
INVESTIGATION
HIGHLIGHTED ARTICLE

Genetic Variation for Life History Sensitivity
to Seasonal Warming in Arabidopsis thaliana

Yan Li,*,†,‡,1 Riyan Cheng,§,**,1 Kurt A. Spokas,†† Abraham A. Palmer,§,‡‡ and Justin O. Borevitz*,**,2

*Department of Ecology and Evolution, §Department of Human Genetics, and ‡‡Department of Psychiatry and Behavioral
Neuroscience, University of Chicago, Chicago, Illinois 60637, †National Key Laboratory of Crop Genetics and Germplasm
Enhancement, Nanjing Agricultural University, Nanjing 210095, China, ‡Key Laboratory of Soybean Biology and Genetic

Improvement, Ministry of Agriculture, Nanjing, China, **Research School of Biology, Australian National University, Canberra,
0200 Australia, and ††U.S. Department of Agriculture–Agricultural Research Service, St. Paul, Minnesota 55108-6028

ABSTRACT Climate change has altered life history events in many plant species; however, little is known about genetic variation
underlying seasonal thermal response. In this study, we simulated current and three future warming climates and measured flowering
time across a globally diverse set of Arabidopsis thaliana accessions. We found that increased diurnal and seasonal temperature (1�–3�)
decreased flowering time in two fall cohorts. The early fall cohort was unique in that both rapid cycling and overwintering life history
strategies were revealed; the proportion of rapid cycling plants increased by 3–7% for each 1� temperature increase. We performed
genome-wide association studies (GWAS) to identify the underlying genetic basis of thermal sensitivity. GWAS identified five main-
effect quantitative trait loci (QTL) controlling flowering time and another five QTL with thermal sensitivity. Candidate genes include
known flowering loci; a cochaperone that interacts with heat-shock protein 90; and a flowering hormone, gibberellic acid, a bio-
synthetic enzyme. The identified genetic architecture allowed accurate prediction of flowering phenotypes (R2 . 0.95) that has
application for genomic selection of adaptive genotypes for future environments. This work may serve as a reference for breeding
and conservation genetic studies under changing environments.

CLIMATE change is accelerating, altering growing sea-
sons, and affecting the developmental timings or phe-

nology of plant species. This study investigates the complex
genetic basis of Arabidopsis flowering time under seasonal
warming. Certain genotypes switch from overwintering to
rapid fall flowering in warmer winter seasons. Thermal-
sensitive alleles were identified in genes of the heat-shock
and hormone response pathways. This genetic model was
able to accurately predict flowering time of new genotypes
in our future conditions, illustrating an important method for
breeding and facilitating adaptation in other species.

The impact of climate change on life history traits has been
observed in many species, including earlier leaf and flower bud

burst in plants, earlier breeding date in birds and frogs,
and first observed flight date for butterflies (Parmesan 2006;
Rosenzweig et al. 2008). Flowering time (FT) in plants is an
important life history trait underlying reproductive fitness and
is sensitive to local growing conditions. FT, like many other
adaptive traits, affects survival. For example, over the past 150
years, species with flowering times less responsive to warming
temperatures have decreased in local abundance (Willis et al.
2008), suggesting that flowering time sensitivity is important
for climate adaptation. Flowering time is influenced by geno-
type (G), environment (E), and their interaction [genotype by
environment (G 3 E)]. Several studies in plants and animals
have looked at how quickly populations can adapt to rapid
climate change, given quantitative genetic variation along with
reproduction and migration rates (Franks and Hoffmann 2012;
Shaw and Etterson 2012), The genetic loci underlying this
phenotypic sensitivity can be detected by examining G 3 E.
These alleles would enable a population to adapt to changing
environments (Via and Lande 1985). G 3 E is also important
for model prediction of phenotypic variation, species diversity
and distribution, and crop yield stability under changing cli-
mates (Hoffmann and Willi 2008; Nicotra et al. 2010).
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Plants such as Arabidopsis thaliana have evolved different
life history strategies to adapt to a wide range of growing
regions and seasons through two major life history strategies
(Mitchell-Olds and Schmitt 2006). The rapid cycling strat-
egy is to germinate both in spring and early autumn and
then flower and set seeds rapidly. Winter annuals germinate
in early or late autumn and overwinter as a rosette, while
receiving a vernalizing cold period that promotes flowering
in spring. Many plants require vernalization to ensure re-
productive success.

