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Abstract
Background and aims—Recent studies have reported high frequencies of somatic mutations in
the phosphoinositide-3-kinase catalytic-α (PIK3CA) gene in various human tumors. Three hot-
spot mutations in the exons 9 and 20 have been proven to activate the Akt signalling pathway. The
Raf/MEK/ERK (mitogen-activated protein kinase) signal transduction is an important mediator of
a number of cellular fates including growth, proliferation, and survival. The BRAF gene is
activated by oncogenic RAS, leading to cooperative effects in cells responding to growth factor
signals. Here we evaluate the mutational status of PIK3CA, KRAS, and BRAF in intraductal
papillary mucinous neoplasm/carcinoma (IPMN/IPMNC) of the pancreas.

Materials and methods—Exons 1, 4, 5, 6, 7, 9, 12, 18, and 20 of PIK3CA, exons 1 of KRAS,
and exons 5, 11, and 15 of BRAF were analyzed in 36 IPMN/IPMC and two mucinous
cystadenoma specimens by direct genomic DNA sequencing.

Results—We identified four somatic missense mutations of PIK3CA within the 36 IPMN/IPMC
specimens (11%). One of the four mutations, H1047R, has been previously reported to be a hot-
spot mutation. Furthermore, we found 17 (47%) KRAS mutations in exon 1 and one missense
mutation (2.7%) in exon 15 of BRAF.

Conclusion—This data is the first report of PIK3CA mutation in pancreatic cancer and it
appears to be the first oncogene to be mutated in IPMN/IPMC but not in conventional ductal
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adenocarcinoma of the pancreas. Our data provide evidence that PIK3CA and BRAF contribute to
the tumorigenesis of IPMN/IPMC, but at a lower frequency than KRAS.
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Introduction
Intraductal papillary mucinous neoplasms (IPMN) are pancreatic exocrine lesions composed
of dilated main or branch ducts lined by mucin producing atypical epithelium, which usually
proliferates in a papillary fashion [1]. Based on their increasing architectural and nuclear
atypia, IPMN are divided into three groups: intraductal papillary mucinous adenoma
(IPMA), borderline IPMN (IPMB), and intraductal papillary mucinous carcinoma (IPMC)
[1]. According to the absence or presence of neoplastic cells invading the pancreatic tissue
surrounding the involved ducts, IPMC are separated into invasive and noninvasive types [2].
IPMN are precancerous lesions and disclose a progression pattern similar to the “adenoma–
carcinoma sequence” in colorectal cancer [3–6]. Most IPMN are slow growing and less
aggressive compared with conventional ductal adenocarcinoma. Borderline lesions and
carcinoma are accompanied by less atypical lesions in the vicinity, and transition from
adenoma to adenocarcinoma has been described. The overall incidence of invasive
carcinoma associated with an IPMN is 20% to 40% [7] and invasiveness seems to be the
strongest prognostic factor [4]. The prognosis of patients with noninvasive IPMN consisting
of adenoma, adenocarcinoma in situ, or minimally invasive adenocarcinoma is excellent,
and the 5-year survival rate was reported to be 77% to 100% [4, 8–10]. However, invasive
IPMC that macroscopically involves the pancreatic parenchyma comprises 16% to 43% of
all IPMN lesions, and the 5-year survival rate for patients with these lesions varied widely
from 0% to 64% in several reported series [4, 8, 9, 11–13]. A significant proportion of the
patients with completely resected noninvasive IPMN may develop pancreatic
adenocarcinoma in the pancreatic remnant and die of disseminated disease. Other studies
have also reported recurrences of invasive carcinoma in completely resected noninvasive
IPMN [5, 6], some of which demonstrated only moderate dysplasia (borderline IPMN).

