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Abstract
Maximal inhibition (Imax) of the agonist effect is an important pharmacological property of
inhibitors that interact with multiple receptor subtypes that are activated by the same agonist and
which elicit the same functional response. This report represents the first QSAR study on a set of
66 mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic
acetylcholine receptors mediating nicotine-evoked dopamine release, conducted using multi-linear
regression (MLR) and neural network (NN) analysis with the maximal inhibition (Imax) values of
the antagonists as target values. The statistical results for the generated MLR model were: r2 =
0.89, rmsd = 9.01, q2 = 0.83 and loormsd = 11.1; the statistical results for the generated NN model
were: r2 = 0.89, rmsd = 8.98, q2 = 0.83 and loormsd = 11.2. The maximal inhibition values of the
compounds exhibited a good correlation with the predictions made by the QSAR models
developed, which provide a basis for rationalizing selection of compounds for synthesis in the
discovery of effective and selective second generation inhibitors of nAChRs mediating nicotine-
evoked dopamine release.
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1. Introduction
Tobacco smoking is a leading health problem accounting for more illnesses and deaths in
the US than any other single factor.1 Several drugs are currently marketed for smoking
cessation, including nicotine (as a replacement therapy) and bupropion (an antidepressant
agent with nicotinic receptor antagonist properties), 2 as well as the newest non-nicotine
prescription drug, varenicline. 3,4 Unfortunately, relapse rates are high with these agents,
indicating that novel medications are still needed.2–5

Previous research6–13 in our laboratories has led to the discovery of a new class of neuronal
nicotinic acetylcholine receptor (nAChR) antagonist resulting from N-n-alkylation of the
pyridine moiety of either the nicotine molecule or structural analogs of nicotine. These novel
quaternary ammonium compounds exhibit potent and selective inhibition of nAChR
subtype(s) that mediate nicotine-evoked dopamine (DA) release from dopaminergic nerve
terminals in striatum.6,7 Such antagonists may have potential as novel smoking cessation
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agents, and are of considerable interest, due to their selective antagonist activity at nAChR
subtypes, and their ability to penetrate the blood–brain barrier (BBB) via active transport by
the BBB choline transporter.14 We have previously reported structure-based studies on the
molecular interaction of some typical agonists and antagonists with nAChRs.15–18 In
addition, the structure activity/function relationships of the novel quaternary ammonium
nAChR antagonists have been studied previously using various QSAR modeling
approaches.19–21

In the nicotine-evoked DA release assay, two parameters are measured to define antagonist
interaction with nAChRs mediating this effect, that is, IC50 and Imax values. IC50 is defined
as the concentration of antagonist that inhibits the agonist effect by 50% of the maximal
effect, and is related to the affinity of the antagonist for the receptor site, but takes into
account that a functional assay is employed. Thus, the direct affinity (Ki value) of the
antagonist for the receptor is not measured in the nicotine-evoked DA release assay, since it
is several steps removed from the ligand–receptor protein interaction. The Imax value is
defined as the concentration of antagonist producing maximal inhibition of the agonist
effect.

A number of different nAChRs subtypes have been reported to mediate nicotine-evoked DA
release from the striatum. Thus, α4β2, α6β2, α4α5β2, α6β2β3, α4α6β2 and α4α6β2β3
nAChRs play an important role in nicotine-evoked DA release in mouse striatum, whereas
deletion of β4 and α7 subunits do not appear to play a role in nAChR-mediated DA release
from this brain region. 22,23 The α4α6β2β3 subtype constitutes about 50% of α6-containing
nAChRs on DA terminals of wild-type mice and has the highest sensitivity to nicotine of
any native nAChR, strongly implicating this subtype in nicotine-evoked DA release.24,25

The nonselective nAChR antagonist, mecamylamine, was shown to nearly completely
inhibit (Imax = 91%) nicotine-evoked DA release,26 while the snail toxin α-conotoxin MII
(α-CtxMII) is a selective, high-potency antagonist at a subset of nAChR subtypes containing
α6 (Imax = 62%).27–29 We have reported recently on the nAChR antagonist properties of a
series of small molecules that are quaternary ammonium salts which inhibit nicotine-evoked
DA release from rat striatum and appear to interact with the same α6β2-containing subtypes
with which α-CtxMII interacts.30 The lead compound in this series was N,N′-dodecane-1,12-
yl-bis-3-picolinium dibromide (bPiDDB), which exhibited an IC50 of 2 nM and an Imax of
78%.