Several genes have been identified as controlling flower-
ing that are sensitive to the environment. In brassicas,
including Arabidopsis, flowering locus C (FLC) is the major
gene underlying the vernalization requirement. FLC pre-
vents flowering during winter by repressing the floral inte-
grator genes such as flowering locus T (Simpson and Dean
2002). FLC is activated by a life history switch FRIDIDA
(FRI) (Johanson et al. 2000) but repressed by vernalization.
Together, functional FRI and FLC alleles promote overwin-
tering while null alleles at either locus allow rapid cycling
when conditions allow. In addition to the genetic require-
ments, the variation in life history depends on the seasonal
environment, with different germination times as a result of
different seasonal cues that are perceived by plants (Wilczek
et al. 2009; Li et al. 2010). For example, accessions with FRI
null alleles are rapid cyclers when they germinate in early
fall, but overwinter when they germinate in late fall. These
alterations indicate the importance of germination timing
under seasonal environments as well as genetic modifica-
tions (Wilczek et al. 2009). The fall germination time of
a population cohort can also affect flowering time under
basic greenhouse conditions with only minimal temperature
augmentation (Botto and Coluccio 2007).

Knowledge of what genetic loci sense climate cues is
important to understand and predict phenotypic responses
to future climate change. For example, populations with
variation at thermal-sensitive loci would be able to adapt
better than those lacking variation. In addition, plant
breeders could select for particular alleles for certain

environments as conditions change. Li et al. (2010) investi-
gated the natural genetic variation underlying flowering
time of A. thaliana under early and late spring simulated
climates for both the southern and the northern range. We
used a diverse mapping set of accessions typed at approxi-
mately 213,000 SNPs to finely map the genetic loci, using
genome-wide association studies (GWAS). Here we use the
same mapping set to investigate overwintering conditions
under current and future warmer seasonal climates. The
goal of this study is to investigate the genetic variation un-
derlying FT sensitivity to future seasonal warming within A.
thaliana. We hypothesized that genotypes would vary in
flowering responses dependent on the extent of future
warming but that this may be restricted to particular fall
germination times.

Materials and Methods

Experimental design

Seeds of a genetic and geographically diverse core set of
accessions were obtained from a previous study (Li et al.
2010) and were grown in the same conditions in 3 3 3 3
3-inch pots. Specifically, the seeds were stratified for 6 days
in the dark at 4� in 5 mg/liter gibberellic acid (GA) water to
promote germination (GA3; Sigma-Aldrich). They were then
transferred to soil under 24-hr light at 23� for 10 days to
synchronize the germination (most seeds germinated within
3 days). Plants were thinned to one in each pot and moved
into each of four simulated fall seasonal climate conditions
that represent current and future years (2010, 2025, 2040,
and 2055) with an increased diurnal and seasonal temper-
ature. Flowering time was recorded daily as days to flower
(DTF) bud after germination.

A typical Northern Hemisphere continental climate,
where populations have been well studied, was selected
for our study. We simulated this climate using SolarCalc 2.0
(Spokas and Forcella 2006) with latitude 41.84, longitude
287.68, and elevation 182 m (Chicago), using the 30-year

Figure 1 (A and B) Natural variation
in flowering time sensitivity to future
warming among A. thaliana accessions
in (A) September and (B) October germi-
nation cohorts. Each circle represents
the flowering time of one accession in
two environments. The accessions la-
beled a, b, c, and d in B are Lu-1, Ts-5,
N7, and Col-0, respectively.
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average air temperature within the program for the current
prediction. SolarCalc uses the local maximum and minimum
daily air temperatures derived using Global TempSIM
(Legates and Willmott 1990, 2006; Willmott and Matsuura
1995; New et al. 1999). Predicted warming values from the
Intergovernmental Panel on Climate Change fourth assess-
ment report (medium A1B scenario) were used in the gen-
eration of the predicted air temperatures. Two walk-in
growth chambers (AR-916; Percival Scientific, Perry, IA)
were programmed to cycle the simulated climates with
adjustments made every 5 min to light spectrum, light in-
tensity, temperature, and relative humidity throughout the
day and the season. For each planting, one chamber ran
simulated 2010 conditions while the other chamber ran sim-
ulated 2040 conditions. Within chambers, the top shelf
matched the target temperature while the bottom shelf
was recorded as 1� warmer and thus simulated additional
future conditions of 2025 and 2055. Together, these condi-
tions reflect current (2010) and predicted future warmer
growing seasons for 2025, 2040, and 2055 (Supporting In-
formation, Figure S1, A and B). The maximum humidity was
75% and the minimum temperature was 5�, due to the
chamber limitations. However, 5� is an effective temperature
for vernalization (Wilczek et al. 2009). To reduce the num-
ber of winter days with minimal growth, a shortened winter
season was simulated by running the simulation only every
second day in November and March and only every third
day in December, January, and February, compressing the
treatment down from 5 months to 2 months.

