844 A/C A T 

 2 AGTPBP1 33 rs918941 C/T T G 

 3 ATP13A1 98 rs968525 A/T T C 

 4 B4GALT4 4 rs4449310 A/G A C 

 5 BRWD2 45 rs9325569 A/T T G 

 6 CCL23 13 rs864104 A/G G A 

 7 CDK6 3 rs982692 C/G C T 

 8 CHST13 5 rs6786437 C/A C C 

 9 CLEC12A 5 rs7313235 T/C C C 

 10 CLUAP1 2 rs6501178 A/C A A 

 11 COG6 1 rs2180960 T/G G G 

 12 COPG2 34 rs992859 A/G A C 

 13 DAPL1 2 rs759033 C/G C T 

 14 DLG4 4 rs8067250 C/G G C 

 15 DMKN 2 rs6510492 A/G G T 

 16 DPYSL4 23 rs902627 G/T G G 

 17 DSEL 8 rs9946666 C/T T T 

 18 EIF3H 1 rs1695714 G/T T A 

 19 EMR2 18 rs8107048 A/G A C 

 20 FGA 1 rs1316990 C/T T C 

 21 FLJ10916 7 rs7425197 C/G G C 

 22 FTHL7 1 rs3945859 G/T G T 

 23 FUT4 6 rs596855 A/G G C 
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 24 GUCA1C 1 rs9821923 C/A C A 

 25 HLA-DPB1 29 rs9469485 T/G T C 

 26 HLA-DRB1 54 rs9275141 A/C A G 

 27 HMHB1 2 rs17100749 C/G G G 

 28 IKZF1 4 rs6952409 A/G G G 

 29 IL1RN 2 rs315948 T/C T G 

 30 IL8 18 rs552582 T/G T A 

 31 IPO8 21 rs9300199 C/T T T 

 32 IRF5 41 rs7808907 A/G G C 

 33 ITGA4 1 rs13429032 A/G G G 

 34 KCTD10 42 rs9593 C/T ? A 

 35 KCTD12 2 rs9600792 A/G G T 

 36 KCTD8 7 rs7684615 G/C C G 

 37 LAIR2 1 rs4806747 A/G A A 

 38 LDHC 65 rs7946331 C/G G G 

 39 LEMD3 65 rs990609 A/C A C 

 40 LILRA2 3 rs1671176 A/C C C 

 41 LOC644366 3 rs3851781 C/T C C 

 42 LOC644889 2 rs1544506 T/C T C 

 43 LOC645460 1 rs17762258 G/A G A 

 44 LOC646625 7 rs9554219 G/T T T 

 45 LOC653034 1 rs7225168 G/T T G 

 46 LRRC25 6 rs8101804 G/A A C 

 47 LZTS1 1 rs13264395 G/C G C 

 48 MAPK7 3 rs9911451 A/T A A 

 49 MARCH8 81 rs984955 C/T T A 

 50 MED4 101 rs9595825 C/T T T 

 51 MEGF9 50 rs991121 C/T T G 

 52 MFF 14 rs9646881 A/C C G 

 53 MGC12965 5 rs682229 T/C C A 

 54 MOCOS 2 rs604271 G/A G A 

 55 MYH1 50 rs995362 T/C T G 

 56 NUDT2 15 rs4480190 C/G C C 

 57 PAX8 14 rs895417 T/C T A 

 58 PLIN 1 rs16942690 G/A G A 

 59 PMP2 1 rs13261227 A/G G C 

 60 PPIL3 5 rs7582581 A/G G T 

 61 PRPF31 11 rs42318 G/A A G 

 62 PTCHD3 39 rs7342136 A/G A T 

 63 PTER 2 rs2298126 A/C C A 

 64 RAB37 2 rs3850121 T/C C G 

 65 RIMS2 37 rs4734094 T/A A G 

 66 RNF126P1 14 rs9303389 G/C G G 

 67 RPL14 127 rs9968170 T/C C T 

 68 SEMA4G 30 rs807029 C/T C G 

 69 SFTPD 52 rs9421727 C/T C T 

 70 SILV 4 rs3213122 A/G A C 

 71 SLC39A8 51 rs9705 A/G G G 

 72 STMN2 15 rs4305892 A/G A T 

 73 TFG 109 rs989795 A/G G T 

 74 TIMM10 162 rs929934 A/G G G 

 75 TRPC4AP 17 rs6120827 T/G T T 

 76 USMG5 26 rs7913461 C/G C A 

 77 WBSCR27 31 rs8629 G/C C C 

 78 WDR41 5 rs335655 C/A C G 

 79 ZNF232 87 rs9912506 A/G A G 
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Table S2   (A) P-values of Kolmogorov-Smirnov (K-S) test of pairwise comparison between groups in the RMD distribution and 