The Imax values of a series of quaternary ammonium analogs synthesized in our laboratory
ranged from 0% to 100%, and many of them, such as the N,N′-alkane-diyl-bis-3-picolinium
analogs with C6–C12 methylene linkers, exhibited Imax values of 54–64% of nicotine-evoked
DA release from rat striatal slices, suggesting that they selectively inhibit some, but not all
nAChR subtypes mediating nicotine-evoked DA release in this brain tissue.30 Further
research has demonstrated that quaternization of the pyridine nitrogen of the nicotine
molecule with a lipophilic N-alkyl substituent to afford N-alkylnicotinium analogs and/or
various quaternary ammonium moieties interconnected with a lipophilic linker to afford N,N
′-bis-analogs, generates subtype-selective nAChR antagonists.6,7 Discovery of antagonists
that can selectively inhibit nAChR subtypes is important, since such compounds may be
advantageous as potential compounds for the treatment of nicotine addiction because they
would be predicted to have minimal side effects in comparison to nonspecific nAChR
antagonists such as mecamylamine.

In this study, the Imax values of a series of quaternary ammonium analogs were taken as
target values on which to build QSAR models using multi-linear regression procedures and
back-propagation neural network approaches. To our knowledge, this is the first QSAR
study that utilizes Imax values as target values. The experimentally measured Imax values
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generally have a smaller data range (0%–100%) and relatively larger experimental errors
(20%), thus introducing some difficulty for mathematical modeling. Based on currently
available Imax values for 66 mono- and bis-quaternary ammonium salts identified as
antagonists at nAChR subtypes that mediate nicotine-evoked dopamine release, descriptors
selected by stepwise regression from various molecular properties were used to train and
validate multiple linear regression and neural network QSAR models. The maximal
inhibition of the synthesized antagonists was evaluated. The results demonstrate that the
performance of the generated QSAR is satisfactory, and consistent with expectations, based
on the validation measurements.

2. Results and discussion
The experimental Imax values for 72 molecules are provided in Table 1, and vary from 0% to
100%. MLR analysis was initially applied to the complete data set of molecules utilizing
1497 descriptors and a single empirical Imax value. The preliminary analysis of Imax values
produced a squared correlation coefficient (r2) of 0.74 and a predictive q2 of 0.64 for leave-
one-out cross validation. The residual variance plot from the MLR regression revealed that
compounds BCDD, NBuPI, NHpPI, NOPI, bPiHxI, and bIQNB were outliers. Removing
these compounds from the model significantly improved the correlation (r2 of 0.88 and q2 of
0.83). These compounds were thus excluded from further analysis. Constant and near
constant descriptors and the highly inter-correlated (>0.90) descriptors were discarded to
obtain a reduced set of 250 descriptors.

2.1. Determination of the number of descriptors for building the multi-linear regression
model

To build the most reasonable linear model, the forward-selection and backward-elimination
stepwise regression procedure was used to select descriptors from the reduced set of 250
descriptors. Single descriptors were gradually added to build the MLR model. The ‘break
point’ technique31 was used to control the model expansion in the improvement of the
statistical quality of the model. The ‘break point’ was found by analyzing the relationship of
the number of descriptors involved in a generated model versus the value of the correlation
coefficient r2 corresponding to the model. The optimum number of descriptors for the MLR
model was determined as the number of descriptors corresponding to the ‘break point’. If the
difference between r2 of the two consequent regression equations was less than or equal to
0.02 after obtaining a certain number of descriptors selected for the model (the ‘break
point’), then no statistical improvement of the regression model was demonstrated.

Five MLR models were generated. The first MLR model was initiated from a descriptor
which is most correlated to the target values. Accordingly, the other four MLR models
started with a descriptor in which the Pearson correlation coefficient with the target values
ranked as the second, the third, the fourth, or the fifth, in a descending order among the 250
utilized descriptors. The five QSAR models obtained and their statistical characteristics are
shown in Table 2. Results in Table 2 indicate that the ‘break point’ occurred when the
number of the descriptors used to generate the MLR models was between 10 and 12. In
other words, although the linear models were generated by utilizing initially five different
descriptors, the number of descriptors used to build the most reasonable MLR models does
not change significantly. The training r2, training root mean square derivation (rmsd), q2 and
leave-one-out root mean square derivation (loormsd) of the five linear models are similar,
and give rise to average values of 0.87, 9.60, 0.81, and 11.8, respectively. The data in Table
2 indicate that the number of descriptors used to build the most reasonable MLR model to fit
the observed Imax values is 11 on average.
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2.2. Quality of the generated MLR model
Although the five linear models created in Table 2 have similar quality, the best model was
entry 2. The linear model with 11 descriptors is given in Eq. 1:

(1)

where MATS4m and MATS3e are among the 2D autocorrelations; PW5 is among the
topological descriptors; Du, G3v and G2m are among the WHIM descriptors; DISPv is
among the geometrical descriptors; n#CR is among the functional groups; AROM is among
the aromaticity indices; and the RDF070m and RDF045m are among the RDF descriptors
calculated by DRAGON software.32 Brief definitions of the descriptors used in the linear
regression relationship are provided in Table 3. The Pearson correlation coefficient R
between the 11 descriptors is listed in Table 4. All the non-diagonal elements were less than
0.70, indicating that the co-linear situation between different descriptors and redundant
information included in the set of descriptors are low. The statistical analysis for the multi-
linear regression indicated that the correlation coefficient r2 and rmsd between the observed
and the fitted Imax values was 0.89 and 9.01, respectively (Table 2). The leave-one-out
validation q2 was 0.83, and the loormsd (the root mean square derivation from the leave-
one-out validation) was 11.1 (Table 2). The Fischer statistic F was 38.43. Figure 1 shows the
relationships of the trained and LOO-predicted Imax values versus the experimental Imax
values for the MLR model. The calculated Imax values for the 66 molecules from the MLR
model (Eq. 1), as well as the LOO validation results, are provided in Table 1.