Germination cohorts in the wild are triggered by rainfall
and/or soil tilling and can occur at various times during fall.
In this study, we simulated fall climate conditions by
performing synchronized plantings in September and Octo-
ber to bracket the growth season window. Synchronized
germination is necessary to measure relative flowering time
variation among genotypes and their sensitivity to temper-
ature in early and late fall growing seasons. The final
September data set contained 1479 plants that survived
and ultimately flowered. This represented 417 distinct
accessions, with 288 flowering in all four conditions, 85 in
three conditions, 28 in two conditions, and 16 in a single
condition. All data in this study are available in File S1,
File S2, File S3, File S4 and at http://borevitzlab.anu.edu.
au/resources/association-studies.

Association mapping analysis

We considered the following model for our data analysis,

yij ¼ x9ijbþ zi
* þ xj*a* þ xj*bi* þ uij þ eij; i 2 f1; 2; 3; 4g;

j 2 f1; 2;⋯; ng;
(1)

where yij is the phenotypic value of the jth accession in the
ith environment (i.e., one of the four climate conditions
simulated for years 2010, 2025, 2040, and 2055, respec-
tively), xij represents intercept and covariates (if any) with

effects b, zi* ðz0* ¼ 0Þ is the effect of the ith environment, xj*
is a coding variable (with a value 0 or 1) of two genotypes at
the scanning locus and a* is the effect of the putative quan-
titative trait locus (QTL), bi* ðb0* ¼ 0Þ is the interactive effect
of the ith environment with the putative QTL, uij represents
polygenic variation, and eij denotes the residual effect.
While uij and eij are random, the rest are fixed effects.

We assumed that eij �iid Nð0;s2Þ; uij � Nð0; 2Kjjs
2
i Þ; and

covðui1j1 ; ui2j2Þ ¼ 2Kj1j2si1si2 with K = (Kij) being the kinship
matrix, and covðei1j1 ; ui2j2Þ ¼ 0: The kinship matrix K was
estimated from genotypic data by using the software EMMA
(Kang et al. 2008).

Under model (1) without the putative QTL effects, the
environmental effect zi* was statistically significant at 0.05.
Its estimate, ei*, was approximately linear in the temperature
across the 2010, 2025, 2040, and 2055 thermal seasonal
environments (R2 = 0.9976). Considering temperature is
a major gauge for the environmental conditions in our sim-
ulations, it was reasonable to replace the environmental
effect zi* with temperature or rather the estimated environ-
mental effect because of the approximate linearity. There-
fore, we used the following model for genome-wide
association and model selection,

yij ¼ x9ijbþ ei*b* þ xj*a* þ ei*xj*b* þ uij þ eij; (2)

where b* was a parameter corresponding to the environ-
mental-effect zi*’s when their scores ei* were used. The
advantages of using ei*’s rather than zi*’s in model (2) in-
cluded the following: (1) we were interested in the genetic

Figure 2 (A and B) Genome-wide association of flowering time (days to
flower) for main FT QTL (A) and THERM QTL (B) across four environments
(2010, 2025, 2040, and 2055). The dashed horizontal line represents the
5% empirical genome-wide significance threshold.
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basis of FT and its sensitivity across temperature environ-
ments (G 3 E) rather than to each specific temperature
environment; and (2) the number of parameters was re-
duced, which was potentially beneficial for the statistical
power to detect G 3 E effects with a reduced number of
total tests.