basic descriptive statistics for the RMD values. Upper diagonal P-values are from randomly selected non-evQTL genes. Results 

obtained from the Box-Cox normalized and not normalized data are given. (B) The per-probe statistics of RMD values for larger 

variance groups (MZ-L and DZ-L). Probes with no SNP in either groups are not shown.  

A Log2-transformed data 

  MZ-S DZ-S MZ-L DZ-L 

 MZ-S - 0.40 0.031 2.94e-04 

 DZ-S 9.34e-06 - 0.033 0.026 

 MZ-L 8.82e-18 1.66e-06 - 0.16 

 DZ-L 1.40e-78 1.66e-52 7.28e-22 - 

  

 Box-Cox normalized log2-transformed data 

  MZ-S DZ-S MZ-L DZ-L 

 MZ-S - 0.1670 4.49e-08 1.98e-14 

 DZ-S 0.0486 - 9.60e-11 8.30e-20 

 MZ-L 1.59e-68 1.57e-80 - 0.0333 

 DZ-L 2.97e-85 1.69e-99 1.84e-07 - 

 

B Probe RMD in MZ-L and DZ-L groups 

  MZ-L DZ-L 

  # of SNPs Mean Median # of SNPs Mean Median 

 ILMN_1658247 37 0.0126 0.0103 47 0.0366 0.0150 

 ILMN_1660086 75 0.0127 0.0091 84 0.0180 0.0123 

 ILMN_1664641 6 0.0062 0.0060 31 0.0131 0.0106 

 ILMN_1667229 24 0.0138 0.0098 25 0.0212 0.0129 

 ILMN_1669032 62 0.0142 0.0098 44 0.0178 0.0175 

 ILMN_1670841 6 0.0048 0.0047 3 0.0135 0.0180 

 ILMN_1675616 36 0.0102 0.0094 39 0.0111 0.0101 

 ILMN_1676528 41 0.0127 0.0083 45 0.0332 0.0181 

 ILMN_1676575 29 0.0118 0.0108 35 0.0255 0.0167 

 ILMN_1677124 31 0.0079 0.0042 29 0.0141 0.0144 

 ILMN_1678974 50 0.0115 0.0085 28 0.0175 0.0148 

 ILMN_1682034 124 0.0100 0.0083 178 0.0112 0.0086 

 ILMN_1696537 16 0.0139 0.0101 5 0.0090 0.0047 

 ILMN_1701933 27 0.0204 0.0176 31 0.0325 0.0238 

 ILMN_1704598 4 0.0114 0.0119 2 0.0145 0.0145 

 ILMN_1706959 32 0.0068 0.0051 35 0.0115 0.0083 

 ILMN_1707137 9 0.0128 0.0089 7 0.0251 0.0083 

 ILMN_1709173 6 0.0093 0.0090 2 0.0041 0.0041 

 ILMN_1709590 19 0.0172 0.0114 6 0.0126 0.0114 

 ILMN_1712400 7 0.0101 0.0084 10 0.0261 0.0237 

 ILMN_1713803 9 0.0109 0.0129 7 0.0205 0.0090 

 ILMN_1715169 20 0.0214 0.0162 11 0.0323 0.0264 

 ILMN_1715693 75 0.0112 0.0090 69 0.0173 0.0130 

 ILMN_1716218 11 0.0119 0.0125 9 0.0148 0.0071 

 ILMN_1718932 111 0.0148 0.0106 143 0.0277 0.0151 

 ILMN_1719170 31 0.0087 0.0075 28 0.0149 0.0115 

 ILMN_1719204 50 0.0067 0.0064 53 0.0130 0.0075 

 ILMN_1721727 29 0.0117 0.0079 21 0.0233 0.0131 

 ILMN_1723984 41 0.0109 0.0093 43 0.0095 0.0076 

 ILMN_1724480 47 0.0108 0.0083 35 0.0206 0.0171 

 ILMN_1726624 11 0.0088 0.0101 8 0.0175 0.0116 

 ILMN_1743836 2 0.0077 0.0077 20 0.0089 0.0087 

 ILMN_1745043 11 0.0064 0.0040 8 0.0120 0.0112 

 ILMN_1749070 12 0.0082 0.0081 9 0.0129 0.0111 