2.3. Evaluation of the generated MLR model by leave-n-out validation
To test the ability of the model for predicting Imax values of a set of molecules, the leave-n-
out cross validation was performed. For the 66 quaternary ammonium salts studied, the 66
observed Imax values were ranked in ascending order. Six subsets were constructed by
collecting the 1st, 7th, 13th, etc. data points into the first subset; and the 2nd, 8th, 14th, etc.
data points into the second subset. The other four subsets were constructed accordingly. Six
training sets were prepared as combinations of any five subsets. The remaining subset was
used as a test set. Thus, every time 55 molecules (83.3%) out of the 66 data set of molecules
were used to train the model, a subset of 11 molecules (16.7%) out of the 66 molecules was
used to test the model. For each training set, a correlation equation was derived with the
same 11 descriptors listed in Table 3. New regression coefficients were obtained. Then, the
generated new regression equation was used to predict the Imax values for the molecules
from the corresponding test set. The quality of the QSAR models was demonstrated by the
statistical results provided in Table 5. The average correlation coefficients of the training r2,

rmsd, leave-n-out predictive  and root-mean square derivation (testrmsd) are 0.89, 8.79,
0.80 and 11.6, respectively, which is close to the statistical results (0.89, 9.01, 0.83, and
11.1, respectively) obtained from training and LOO validation of the MLR model (Eq. 1).
These results indicate that the MLR QSAR model has stable predictive power within the
current experimental data set.

2.4. Neural network analysis
A limitation of the results calculated by the generated MLR models in Table 2 is that for
some compounds where the experimental Imax values are zero, the theoretical prediction for
these compounds gives rise to negative values. Similarly, the model could over-predict the
Imax value of a compound to provide a value over 100%, when the compound has a large
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experimental Imax value (e.g., 95%–100%). This is the common feature of a linear model
when dealing with the boundary points within a data range. However, Imax values should
never be less than 0% or larger than 100%.

The artificial neural network technique has been demonstrated to be an effective tool for
data mining, and has been used in many QSAR studies.19–21,33–38 This artificial system
emulates brain function, in which a very high number of information-processing neurons are
interconnected and are known for their ability to model a wide set of functions, including
linear and non-linear functions, without knowing the analytic forms in advance. Being
different from a linear model, neural network prediction can be expected in a pre-specified
data range. With the 11 descriptors used in the MLR model (Equation 1, descriptors listed in
Table 3), the back propagation neural network model with architecture NN11-h-1 (h = 1–3)
was trained and leave-one-out validated, in which 11 is the number of input neurons
corresponding to the 11 descriptors, and h represents the number of hidden neurons. The
neural network models have one output neuron corresponding to the Imax value.

Figure 2 shows the training and leave-one-out errors (rmsd and loormsd) as functions of the
number of training cycles for the NN11-1-1, NN11-2-1 and NN11-3-1 models. From the
data, increasing the number of hidden nodes (h = 2 or 3) does not apparently decrease
loormsd in the validation. However, the training errors decrease for models NN11-2-1 and
NN11-3-1 compared with the results from model NN11-1-1. For model NN11-1-1, the
training and validation errors do not change after the training cycles are over 30000. To
avoid overtraining the model, the model NN11-1-1 was considered to be optimal.

The statistical results for the NN11-1-1 model with errors converged versus training cycles
are as follows: r2 = 0.89, rmsd = 8.98, q2 = 0.83 and loormsd = 11.2, which are close to the
statistical results for the generated MLR model (r2 = 0.89, rmsd = 9.01, q2 = 0.83 and
loormsd = 11.1). Thus, both MLR and NN models afford similar predicted values. Imax
values calculated by the NN11-1-1 model, as well as its leave-one-out validation results for
the 66 quaternary ammonium salts, are provided in Table 1. Comparing the Imax values with
those calculated by the MLR model (Eq. 1), many of the values are equal to or close to each
other, except for those boundary points between 0% and 100%. The linear feature of the
Imax values versus the 11 variables was sufficiently reflected by the nearly linear model
NN11-1-1. However, the Imax value of a compound was never predicted to be negative or
larger than 100% by the NN11-1-1 model. Figure 3 shows the relationships of the trained
and LOO-predicted Imax values versus the experimental Imax values for the NN11-1-1
model.