In the analysis of the DTF data, $10,000 SNPs with
a minor allele frequency ,5% were filtered out, and the
genome-wide scan for FT QTL was performed separately
for the September and October planting data, using the R
package QTLRel (Cheng et al. 2011). Forward model selec-
tion was then performed to determine the number and loca-
tions of putative QTL among SNPs with LOD scores larger
than the 0.05 empirical genome-wide significance threshold,
which was estimated from 5000 permutations of the geno-
type data (Cheng and Palmer 2013). The entry value to
include a new QTL in the model selection procedure was
the 0.05 empirical genome-wide significance threshold.
Next, the genome-wide scan was performed to identify
G 3 E QTL [or thermal sensitivity (THERM) QTL] by using
model (2) with the identified FT QTL being included as
covariates, and the model selection procedure was per-
formed to determine the number and locations of THERM
QTL in the same manner as above with the FT QTL being
added to THERM QTL candidates.

Finally, the identified FT QTL and THERM QTL were
included in model (2) to estimate QTL effects as well as
other parameters and to make best linear unbiased pre-
diction (BLUP) of the phenotype. The BLUPs were used to
predict phenotypes compared to observed phenotypes in
particular environments. If E, G, G3 E, and polygenic effects

were effectively modeled, the prediction should be reason-
ably accurate and provide useful information about the per-
formance of a plant in a future environment.

Results

Impact of future seasonal warming on flowering time
at the population level

We simulated changing diurnal light intensity, quality, and
day lengths for early and late fall planting times for a typical
location where Arabidopsis grows naturally. Diurnal and sea-
sonal temperature fluctuations were set to current (2010)
and predicted future climates (2025, 2040, and 2055) in-
creased by �1� for each 15 years into the future (Figure S1,
A and B). This simulation extends the growing season by
days to weeks, due to shorter winters (Figure S2A). Under
these conditions, the average flowering date of our global
population advanced as a consequence of the warmer grow-
ing seasons for both September and October planting
cohorts (Figure S1, C and D, and Figure S2B).

The phenotypic variation in FT was largely hidden in the
late fall germination cohort as essentially all accessions
overwintered. In contrast, the September germination co-
hort displayed both life history strategies (Figure 1 and Fig-
ure S1, Figure S2, Figure S3, Figure S4, and Figure S5).
Rapid cyclers flowered in fall while overwintering annuals
flowered in spring. A third maladapted minority class flow-
ered in winter. The proportion of rapid cycling plants (flow-
ering in fall) was incrementally higher for each 1�
temperature increase (Figure S2B).

Figure 3 (A and B) The effects of major fall flowering
time QTL across simulated climates; (C and D) the dif-
ferential effects of THERM QTL.
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Natural variation in flowering responses to future
warming among individuals

To evaluate the variation in flowering response to warmer
climates among individual genotypes, we compared FT of
each accession in current vs. future environments (e.g., 2010
vs. 2040). Substantial genetic variation in thermal sensitivity
of FT was observed in the September cohort (Figure 1 and
Figure S5). Some accessions showed strong FT responses to
warming. For example, the accession labeled c flowered in
spring (108 days after germination) in the 2010 climate, but
flowered in fall (37 days after germination) in the simulated
2040 climate, displaying altered life history in the warmer
future climate. The accessions that switched their life history
strategy contribute to the increased frequency of rapid cy-
cling plants under warmer climates. However, other acces-
sions displayed unaltered life history in the 2040 climate
(accessions a, b, and d).

In contrast, the October germination cohort, composed of
the same global set of accessions, showed little variation in
the FT sensitivity to future warming. Here, all accessions
overwintered, revealing the dramatic plasticity of potentially
rapid cycling accessions. The October cohort did respond
quantitatively to future seasonal climates with advanced
flowering time under warmer climates (Figure 1A and Fig-
ure S1, Figure S3, and Figure S5). Taken together, the flow-
ering time response was influenced by germination date,
genotype, and climate (diurnal and seasonal temperature).

Genetic loci for fall flowering time and thermal
sensitivity in early fall planting

Genetic variation was hidden in the October cohort but
revealed in the September cohort. Therefore, we chose to
focus on the discovery of the genetic basis for fall flowering
time (FFT) and THERM as G 3 E, in the September planting.
Figure 2, A and B, displays Manhattan plots of a single SNP
and a temperature–environment interaction scan, respectively,
showing several potential FFT QTL and THERM QTL. QQ
plots are shown in Figure S6 and Figure S7. The model selec-
tion process, described in Materials and Methods, resulted in
five FFT QTL: snp1_3978064, snp2_8272902, snp4_383752,
snp4_493905, and snp4_1330749. Three of these five FFT
QTL (snp1_3978064, snp4_383752, and snp4_1330749)
were also identified as spring FT QTL when the same acces-
sions were phenotyped in our previous climate study (Li et al.
2010) (Figure 3, A and B, and Table 1). Another, FFT4.2b
(snp4_493905), was tightly linked to the candidate gene Light
Responsive Bric-a-Brac3, At4g01160, with family members
shown to interact with phytochrome B and D diurnal and
seasonal signaling pathways (Christians et al. 2012).