 ILMN_1751559 14 0.0124 0.0087 11 0.0096 0.0066 

 ILMN_1752150 7 0.0176 0.0155 7 0.0120 0.0116 

 ILMN_1753164 49 0.0079 0.0062 46 0.0260 0.0085 

 ILMN_1753312 26 0.0151 0.0118 29 0.0145 0.0117 
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 ILMN_1756579 41 0.0079 0.0055 33 0.0090 0.0065 

 ILMN_1764754 35 0.0096 0.0070 27 0.0179 0.0128 

 ILMN_1765274 24 0.0114 0.0085 17 0.0150 0.0103 

 ILMN_1765332 38 0.0088 0.0067 42 0.0199 0.0171 

 ILMN_1766165 27 0.0118 0.0077 31 0.0141 0.0119 

 ILMN_1778347 21 0.0084 0.0088 10 0.0132 0.0089 

 ILMN_1778488 14 0.0069 0.0070 14 0.0141 0.0052 

 ILMN_1780601 8 0.0166 0.0132 7 0.0133 0.0117 

 ILMN_1781388 19 0.0155 0.0119 6 0.0212 0.0121 

 ILMN_1784294 32 0.0149 0.0111 31 0.0218 0.0195 

 ILMN_1787199 62 0.0077 0.0059 53 0.0083 0.0065 

 ILMN_1795336 52 0.0080 0.0045 54 0.0209 0.0107 

 ILMN_1809496 27 0.0108 0.0099 17 0.0153 0.0098 

 ILMN_1813746 18 0.0173 0.0118 13 0.0237 0.0177 

 ILMN_1835359 9 0.0125 0.0104 3 0.0232 0.0180 

 ILMN_1836218 29 0.0090 0.0080 31 0.0147 0.0088 

 ILMN_1851610 2 0.0029 0.0029 22 0.0079 0.0056 

 ILMN_1854132 13 0.0102 0.0081 10 0.0077 0.0055 

 ILMN_1864228 1 0.0141 0.0141 11 0.0123 0.0064 

 ILMN_1885273 14 0.0124 0.0095 6 0.0116 0.0088 

 ILMN_1897741 12 0.0090 0.0075 8 0.0296 0.0290 

 ILMN_1900622 1 0.0047 0.0047 1 0.0024 0.0024 

 ILMN_1900994 10 0.0062 0.0033 5 0.0086 0.0075 

 ILMN_1904238 53 0.0120 0.0091 46 0.0192 0.0141 

 ILMN_2086222 61 0.0140 0.0116 61 0.0119 0.0090 

 ILMN_2120982 4 0.0167 0.0157 7 0.0111 0.0080 

 ILMN_2134224 15 0.0086 0.0086 7 0.0067 0.0039 

 ILMN_2147424 21 0.0124 0.0101 24 0.0239 0.0187 

 ILMN_2154287 3 0.0294 0.0370 1 0.0061 0.0061 

 ILMN_2173294 45 0.0062 0.0049 28 0.0147 0.0095 

 ILMN_2181363 20 0.0141 0.0106 12 0.0074 0.0034 

 ILMN_2183938 20 0.0220 0.0172 11 0.0441 0.0346 

 ILMN_2196479 14 0.0129 0.0090 13 0.0197 0.0128 

 ILMN_2198408 15 0.0196 0.0148 11 0.0237 0.0209 

 ILMN_2200659 109 0.0069 0.0058 131 0.0146 0.0091 

 ILMN_2223922 4 0.0104 0.0116 1 0.0088 0.0088 

 ILMN_2233539 55 0.0192 0.0135 58 0.0266 0.0151 

 ILMN_2237428 10 0.0134 0.0115 5 0.0129 0.0075 

 ILMN_2246083 53 0.0247 0.0188 40 0.0299 0.0257 

 ILMN_2262288 91 0.0079 0.0046 113 0.0153 0.0096 
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Table S3   LCL evQTLs and interacting SNPs. P-value indicates the linear regression significance between interacting SNP 

genotype and gene expression of evQTL gene (see Methods). Two genes close to interacting SNPs at trans-genomic location 

are given. 