Leave-n-out cross-validation was also performed for the NN11-1-1 model to test its ability
to predict an external compound set. Six subsets were constructed from the dataset of 66
quaternary ammonium salts in the same way as those created for the leave-n-out validation
of the MLR model (Eq. 1). Similarly, six training sets were generated as combinations of
any five subsets. The remaining one was used as a test set. Six neural networks (11-1-1
architecture) with 11 descriptors (listed in Table 3) as inputs were trained, based on each of
the six newly generated training sets, and the prediction was made for their corresponding
test set. The results are listed in Table 6. As seen from Table 6, the statistical average of the

training r2, rmsd, leave-n-out predictive  and root-mean square derivation (testrmsd) for
the six groups examined are 0.89, 8.73, 0.79 and 11.7, respectively, which is similar to the
statistical average obtained from the leave-n-out validation of the MLR model (i.e., 0.89,
8.79, 0.80 and 11.6, respectively), and is close to the statistical results (0.89, 8.89, 0.83, and
11.2, respectively) obtained from the training and LOO validation of the NN11-1-1 model
with the 66 molecule set. These results indicate that the NN11-1-1 model has stable
predictive power on a set of compounds like the MLR model (Eq. 1).
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An interesting phenomenon shown in Table 6 is that compared to other entries, entry 3 has

better training r2 (0.92) with a smaller root-mean square derivation (7.53), but worse 
(0.45) with a larger root-mean square derivation (19.28). Data analysis reveals that the
reason for this is that the two molecules (AST and bIQOI in Table 1) with exceptionally
large training and LOO validation errors in Figure 3 (the two points outside the dash line
boundaries) are both allocated to the test set of entry 3. The same fact holds for the leave-n-
out validation of the MLR model, as shown in Table 5.

2.5. Descriptor contribution analysis
The 11 descriptors used in the generated MLR model (Eq. 1) and the neural network model
NN11-1-1 can be classified as follows: (i) 1D descriptor: n#CR. (ii) 2D descriptors: PW5,
MATS4m, and MATS3e. (iii) 3D descriptors: Du, DISPv, G3v, G2m, AROM, RDF070m,
and RDF045m. Based on a previously described procedure, 19,34 the relative contribution of
each descriptor in the MLR model (Eq. 1) and the NN11-1-1 model were determined, and
are provided in Table 7. The significance of the descriptors involved in the MLR model
decreases in the following order: MATS4m > PW5 > G3v > MATS3e > n#CR > G2m >
RDF070m > DU > RDF045m > AROM > DISPv. The significance of the descriptors
involved in the NN11-1-1 model decreases in the order: MATS4m > PW5 > n#CR >
RDF070m> RDF045m > DU > G2m > G3v > MATS3e > DISPv > AROM. The two most
significant descriptors in both the MLR and NN11-1-1 models are identical, that is, 2D
descriptors MATS4m and PW5. MATS4m is a 2D autocorrelations descriptor calculated
from molecular graph by summing the products of atom weights of the terminal atoms of all
the paths of the considered path length (the lag). MATS4m represents Moran
autocorrelation, that is, lag 4/weighted by atomic masses. The MATS4m descriptor itself
correlated relatively high (R = 0.604) with the target experimental Imax values. The positive
Pearson correlation coefficient for MATS4m indicated that the compounds with larger
values for this descriptor would have larger Imax values. Thus, this descriptor could be an
indicator for inhibitors that have a large Imax value. PW5 is a topological descriptor related
to molecular shape, and has a smaller Pearson correlation coefficient with the experimental
Imax values (R = 0.218). Although the order of the relative contribution from the other nine
descriptors is different from each other in the two models, the individual contribution from
all of these descriptors is very close (i.e., from 7.76 to 8.78 for the MLR model and from
7.75 to 9.46 for the NN11-1-1 model). Thus, the contribution from these descriptors to both
models can be regarded as similar.

It should be noted from Table 7 that the difference in descriptor contribution between any
two descriptors used in the models is not significant, indicating that all descriptors are
indispensable in generating the predictive models. Eleven descriptors were needed in the
QSAR models from a 66 molecule dataset, showing that the analyzed dataset is quiet ‘noisy’
within a small data range (0%– 100%), although it is not against the rule of thumb for
building a linear model, that is, at least five data point (molecules) per descriptor must exist
in the model.

3. Conclusion
In the current study, MLR and NN approaches have been used to build QSAR models to
predict Imax values of quaternary ammonium salts which are antagonists at nAChRs
mediating nicotine-evoked DA release from dopaminergic nerve terminals in striatum. This
work is the first report of a QSAR technique being applied to the prediction of Imax values
for a series of nAChRs antagonists. The statistical results for the generated MLR model are:
r2 = 0.89, rmsd = 9.01, q2 = 0.83 and loormsd = 11.1; The statistical results for the generated
NN model are: r2 = 0.89, rmsd = 8.98, q2 = 0.83 and loormsd = 11.2. The Imax values
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correlated well with the predicted values generated by the two models developed in the
present study, which provide a basis for rationalizing selection of compounds for synthesis
in the discovery of effective and selective second generation inhibitors of nAChRs
mediating nicotine-evoked DA release.