Two additional SNPs were identified as QTL at a signifi-
cance level of 5% in a genome-wide scan but they were not
retained by the selection procedure. They are located within
10 kb of a priori candidate genes (FLC and CRP) so we in-
cluded them subsequently in the model. We also included the
two known major loss-of-function alleles at FRI (Li et al.

Table 1 Identified QTL and their estimated effects

Candidatea QTL Chr Positionb Freqc (%) Effect SE % variation

Intercept 55.8 38.1
Environment 5.1 0.8*** 0.15

SFT1 FFT1 1 3,978,064 19 225.0 4.9*** 12.03
FFT2 2 8,272,902 17 21.9 4.3***

SFT4.2 FFT4.2 4 383,752 31 19.4 3.8***
LRB3 FFT4.2b 4 493,905 44 218.0 3.5***
SFT4.3 FFT4.3 4 1,330,749 24 24.0 4.6***

CRP 4 219,919 15 9.4 5.4 1.40
FRller 4 268,809 91 8.9 5.9
FRlcol 4 269,962 6 27.3 6.1
FLC(2) 5 3,188,327 22 217.7 4.6***

GA2ox7 THERM1 1 18,897,058 17 16.8 4.5*** 0.15
ROF1 THERM3 3 9,185,447 25 8.5 4.3**
ARCK1 THERM4.1 4 7,148,335 6 214.3 7.8*

THERM4.2 4 7,626,840 48 8.0 3.6**
PLC1 THERM5 5 23,690,898 51 26.4 3.7*

GA2ox7 THERM1.e 1 18,897,058 17 21.5 0.3*** 7.04
ROF1 THERM3.e 3 9,185,447 25 21.2 0.2***
ARCK1 THERM4.1.e 4 7,148,335 6 22.3 0.4***

THERM4.2.e 4 7,626,840 48 0.9 0.2***
PLC1 THERM5.e 5 23,690,898 51 20.9 0.2***

Polygenic All All .5 76.59

***P = 0.01; **P = 0.05; *observed effect of SNP allele is opposite to that of candidate allele based on t test.
a Candidate gene or QTL identified by Li et al. (2010).
b Physical position (in base pairs) according to TAIR9.
c Reference Col-0 allele frequency.
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2010). These four SNPs were included with the initial five
FFT QTL as covariates in a subsequent G3 E scan. In this run,
the model selection process identified a further five THERM
QTL: snp1_18900758, snp3_9185447, snp4_7148335,
snp4_7626840, and snp5_23690898. For four of five
THERM QTL, the main effect on FT (Table 1) was not sig-
nificant while the interaction with temperature was consid-
erable. The THERM3 QTL SNP3_9185447 is located within
10 kb of the Rotamase FKBP 1 gene, ROF1 (AtFKBP62,
AT3G25230; Figure 3C). THERM4.2 and THERM5 QTL dis-
played a large deviation in allele frequencies between the
thermal-sensitive and -insensitive groups. Accessions that
contain the thermal-sensitive (nonreference) allele at this
SNP showed a substantial increase in the frequency of the
rapid cyclers under future warming, compared to accessions
with the Col allele (Figure 4). THERM5 (SNP5_23690898)
is located within 10 kb of a phospholipase C1 gene (PLC1,
AT5G58670). Another strong candidate gene was identified
for THERM QTL at SNP1_18900758, which is within 10 kb
of gibberellin 2-oxidase (GA2OX7, AT1G50960), a flower-
ing-time hormone biosynthetic gene.

We investigated epistasis among all the identified QTL;
however, none of the interactions exceeded the 0.05
empirical significance threshold. Table 1 shows the results of
a fit with the full model with all five FFTs, four a priori loci,
and five THERM QTL. The proportion of variation explained
by factor groups is also shown. Note that together the major
FFT QTL explain only 12% while the THERM QTL explain
a similar 7% of the variation. The dominant factor (76%) is
the polygenic background, estimated as a random effect, using
the pairwise kinship matrix.