LCL evQTL 
gene 

evSNP evSNP position Interacting 
SNP 

Interacting SNP 
position 

P-value trans-located 
gene 

PTER rs7913889 chr10:16559381 rs7909832 chr10:16556710 8.66E-77  
ERAP2 rs6880490 chr5:96185549 rs11135484 chr5:96221889 4.76E-45  
BBS2 rs14306 chr16:56510299 rs13337155 chr16:56504724 5.77E-39  
IPO8 rs1371053 chr12:30845705 rs7968343 chr12:30817004 6.16E-38  
WDR41 rs4704434 chr5:76890568 rs441102 chr5:76738970 4.31E-33  
SEMA4G rs752974 chr10:102762256 rs12571302 chr10:102742763 4.13E-32  
N4BP2 rs6824761 chr4:40054818 rs4974962 chr4:40115239 4.92E-29  
PPIL3 rs3731714 chr2:202060820 rs7606251 chr2:201736734 7.47E-28  
PILRB rs5015756 chr7:100013457 rs7341507 chr7:99951315 9.06E-27  
TIMM10 rs514385 chr11:57306011 rs3851118 chr11:57280951 1.36E-23  
LOC440160 rs12052294 chr2:132433268 rs6720375 chr2:132440073 1.15E-21  
C12ORF28 rs775439 chr12:70096374 rs811822 chr12:70107646 1.35E-20  
TIMM22 rs2586306 chr17:909451 rs2241931 chr17:909653 2.05E-20  
SERPINB10 rs967538 chr18:61509075 rs6567399 chr18:61544546 1.60E-19  
BTN3A2 rs742090 chr6:26415637 rs3799378 chr6:26404374 4.29E-19  
SCD5 rs2125171 chr4:83835698 rs6830527 chr4:83798446 7.00E-18  
GOLPH4 rs13100726 chr3:167707035 rs9873288 chr3:167726096 2.77E-17  
NUDT2 rs1337593 chr9:34334015 rs7032924 chr9:34167694 2.59E-16  
LOC642290 rs7255207 chr19:28385923 rs7258333 chr19:28269920 8.94E-16  
NMNAT3 rs4367021 chr3:139420218 rs9822952 chr3:139385257 1.44E-15  
IRF5 rs10156169 chr7:128684571 rs8043 chr7:128607384 9.33E-15  
IKZF1 rs7789635 chr7:50473610 rs10216316 chr7:50462418 5.65E-14  
C12ORF54 rs2731094 chr12:48881661 rs12318285 chr12:48905575 8.20E-14  
LEMD3 rs11175680 chr12:65605539 rs2133323 chr12:65577453 1.16E-13  
MTRR rs327588 chr5:7908359 rs1801394 chr5:7870973 1.40E-12  
WBSCR27 rs13244770 chr7:73280691 rs4440516 chr7:73224041 3.61E-12  
XYLT1 rs4238652 chr16:17199665 rs7190386 chr16:17183373 4.25E-12  
ITIH4 rs2240915 chr3:52859526 rs17331178 chr3:52847544 5.13E-12  
ATP13A1 rs4808964 chr19:19603692 rs2304128 chr19:19746151 1.18E-11  
KLHDC4 rs2012475 chr16:87760814 rs2290019 chr16:87741662 2.95E-11  
HCLS1 rs4472078 chr3:121477634 rs12493927 chr3:121378927 7.57E-11  
MTERFD2 rs3815291 chr2:242032540 rs7559967 chr2:242006736 8.75E-10  
HCG22 rs1064191 chr6:31075375 rs2523857 chr6:31021504 2.12E-09  
LOC650557 rs1980495 chr6:32346794 rs3129878 chr6:32408735 3.03E-09  
CDCP1 rs6441894 chr3:45206579 rs7633169 chr3:45185519 1.21E-08  
HLA-DPB1 rs9277341 chr6:33039625 rs9501259 chr6:33055551 1.15E-07  
LDHC rs3993291 chr11:18479739 rs4757662 chr11:18439738 1.19E-07  
AXIN2 rs740026 chr17:63561681 rs757558 chr17:63561592 1.25E-07  
FLJ10916 rs4246598 chr2:88438050 rs2970924 chr2:88433305 2.24E-07  
MED4 rs9534912 chr13:48588564 rs9526455 chr13:48712474 2.62E-07  
RPS6KA2 rs9356531 chr6:167276965 rs9355601 chr6:167269159 3.29E-07  
C16ORF30 rs2076441 chr16:1590576 rs2235643 chr16:1585115 1.76E-06  
PLXDC2 rs2038912 chr10:20207349 rs1326233 chr10:20238864 2.64E-06  
UBE3C rs1182392 chr7:157036200 rs10271990 chr7:157037521 3.76E-06  
SERPINB6 rs7759176 chr6:2915664 rs7751676 chr6:2931879 6.59E-06  
COPG2 rs12706942 chr7:130149061 rs10128 chr7:130151694 7.90E-06  
EIF5A rs7220464 chr17:7210836 rs11078672 chr17:7215142 9.29E-06  
ALG11 rs9526819 chr13:52563475 rs3742289 chr13:52603194 2.63E-05  
SLC39A8 rs151402 chr4:103190486 rs151372 chr4:103174196 2.65E-05  
HMHB1 rs17100739 chr5:143112574 rs10498677 chr6:11466011 3.20E-05 TMEM170B 
COX4NB rs301164 chr16:85813880 rs9923691 chr16:85824190 6.63E-05  
CPNE1 rs224354 chr20:34054609 rs1118233 chr20:34228349 7.84E-05  
YPEL4 rs633129 chr11:57685196 rs12790660 chr11:57667222 9.68E-05  
PRPF31 rs254259 chr19:54606405 rs16985368 chr19:54614590 1.17E-04  
C7ORF28B rs10242703 chr7:6870635 rs2792574 chr14:48676427 2.86E-04 MDGA2 
CPA4 rs6953940 chr7:129947007 rs3807344 chr7:129934219 4.33E-04  
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Table S4   The evQTL genes associated with complex traits and reported in the GWAS catalog (accessed in May 2013). 