4. Methods
4.1. Generation of the molecular database

Seventy-two molecules listed in Table 1 constituted a database for the structure-activity
correlation analysis. Molecular modeling was carried out with the aid of the SYBYL
discovery software package. 39a This software was used to construct the initial molecular
structures used in the geometry optimization (energy minimization) for all molecules
involved in this study. In construction of the initial molecular structures, a formal charge of
+1 was assigned to each positively charged nitrogen atom in the structures of these
compounds, and the alkyl chain connecting the head group(s) was kept in its fully extended
conformation.19,21 The geometry optimization was first performed using the molecular
mechanics (MM) method with the Tripos force field and the default convergence criterion,
which was then followed by a semi-empirical molecular orbital (MO) energy calculation at
the PM3 level.39

4.2. Generation of molecular descriptors
The optimized three-dimensional conformations were used for generation of molecular
descriptors. A total number of 1497 descriptors consisting of zero-dimensional
(constitutional), one-dimensional (functional groups, atom-centered fragments, empirical
descriptors, properties), two-dimensional (topological descriptors, molecular walk counts,
BCUT descriptors, Galvez topological charge indices, and 2D autocorrelations), as well as
three-dimensional descriptors (charge descriptors, aromaticity indices, Randic molecular
profiles, geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors, WHIM
descriptors, and GETAWAY descriptors) were created by the DRAGON program for each
compound. 32 Most of the descriptors from the DRAGON program have been reviewed in
the textbook by Todeschini and Consonni.40 A reduced descriptor set of 250 was obtained
after the constant and near constant descriptors and the highly inter-correlated (>0.90)
descriptors were discarded.

4.3. Stepwise descriptor selection by multiple linear regressions
The descriptor selection and the MLR analyses were performed using the SYBYL discovery
software package39 and an in-house FORTRAN 77 program.19,21 Starting from the entire set
of descriptors, variable selection by a forward and reverse stepwise regression procedure
was performed, in which forward selection was followed by backward elimination of
variables, resulting in an equation in which only variables that significantly increased the
predictability of the dependent variable were included.

4.4. Neural network QSAR modeling
Feed-forward, back-propagation-of-error networks were developed using a neural network C
program.19,21,34 Network weights (Wji(s)) for a neuron ‘j’ receiving output from neuron ‘i’
in the layer ‘s’ were initially assigned random values between −0.5 and +0.5. The sigmoidal
function was chosen as the transfer function that generates the output of a neuron from the
weighted sum of inputs from the preceding layer of units. Consecutive layers were fully
interconnected; there were no connections within a layer or between the input and the
output. A bias unit with a constant activation of unity was connected to each unit in the
hidden and output layers.
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The input vector was the set of descriptors for each molecule in the series, as generated by
the previous steps. All descriptors and targets were normalized to the [0,1] interval utilizing
Eq. 2

(2)

where Xij and  represents the original value and the normalized value of the jth (j = 1, …,
k) descriptor for compound i (i = 1, …, n), and Xmin and Xmax represent the minimum and
maximum values for the jth descriptor. The network was configured with one or more
hidden layers. During the neural network learning process, each compound in the training
set was iteratively presented to the network. That is, the input vector of the chosen
descriptors in normalized form for each compound was fed to the input units, and the
network’s output was compared with the experimental ‘target’ value. During one ‘epoch’,
all compounds in the training set were presented, and weights in the network were then
adjusted on the basis of the discrepancy between network outputs and observed Imax values
by back-propagation using the generalized delta rule.

4.5. Target properties
Experimental Imax values for the synthesized compounds were measured according to the
procedure described by Dwoskin et al.7,30 The Imax values (in percent) were used as the
target property to derive the QSARs.

4.6. Model validation
Models were cross-validated using the ‘leave-one-out (LOO)’ and ‘leave-n-out (n = 11)’
approaches.

4.7. Evaluation of the QSAR models
The overall quality of the models is indicated by the Pearson correlation coefficient r2, the

root-mean squared deviation (rmsd), the Fischer statistic (F), predictive q2 or , and the
leave-one-out/leave-n-out root-mean squared deviation loormsd/testrmsd. The predictive q2

or  are defined in Eq. 3 below:

(3)

where SD is the sum of squared deviations of each measured Imax value from its mean, and
PRESS is the predictive sum of squared differences between actual and predicted values.
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Figure 1.
The calculated versus the experimentally determined Imax values from the DA release assay
for the trained (shown in blue squares) and leave-one-out cross-validation (shown in red
triangles) for the best MLR QSAR model. The solid line represents a perfect correlation.
The dotted lines represent ±20% difference from a perfect fit.
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Figure 2.
The training and leave-one-out errors (rmsd and loormsd) as functions of the number of
training cycles of the NN11-1-1, NN11-2-1 and NN11-3-1 models.
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Figure 3.
The calculated versus the experimentally determined Imax values from the DA release assay
for the trained (shown in blue squares) and leave-one-out cross-validation (shown in red
triangles) for the NN11-1-1 QSAR model. The solid line represents a perfect correlation.
The dotted lines represent ±20% difference from a perfect fit.