Phenotype prediction

To assess the potential to forecast phenotypes from genotypes
under future climates, we calculated the BLUPs of QTL effects
in two different scenarios. First, we used the phenotype and
genotype data from three simulated climates (2010, 2025, and
2040) to fit model (2), including all identified QTL, and then
treated the estimates of the model parameters as their true
values to predict flowering time in the final simulated climate
(Figure 5A). Second, we randomly selected a subset of 90% of
the accessions across all environments to fit model (2) in the
same way and then predicted flowering time for the remaining
10% of accessions. Figure 5B displays the BLUP results. The
prediction was quite accurate in both scenarios because model
(2) could account for �95% of the total phenotypic variation
(Table 1). However, if the polygenic term is not included, the
predictive power is largely reduced (Figure 5C). This highlights
the importance of background genetic variation on phenotype,
with positive implications for genomic selection even when
major QTL are not known.

Discussion

A general trend of advanced flowering time has been seen in
many species due to climate warming (Parmesan 2006), but

little was known about the natural variation within a species
or the genetic architecture underlying these responses. The
genetic factors allow predictions on population persistence
and/or species range shifts under environmental change
(Chevin et al. 2010; Duputié et al. 2012). In the field, ger-
mination is highly variable and may change in future cli-
mates. In this study we selected an early and a late fall
time point for germination to bracket the natural range to
study seasonal flowering time response. The genetic loci
sensing climate variation (G 3 E loci) can reveal alleles
involved in local adaptation (Fournier-Level et al. 2011;
Hancock et al. 2011; Horton et al. 2011; Méndez-Vigo

Figure 4 THERM5 shows a common G 3 E effect. (A) Scatterplot of FT
for accessions in 2010 vs. 2040 color coded by genotype at THERM5 QTL.
(B and C) Life history stages of the different genotypes across each of the
four simulated climates.
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et al. 2011) and provide an opportunity to breed crops for
future climate change (Nicotra et al. 2010).

In this study, we identify candidate genes and pathways
underlying the thermal variation in seasonal flowering time
(THERM QTL, G 3 E). ROF1 modulates thermotolerance by
interacting with heat-shock protein 90 (HSP90) and affects
the accumulation of small HSPs (Meiri and Breiman 2009).
HSPs are well known for their importance in thermotoler-
ance, but, more interestingly, they are chaperones of many
regulatory proteins and buffer genetic variation. Recent
studies in A. thaliana have shown that HSP90 contributes
to phenotypic variation and plays a role in developmental
plasticity by buffering or releasing variation under shifting
environments (Queitsch et al. 2002; Sangster et al. 2007,
2008). PLC1 is induced by various environmental stresses
such as dehydration, salinity, and low temperature. Finally,
variation in QTL near two gibberellin oxidases suggests GA
as the important pathway underlying seasonal thermal sen-
sitivity in flowering time, previously known to be important
only in constant temperature sensing (Blazquez et al. 2003).

Subtle, but consistent, changes in environmental cues
perceived by A. thaliana are amplified through THERM QTL
alleles, affecting downstream signaling cascades that result
in a qualitative shift from overwintering to rapid cycling,
which would have dramatic effects on reproduction. Alleles
at unlinked THERM QTL can be combined to provide vary-
ing degrees of overall thermal sensitivity, depending on the
environment and standing genetic variation. The candidate
genes reveal the molecular signaling underlying the altered
life history outcomes and include crosstalk among previ-

ously characterized photoperiod, gibberellin, vernalization,
and autonomous pathways of FT regulation (Henderson and
Dean 2004). Together, FFT and THERM QTL, environmental
change, and the polygenic background cause a highly pre-
dictable switch to rapid cycling.

Some accessions and many common alleles in this mapping
population were originally collected in the United States and
represent genotypes that occur as local populations in the
Chicago area where climates were simulated. Among these,
both thermal-sensitive and -nonsensitive genotypes have been
found. The common alleles at THERM QTL discovered in this
study represent the natural variation in specific local popula-
tions (Platt et al. 2010). If FFT and THERM QTL played an
important role in the distribution of Arabidopsis across its
range, we would expect to find a strong association with lat-
itude of origin; however, this was not the case for the FFT and
THERM QTL identified in this study. Future studies could use
multiple local populations and seasonal environmental gra-
dients to more carefully assess their role in local adaptation.