 GWAS 
gene 

Disorder or trait GWAS reported SNP and risk allele 

LCL    

 RAMP1 Obesity-related traits rs10185142-A 

 IKZF1 Systemic lupus erythematosus|Red blood cell traits|Inflammatory bowel disease|Crohn's 
disease|Systemic lupus erythematosus|Mean corpuscular volume|Acute lymphoblastic leukemia 
(childhood)|Acute lymphoblastic leukemia (childhood)|Hippocampal atrophy 

rs10276619-G|rs12718598-T|rs1456896-T|rs1456896-T|rs4917014-A|rs12718597-
A|rs4132601-C|rs11978267-G|rs10276619-? 

 HLA-DPB1 Aspirin exacerbated respiratory disease in asthmatics|Hepatitis B (viral clearance)|Hepatitis B (viral 
clearance)|Hepatitis B vaccine response|Systemic sclerosis|Hepatitis B|Nephropathy|Hepatitis B 

rs1042151-G|rs9277535-G|rs9277535-G|rs9277535-?|rs987870-?|rs9277535-
G|rs1883414-?|rs9277535-G 

 PTER Obesity rs10508503-C 

 PAX8 Renal function-related traits (BUN) rs11123170-G 

 GDA Suicidal ideation|Suicidal ideation rs11143230-C|rs11143230-C 

 NLRP2 Inflammatory bowel disease rs11672983-A 

 SLC39A8 Diastolic blood pressure|Hypertension|Systolic blood pressure|Blood pressure|Body mass index|HDL 
cholesterol 

rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T 

 BTN3A2 Schizophrenia rs13194053-T 

 ERAP2 Inflammatory bowel disease|Crohn's disease rs1363907-A|rs2549794-C 

 PLXDC2 Diabetic retinopathy  rs1571942-C 

 WDR41 Caudate nucleus volume rs163030-A 

 PPIC Aortic root size rs17470137-A 

 OAS1 Response to fenofibrate (adiponectin levels) rs2384207-? 

 ZNF544 Attention deficit hyperactivity disorder rs260461-? 