Zheng et al. Page 13

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 14

Ta
bl

e 
1

St
ru

ct
ur

es
, e

xp
er

im
en

ta
lly

 d
et

er
m

in
ed

 I
m

ax
 v

al
ue

s 
(i

n 
%

) 
fr

om
 n

ic
ot

in
e-

ev
ok

ed
 D

A
 r

el
ea

se
 a

ss
ay

s 
fo

r 
72

 m
ol

ec
ul

es
, a

nd
 I

m
ax

 v
al

ue
s 

(i
n 

%
) 

ca
lc

ul
at

ed
 b

y

th
e 

M
L

R
 m

od
el

 a
nd

 th
e 

N
N

11
-1

-1
 m

od
el

, a
s 

w
el

l a
s 

th
ei

r 
le

av
e-

on
e-

ou
t v

al
id

at
io

n 
re

su
lts

 f
or

 6
6 

qu
at

er
na

ry
 a

m
m

on
iu

m
 s

al
ts

a

N
o.

C
om

pd
 n

am
e

R
I m

ax
%

 (
E

xp
t.

)
I m

ax
%

 (
ca

lc
d)

I m
ax

%
 (

L
O

O
)

M
L

R
N

N
M

L
R

N
N

N
-A

lk
yl

ni
co

ti
ni

um
 s

al
ts

1
N

M
N

I
C

H
3

0
−

2
5

−
3

5

2
N

PN
I

C
H

2C
H

2C
H

3
58

66
67

68
71

3
N

nB
N

I
(C

H
2)

3C
H

3
80

63
67

61
65

4
N

H
xN

I
(C

H
2)

5C
H

3
80

86
83

87
83

5
N

H
pN

I
(C

H
2)

6C
H

3
75

72
75

72
75

6
N

O
N

I
(C

H
2)

7C
H

3
88

90
84

90
84

7
N

N
N

I
(C

H
2)

8C
H

3
10

0
93

85
92

84

8
N

D
D

N
I

(C
H

2)
11

C
H

3
95

89
83

88
82

9
N

B
zN

B
C

H
2C

6H
5

0
−

6
3

−
8

2

10
N

A
N

I
C

H
2C

H
=

C
H

2
0

17
12

19
14

11
N

O
N

B
-3

c
ci

s-
(C

H
2)

2C
H

=
C

H
(C

H
2)

3C
H

3
83

70
73

68
70

12
N

O
N

B
-3

t
tr

an
s-

(C
H

2)
2C

H
=

C
H

(C
H

2)
3C

H
3

79
80

80
81

80

13
N

O
N

B
-7

e
(C

H
2)

6C
H

=
C

H
2

87
70

71
68

69

14
N

O
N

B
-3

y
(C

H
2)

2C
≡

C
(C

H
2)

3C
H

3
47

47
48

47
49

15
N

D
N

B
-4

t
tr

an
s-

(C
H

2)
3C

H
=

C
H

(C
H

2)
4C

H
3

85
81

80
81

80

16
N

D
N

B
-9

e
(C

H
2)

8C
H

=
C

H
2

72
81

80
82

80

17
N

D
N

B
-3

y
(C

H
2)

2C
C

(C
H

2)
5C

H
3

29
29

28
29

27

18
N

U
N

B
-1

0e
(C

H
2)

9C
H

=
C

H
2

87
87

82
87

82

B
is

-N
,N
′-

al
ky

ln
ic

ot
in

iu
m

 s
al

ts

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 15

N
o.

C
om

pd
 n

am
e

R
I m

ax
%

 (
E

xp
t.