In summary, this study focuses on the natural genetic
variation in thermal sensitivity of the life history trait,
flowering time, under simulated current and future fall
growing seasons, in a large diverse mapping set of A. thali-
ana. The average FT of the population advanced with increas-
ing temperature. Qualitative, genotype-level variation in
flowering responses to future warming was observed. Select
genotypes of an early fall germination cohort switched from
overwintering to rapid cycling in future warmer climates.
These observations suggest interactions between light and
thermosensory pathways controlling FT. Here, we report

Figure 5 (A) Flowering time in 2055 predicted from data in the first three environments 2010, 2025, and 2040; (B) flowering time of a random subset
of 10% of accessions predicted from data of the remaining 90% of accessions. (C) Flowering times that would be obtained for the QTL alone without
polygenic terms vs. the actual flowering times.
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several major QTL for natural variation in the FT and thermal
sensitivity for this life history transition. By simulating sea-
sonal temperature increases, in climate chambers, we identi-
fied a genetic model that accurately predicts future flowering
phenotypes (Figure 5). Further, we identify candidate genes
responding to temperature that are part of the gibberellin and
heat-shock pathways. The QTL identify allelic variation,
which may provide A. thaliana with the potential to adapt
to warming climates. Genotypes with a switched life history
strategy (from overwintering to rapid cycling) can set seeds
rapidly before winter and germinate again in spring, which
would enable them to reproduce multiple times per year,
a clear fitness advantage in many conditions. Indeed, the
thermal sensitivity loci identified may provide the plasticity
in flowering time to help A. thaliana continue to adapt to
a wider range of locations and future growing seasons. Fur-
ther experiments, such as the one presented here, on standing
genetic variation in crop plants and foundation species can
reveal the source populations and alleles that should be uti-
lized and conserved to keep pace with future climate change.

Early warnings about the limits of genetic adaptation under
rapid climate change (Davis and Shaw 2001) stated that the
limited connectivity and large range shifts required leave pop-
ulations and species vulnerable to extinction. Specialists are
particularly at risk, while generalists showing a higher degree
of environmental plasticity may fare better (Anderson et al.
2012). Variation in climate sensitivity also exists within spe-
cies and between populations (Angert et al. 2011), complicat-
ing migration under climate change. An understanding of the
genetic basis of climate sensitivity can aid breeder and land
managers in finding a match between genotype and environ-
ment. Here we identify quantitative trait loci differing in sea-
sonal thermal sensitivity. This allows predictions about the
resilience of a given genotype or population to a particular
environmental shift and can guide collection and restoration
efforts in foundation species through managed relocation
(Schwartz et al. 2012). Our study suggests a pathway to fa-
cilitate adaptation into new and variable climates.
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File S1

Supplemental Figures:

GeneƟc VariaƟon for Life History SensiƟvity to Seasonal Warming in Arabidopsis thaliana

Figure S1 Simulated climates and flowering Ɵme of the worldwide A. thaliana populaƟon in Fall germinaƟon cohorts.
(A) Day length during the experiment. Horizontal dashed line represents the duraƟon of the winter periods when day
length is 10 h or shorter. (B) Average daily temperature during the experiment. Horizontal dashed line corresponds to
6C. Histogram of flowering Ɵme under current (2010) and future climates (2025, 2040, and 2055) for (C) October and (D)
September planƟng. Horizontal dashed lines corresponding to the winter periods when average daily temperature is 6C
or below.
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Figure S2 Impact of future warming on seasons and percentages of flowering groups. (A) Simulated climates split by
season. Winter days correspond to average daily temp of 6C. (B) The proporƟon of rapid cycling plants, that flowered in
Fall, is increased with future warming. The numbers inside the bars represent the counts (number of accessions) in the
flowering groups.
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Figure S3 Pairwise plots of October flowering Ɵme (FT) under simulated current (2010) and future (2025, 2040, and 2055)
climates. Each dot represents the FT of one accession in two environments.
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Figure S4 Pairwise plots of September flowering Ɵme (FT) under simulated current (2010) and future (2025, 2040, and
2055) climates. Each dot represents the FT of one accession in two environments.
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Figure S5 Genome-wide associaƟon of flowering Ɵme (days to flower) for main FT in October. The dashed horizontal line
represents the 5% empirical genome-wide significance threshold and solid line represents the 1% threshold.
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Figure S6 QuanƟle QuanƟle plot for FFT QTL
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Figure S7 QuanƟle QuanƟle plot for THERM QTL
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