 LDHC Amyloid A Levels rs2896526-G 

 BRWD2 Obesity-related traits|Visceral fat rs2919009-A|rs7085142-T 

 HCG22 Hematology traits|Behcet's disease|Hypothyroidism rs3130544-A|rs4947296-?|rs2517532-G 

 PGM5 Bipolar disorder rs3750552-? 

 MTRR Capecitabine sensitivity|Capecitabine sensitivity rs4702484-?|rs4702484-? 

 SF1 Urate levels rs606458-T 

 MYEOV Breast cancer rs614367-T 

 RPS6KA2 Dental caries|Inflammatory bowel disease rs635808-?|rs1819333-T 

 SNCA Parkinson's disease|Parkinson's disease|Parkinson's disease|Parkinson's disease|Parkinson's 
disease|Parkinson's disease|Parkinson's disease|Parkinson's disease|Parkinson's disease|Parkinson's 
disease|Parkinson's disease 

rs6532194-?|rs356219-?|rs356220-?|rs356220-T|rs356219-G|rs356220-T|rs356220-
A|rs356220-T|rs2736990-?|rs11931074-?|rs2736990-C 

 MMRN1 Parkinson's disease rs6532197-G 

 MTERFD2 Sex hormone-binding globulin levels rs6721345-A 

 UBE3C Response to citalopram treatment|Response to citalopram treatment|Quantitative traits rs6966038-?|rs6966038-?|rs2527866-C 

 IRF5 Systemic lupus erythematosus|Ulcerative colitis|Systemic lupus erythematosus|Systemic 
sclerosis|Systemic sclerosis|Systemic sclerosis|Systemic sclerosis|Systemic sclerosis|Primary biliary 
cirrhosis|Systemic lupus erythematosus|Systemic lupus erythematosus|Ulcerative colitis|Primary biliary 
cirrhosis|Rheumatoid arthritis|Systemic sclerosis|Systemic lupus erythematosus|Systemic lupus 
erythematosus|Systemic lupus erythematosus 

rs729302-A|rs4728142-A|rs729302-A|rs10488631-?|rs10488631-?|rs10488631-
?|rs10488631-?|rs10488631-C|rs12531711-G|rs12531711-G|rs10488631-C|rs4728142-
A|rs10488631-C|rs10488631-C|rs10488631-C|rs4728142-A|rs12537284-A|rs10488631-
C 

 MGAT4A Bipolar disorder|Bipolar disorder rs7578035-G|rs12618769-T 

 C12ORF28 Attention deficit hyperactivity disorder and conduct disorder rs789560-G 

 TBKBP1 Multiple sclerosis|Ankylosing spondylitis rs8070463-T|rs8070463-C 

 HLA-DRB1 Lymphoma|Epstein-Barr virus immune response (EBNA-1)|Leishmaniasis (visceral)|Systemic lupus 
erythematosus|Crohn's disease|Schizophrenia|Ulcerative colitis|Hepatocellular carcinoma|Immune 
response to anthrax vaccine |Hypothyroidism|IgA nephropathy|Multiple sclerosis|Nodular sclerosis 
Hodgkin lymphoma|Nodular sclerosis Hodgkin lymphoma|Systemic sclerosis|Response to interferon beta 
therapy|Rheumatoid arthritis|Nephropathy|Ulcerative colitis|Rheumatoid arthritis|Immunoglobulin A 
|Immunoglobulin A |Lumiracoxib-related liver injury|Rheumatoid arthritis|Rheumatoid 

rs9268853-C|rs477515-T|rs9271858-G|rs9270984-T|rs7765379-G|rs4530903-
?|rs6927022-A|rs9272105-A|rs3104402-A|rs3129720-C|rs660895-G|rs3129889-G|5-
SNP haplotype 6|5-SNP haplotype 3|rs3129763-?|rs9272105-A|rs7765379-?|rs9275596-
?|rs9268853-T|rs7765379-?|rs9271366-?|rs2187668-A|rs3129900-?|rs13192471-
G|rs6910071-G|rs9271100-?|rs9271366-G|rs3135388-A|rs2395185-?|rs3129934-
T|rs6457620-?|rs2395148-?|rs660895-?|rs2647044-A|rs615672-?|DRB1*07 
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arthritis|Systemic lupus erythematosus|Multiple sclerosis|Multiple sclerosis|Ulcerative colitis|Multiple 
sclerosis|Rheumatoid arthritis|Arthritis (juvenile idiopathic)|Rheumatoid arthritis|Type 1 
diabetes|Rheumatoid arthritis|Response to ximelagatran treatment 