)
I m

ax
%

 (
ca

lc
d)

I m
ax

%
 (

L
O

O
)

M
L

R
N

N
M

L
R

N
N

19
bN

D
D

B
(C

H
2)

12
38

52
49

56
57

C
on

fo
rm

at
io

na
ll

y 
re

st
ri

ct
ed

 N
-a

lk
yl

ni
co

ti
ni

um
 s

al
ts

 (
sy

n 
co

nf
or

m
at

io
n)

20
A

C
O

(C
H

2)
7C

H
3

60
59

59
59

59

21
A

C
N

(C
H

2)
8C

H
3

56
57

54
57

54

22
A

C
D

(C
H

2)
9C

H
3

67
61

61
60

60

23
A

C
U

(C
H

2)
10

C
H

3
72

69
68

68
68

24
A

C
D

D
(C

H
2)

11
C

H
3

62
72

71
74

72

C
on

fo
rm

at
io

na
ll

y 
re

st
ri

ct
ed

 N
-a

lk
yl

ni
co

ti
ni

um
 s

al
ts

 (
an

ti
 c

om
fo

rm
at

io
n)

25
B

C
O

(C
H

2)
7C

H
3

88
81

83
80

82

26
B

C
N

(C
H

2)
8C

H
3

86
83

83
83

83

27
B

C
D

(C
H

2)
9C

H
3

93
81

82
79

82

28
B

C
U

(C
H

2)
10

C
H

3
79

81
82

81
82

29
B

C
D

D
(C

H
2)

11
C

H
3

25

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 16

N
o.

C
om

pd
 n

am
e

R
I m

ax
%

 (
E

xp
t.

)
I m

ax
%

 (
ca

lc
d)

I m
ax

%
 (

L
O

O
)

M
L

R
N

N
M

L
R

N
N

N
-A

lk
yl

py
ri

di
ni

um
 s

al
ts

30
N

M
PI

C
H

3
0

−
10

1
−

29
1

31
N

E
PI

C
H

2C
H

3
0

3
7

6
9

32
N

Pr
PI

C
H

2C
H

2C
H

3
22

34
25

36
27

33
N

B
uP

I
(C

H
2)

3C
H

3
2

34
N

Pe
PI

(C
H

2)
4C

H
3

44
39

33
39

29

35
N

H
xP

I
(C

H
2)

5C
H

3
21

29
21

29
21

36
N

H
pP

I
(C

H
2)

6C
H

3
0

37
N

O
PI

(C
H

2)
7C

H
3

0

38
N

Pe
D

PI
(C

H
2)

14
C

H
3

58
56

60
56

60

39
N

ec
PB

(C
H

2)
19

C
H

3
60

53
58

51
56

N
-A

lk
yl

-3
-p

ic
ol

in
iu

m
 s

al
ts

40
N

O
Pi

I
(C

H
2)

3C
H

3
49

62
65

64
69

41
N

D
Pi

I
(C

H
2)

9C
H

3
73

70
72

69
72

42
N

D
D

Pi
I

(C
H

2)
11

C
H

3
63

79
78

82
80

B
is

-N
,N
′-

al
ky

lp
yr

id
in

iu
m

 s
al

ts

43
bP

Pe
I

(C
H

2)
5

0
16

13
21

17

44
bP

O
I

(C
H

2)
8

0
−

1
4

−
5

5

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 17

N
o.

C
om

pd
 n

am
e

R
I m

ax
%

 (
E

xp
t.

)
I m

ax
%

 (
ca

lc
d)

I m
ax

%
 (

L
O

O
)

M
L

R
N

N
M

L
R

N
N

45
bP

N
B

(C
H

2)
9

28
25

19
25

16

46
bP

D
I

(C
H

2)
10

27
35

28
36

28

47
bP

D
D

B
(C

H
2)

12
91

90
83

87
75

B
is

-N
,N
′-

A
lk

yl
-3

-p
ic

ol
in

iu
m

 s
al

ts

48
bP

iH
xI

(C
H

2)
6

7

49
bP

iH
pB

(C
H

2)
7

54
48

50
47

50

50
bP

iO
I

(C
H

2)
8

53
60

63
60

64

51
bP

iN
B

(C
H

2)
9

63
54

58
54

57

52
bP

iD
I

(C
H

2)
10

63
58

59
58

59

53
bP

iU
B

(C
H

2)
11

68
61

64
61

64

54
bP

iD
D

B
(C

H
2)

12
78

71
72

70
71

B
is

-N
,N
′-

al
ky

lq
ui

no
li

ni
um

 s
al

ts

55
bQ

H
xI

(C
H

2)
6

55
61

66
62

68

56
bQ

O
I

(C
H

2)
8

71
65

69
65

68

57
bQ

N
B

(C
H

2)
9

58
55

58
55

58

58
bQ

D
I

(C
H

2)
10

76
72

74
71

73

59
bQ

U
B

(C
H

2)
11

91
95

85
95

84

60
B

Q
D

D
B

(C
H

2)
12

52
61

60
63

64

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 18

N
o.

C
om

pd
 n

am
e

R
I m

ax
%

 (
E

xp
t.