 ITIH4 Ulcerative colitis|Immune reponse to smallpox (secreted IL-2)|Schizophrenia|Bipolar disorder rs9847710-C|rs17331151-A|rs2239547-?|rs736408-C 

FAT    

 CDK6 White blood cell types|White blood cell count|Height|Height|Rheumatoid 
arthritis|Height|Height|Height 

rs445-C|rs445-T|rs42235-T|rs2282978-?|rs42041-G|rs2282978-C|rs2040494-
C|rs2282978-C 

 FGA Venous thromboembolism|Fibrinogen|D-dimer levels|Fibrinogen rs7659024-A|rs6050-C|rs13109457-A|rs6056-A 

 IRF5 Systemic lupus erythematosus|Ulcerative colitis|Systemic lupus erythematosus|Systemic 
sclerosis|Systemic sclerosis|Systemic sclerosis|Systemic sclerosis|Systemic sclerosis|Primary biliary 
cirrhosis|Systemic lupus erythematosus|Systemic lupus erythematosus|Ulcerative colitis|Primary biliary 
cirrhosis|Rheumatoid arthritis|Systemic sclerosis|Systemic lupus erythematosus|Systemic lupus 
erythematosus|Systemic lupus erythematosus 

rs729302-A|rs4728142-A|rs729302-A|rs10488631-?|rs10488631-?|rs10488631-
?|rs10488631-?|rs10488631-C|rs12531711-G|rs12531711-G|rs10488631-C|rs4728142-
A|rs10488631-C|rs10488631-C|rs10488631-C|rs4728142-A|rs12537284-A|rs10488631-
C 

 IKZF1 Systemic lupus erythematosus|Red blood cell traits|Inflammatory bowel disease|Crohn's 
disease|Systemic lupus erythematosus|Mean corpuscular volume|Acute lymphoblastic leukemia 
(childhood)|Acute lymphoblastic leukemia (childhood)|Hippocampal atrophy 

rs10276619-G|rs12718598-T|rs1456896-T|rs1456896-T|rs4917014-A|rs12718597-
A|rs4132601-C|rs11978267-G|rs10276619-? 

 MEGF9 Response to statin therapy rs16909449-C 

 FUT4 Response to angiotensin II receptor blocker therapy|Response to angiotensin II receptor blocker therapy 
(opposite direction w/ diuretic therapy) 

rs11020821-C|rs11020821-C 

 KCTD8 Response to amphetamines|Anticoagulant levels rs17641529-?|rs13130255-? 

 PAX8 Renal function-related traits (BUN) rs11123170-G 

 COG6 Psoriasis rs7993214-? 

 TRPC4AP Prothrombin time rs2295888-A 

 BRWD2 Obesity-related traits|Visceral fat rs2919009-A|rs7085142-T 

 IL1RN Obesity-related traits|C-reactive protein|Protein quantitative trait loci rs4252023-A|rs6734238-G|rs6761276-? 

 DAPL1 Obesity-related traits rs16843372-G 

 PTER Obesity rs10508503-C 

 ITGA4 Monocyte count|White blood cell types|Celiac disease rs2124440-G|rs12988934-T|rs13010713-G 

 DSEL Major depressive disorder|Cognitive performance rs17077540-G|rs2124349-? 

 HLA-DRB1 Lymphoma|Epstein-Barr virus immune response (EBNA-1)|Leishmaniasis (visceral)|Systemic lupus 
erythematosus|Crohn's disease|Schizophrenia|Ulcerative colitis|Hepatocellular carcinoma|Immune 
response to anthrax vaccine |Hypothyroidism|IgA nephropathy|Multiple sclerosis|Nodular sclerosis 
Hodgkin lymphoma|Nodular sclerosis Hodgkin lymphoma|Systemic sclerosis|Response to interferon beta 
therapy|Rheumatoid arthritis|Nephropathy|Ulcerative colitis|Rheumatoid arthritis|Immunoglobulin A 
|Immunoglobulin A |Lumiracoxib-related liver injury|Rheumatoid arthritis|Rheumatoid 
arthritis|Systemic lupus erythematosus|Multiple sclerosis|Multiple sclerosis|Ulcerative colitis|Multiple 
sclerosis|Rheumatoid arthritis|Arthritis (juvenile idiopathic)|Rheumatoid arthritis|Type 1 
diabetes|Rheumatoid arthritis|Response to ximelagatran treatment 

rs9268853-C|rs477515-T|rs9271858-G|rs9270984-T|rs7765379-G|rs4530903-
?|rs6927022-A|rs9272105-A|rs3104402-A|rs3129720-C|rs660895-G|rs3129889-G|5-
SNP haplotype 6|5-SNP haplotype 3|rs3129763-?|rs9272105-A|rs7765379-?|rs9275596-
?|rs9268853-T|rs7765379-?|rs9271366-?|rs2187668-A|rs3129900-?|rs13192471-
G|rs6910071-G|rs9271100-?|rs9271366-G|rs3135388-A|rs2395185-?|rs3129934-
T|rs6457620-?|rs2395148-?|rs660895-?|rs2647044-A|rs615672-?|DRB1*07 

 DLG4 Liver enzyme levels (alkaline phosphatase) rs314253-C 

 IL8 Inflammatory bowel disease rs2472649-G 

 KCTD10 HDL cholesterol rs9943753-G 

 PTCHD3 Fasting insulin-related traits (interaction with BMI) rs1334893-? 

 ADH4 Esophageal cancer  (alcohol interaction) rs3805322-? 

 SLC39A8 Diastolic blood pressure|Hypertension|Systolic blood pressure|Blood pressure|Body mass index|HDL 
cholesterol 

rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T|rs13107325-T 

 LZTS1 Dental caries|Dental caries|Major depressive disorder (broad) rs4922199-?|rs10111661-?|rs1106634-A 

 STMN2 Creutzfeldt-Jakob disease rs1460163-A 

 EIF3H Corneal curvature|Colorectal cancer|Colorectal cancer rs11987235-A|rs16892766-?|rs16892766-A 

 SFTPD Chronic obstructive pulmonary disease-related biomarkers|Chronic obstructive pulmonary disease-
related biomarkers 

rs7078012-T|rs3923564-G 

 WDR41 Caudate nucleus volume rs163030-A 

 HLA-DPB1 Aspirin exacerbated respiratory disease in asthmatics|Hepatitis B (viral clearance)|Hepatitis B (viral rs1042151-G|rs9277535-G|rs9277535-G|rs9277535-?|rs987870-?|rs9277535-
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clearance)|Hepatitis B vaccine response|Systemic sclerosis|Hepatitis B|Nephropathy|Hepatitis B G|rs1883414-?|rs9277535-G 

 LDHC Amyloid A Levels rs2896526-G 

SKIN    

 LTBP3 Urate levels|Non-alcoholic fatty liver disease histology (lobular) rs642803-T|rs6591182-A 

 PAX8 Renal function-related traits (BUN) rs11123170-G 

 ACTC1 Prostate cancer (gene x gene interaction)|Refractive error rs543686-?|rs634990-C 

 ACCN1 Obesity-related traits|vWF and FVIII levels rs17808461-A|rs1354492-A 

 SOX5 Non-obstructive azoospermia|Systemic sclerosis|Systemic sclerosis|Response to statin therapy|Response 
to antipsychotic treatment|PR interval|AIDS 

rs10842262-?|rs11047102-?|rs11047102-?|rs7979575-C|rs1464500-?|rs11047543-
A|rs1522232-C 

 HERC6 Metabolite levels rs1440581-? 

 WDR41 Caudate nucleus volume rs163030-A 

 PKD1L2 Attention deficit hyperactivity disorder and conduct disorder rs4889240-T 

 ZNF365 Atopic dermatitis|Crohn's disease|Breast size|Crohn's disease|Intelligence|Ewing sarcoma|Breast 
cancer|Mammographic density|Crohn's disease|Breast cancer|Crohn's disease 

rs10995251-C|rs10761659-G|rs7089814-C|rs7076156-G|rs10995170-?|rs224278-
C|rs10822013-T|rs10995190-A|rs10761659-G|rs10995190-G|rs10995271-C 

 PECR Alcohol dependence rs7590720-G 

 

 