)
I m

ax
%

 (
ca

lc
d)

I m
ax

%
 (

L
O

O
)

M
L

R
N

N
M

L
R

N
N

B
is

-N
,N
′-

al
ky

li
so

qu
in

ol
in

iu
m

61
bI

Q
H

xI
(C

H
2)

6
47

44
44

43
42

62
bI

Q
O

I
(C

H
2)

8
74

56
58

52
52

63
bI

Q
N

B
(C

H
2)

9
0

64
bi

Q
D

I
(C

H
2)

10
65

68
70

68
71

65
bI

Q
U

B
(C

H
2)

11
55

64
69

66
72

66
bi

Q
D

D
B

(C
H

2)
12

53
70

72
73

74

6-
A

za
-4

-a
m

in
ot

et
ra

li
n 

sa
lt

s

67
A

SP
H

, H
56

59
63

59
65

68
A

SS
C

H
, C

H
3

57
76

80
80

82

69
A

ST
C

H
3,

 C
H

3
68

43
42

40
32

5-
A

za
-1

-a
m

in
ot

et
ra

li
n 

sa
lt

s

70
B

SP
H

, H
69

69
74

69
75

71
B

SS
H

, C
H

3
87

91
86

96
86

72
B

ST
C

H
3,

 C
H

3
53

56
63

57
65

a A
ll 

co
m

po
un

ds
 a

nd
 e

xp
er

im
en

ta
l d

at
a 

in
 th

is
 ta

bl
e 

w
er

e 
ge

ne
ra

te
d 

in
 th

e 
la

bo
ra

to
ri

es
 o

f 
D

rs
. P

et
er

 A
. C

ro
ok

s 
an

d 
L

in
da

 P
. D

w
os

ki
n.

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 19

Ta
bl

e 
2

D
et

er
m

in
at

io
n 

of
 th

e 
nu

m
be

r 
of

 d
es

cr
ip

to
rs

 u
se

d 
to

 g
en

er
at

e 
th

e 
M

L
R

 m
od

el

St
ar

ti
ng

 d
es

cr
ip

to
r

N
a

r2
rm

sd
q2

L
oo

rm
sd

1
12

0.
87

9.
67

0.
80

12
.0

8

2
11

0.
89

9.
01

0.
83

11
.0

6

3
11

0.
86

10
.1

8
0.

78
12

.4
7

4
12

0.
87

9.
69

0.
80

12
.0

8

5
10

0.
88

9.
44

0.
82

11
.4

2

A
ve

ra
ge

11
0.

87
9.

60
0.

81
11

.8
2

a N
um

be
r 

of
 d

es
cr

ip
to

rs
 c

or
re

sp
on

di
ng

 to
 th

e 
‘b

re
ak

 p
oi

nt
’ 

us
ed

 in
 e

ac
h 

m
od

el
.3

1

Bioorg Med Chem. Author manuscript; available in PMC 2014 February 05.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 20

Table 3

Brief definitions of the descriptors used in the linear regression relationship

No. Descriptor Definition

1 MATS4m Moran autocorrelation—lag 4/weighted by atomic masses

2 MATS3e Moran autocorrelation—lag 3/weighted by atomic Sanderson Electronegativities

3 PW5 Path/walk 5—Randic shape index

4 Du D total accessibility index/unweighted

5 DISPv d COMMA2 value/weighted by atomic van der Waals volumes

6 G3v 3rd component symmetry directional WHIM index/weighted by atomic Van der Waals volumes

7 G2m 2nd component symmetry directional WHIM index/weighted by atomic masses

8 n#CR Number of non-terminal C(sp)

9 AROM Aromaticity

10 RDF070m Radial distribution function—7.0/weighted by atomic masses

11 RDF045m Radial distribution function—4.5/weighted by atomic masses
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Table 5

Evaluation for the MLR model prediction of the test set

Set r2 rmsd Testrmsd

1 0.89 9.06 0.88 9.30

2 0.89 8.87 0.84 10.47

3 0.92 7.77 0.62 15.99

4 0.90 8.70 0.76 12.72

5 0.88 9.29 0.90 8.49

6 0.88 9.05 0.81 12.79

Average 0.89 8.79 0.80 11.63
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Table 6

Leave-n-out cross-validation of the NN11-1-1 model

Set r2 rmsd Testrmsd

1 0.89 9.03 0.87 9.69

2 0.90 8.62 0.81 11.50

3 0.92 7.53 0.45 19.28

4 0.89 8.74 0.82 11.22

5 0.89 9.12 0.84 10.52

6 0.87 9.37 0.93 7.97

Average 0.89 8.73 0.79 11.70
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Table 7

Relative contributions of the 11 descriptors to the structure–activity relationship in the MLR model and the
NN11-1-1 model

Descriptor MATS4m MATS3e PW5 DU

MLR Ci (%) 13.79 8.81 11.49 7.91

NN Ci (%) 10.33 8.52 10.72 8.96

Descriptor DISPv G3v G2m n#CR

MLR Ci (%) 7.76 8.87 8.56 8.78

NN Ci (%) 8.15 8.76 8.91 9.46

Descriptor AROM RDF070m RDF045m

MLR Ci (%) 7.68 8.43 7.91

NN Ci (%) 7.75 9.28 9.16
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