Phosphatidylinositol-3 kinases (PI3Ks) constitute a large and complex family of lipid
kinases encompassing three classes with multiple subunits and isoforms [14–16]. They play
an important role in several cellular functions, such as proliferation, differentiation,
chemotaxis, survival, trafficking, and glucose homeostasis [14]. Class IA PI3Ks are
heterodimeric proteins composed of a p110 catalytic subunit and a p85 regulatory subunit
[17], which can be activated through interaction with phosphotyrosine residues of receptor
tyrosine kinases [18, 19] or through the binding of active RAS to the p110 catalytic subunit
[16, 19–21]. P85 lacks kinase activity and acts as an adaptor, coupling with the p110 subunit
to activate protein tyrosine kinases [22]. Activated PI3Ks phosphorylate the inositol ring 3′-
OH group in inositol phospholipids to generate the second messenger
phosphatidylinositol-3,4,5-triphosphate (PIP3) [23], which in turn activates diverse cellular
target proteins such as the survival signalling kinase Akt/protein kinase B [14, 15, 24]. A
tumorigenic role has been proposed for the PIK3CA gene that encodes the catalytic p110α
subunit of phosphatidylinositol 3-kinase belonging to the class IA of PI3Ks [14, 16].
Previously Samuels et al. reported mutations in PIK3CA in several tumor types, namely
colorectal cancer, gastric cancer, glioblastoma, and breast and lung cancer [25]. Other
independent studies in hepatocellular carcinomas, breast carcinomas, lung cancers, ovarian
carcinomas, brain tumors, acute leukemias, and head and neck squamous cell carcinomas
have since supported and emphasized the oncogenic potential of PIK3CA in the
development of cancer [26–30]. In the study by Samuels et al. [25], three PIK3CA
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mutational hot-spots were described and found to affect the helical (exon 9) and catalytic
(exon 20) protein domains. Mutations were also described in exons 1, 2, 4, 7, 12, 14 and 18
of PIK3CA, but only in a minority of cases [25, 26]. Similar to colon tumors, PIK3CA
mutations also clustered in the three hot-spot regions (exons 9 and 20) in gastric carcinomas
[25, 27, 31]. No PIK3CA mutations have been previously reported in IPMN, IPMC, or
conventional pancreatic ductal adenocarcinoma [25].

Since the discovery of the role of RAS oncogenes in tumorigenesis, an increasing focus has
been set to define its oncogenic signal transduction pathway [32]. In trying to understand
how Ras proteins transmit extracellular growth signals, the mitogen-activated protein (MAP)
kinase pathway has emerged as an important link between membrane-bound Ras proteins
and the nucleus [33, 34]. This key Ras effector pathway involves the kinase cascade Raf/
MEK/ERK (MEK, MAPK/ERK kinase; ERK, extracellular signal-related kinase) [35].
Signalling through the MAPK cascade is transduced by guanosine triphosphate loading of
Ras leading to the activation of Raf kinase. In mammalian cells, there are three isoforms of
RAF: ARAF, BRAF, and CRAF/RAF1[36]. Although all three of the Raf isoforms share a
common function with respect to MEK phosphorylation, studies have shown that these
proteins might be differentially activated by oncogenic Ras [33, 37]. Recently activating
BRAF mutations, in particular the V600E “hot-spot” mutation in BRAF's exon 15, have been
described in about 15% of all human cancers, especially in malignant melanomas, papillary
thyroid cancer as well as lung and ovarian cancer [38–43]. Reported genetic alterations in
IPMN include mutations in the KRAS [44–49], TP53 [47], and STK11/LKB1 genes [50, 51]
as well as loss of heterozygosity of several chromosomal loci [50, 52]. In addition to these
genetic alterations, aberrant DNA methylation may contribute to the inactivation of a subset
of tumor-suppressor genes in IPMN [53, 54]. Previous studies have found mutations in the
exon 1 of KRAS in 31% to 86% of IPMNs [44–49]. Here, we analyzed the status of PIK3CA,
KRAS, and BRAF to elucidate a possible role of these genes in the tumorigenesis of IPMN
and IPMC.

Materials and methods
Patients and tissue samples

Surgical paraffin-embedded IPMN/IPMC and mucinous cystadenoma samples from 38
patients (female, n = 14; male, n = 24; median age, 68.1years; range, 41–84years) were
obtained from the archival tissue collection of the Columbia University Medical Center.
Acquisition of the tissue specimens was approved by the Institutional Review Board of
Columbia University Medical Center and performed in accordance with Health Insurance
Portability and Accountability Act regulations. In detail, we analyzed three IPMN, adenoma
(female, n = 1; male, n = 2; median age, 62.7years; range, 53–77years), four IPMN,
borderline (female, n = 1; male, n = 3; median age, 66.3years; range, 62–72years), five
IPMC without invasion (male, n = 5; median age, 69.2years; range, 59–81years), 24 IPMC
with invasive carcinoma (male, n = 14; female, n = 10; median age, 68.9years; range, 41–
84years), and two mucinous cystadenomas (female, n = 2; median age, 57.5years; range,
53–62years). Thirty-two of these lesions arose in the pancreatic head, one in the uncinate
process, four within the transition from pancreatic head to the body, and one within the
body. The maximum diameter of the lesions ranged from 0.4 to 7cm (mean, 4.2cm) (for a
more detailed register, see Table 1).

DNA samples for mutation analysis
All tissue and genomic DNA samples were handled in an environment free of polymerase
chain reaction (PCR) products. All samples were coded, and the investigator was unaware of
the patients' clinical data. Paraffin-embedded tumor samples were microdissected to ensure
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the highest possible amount of tumor cells. Surrounding nontumorous tissue or tissue
derived from a tumor-free block of each patient served as corresponding normal control.
Genomic DNA was extracted using the QIAmp DNA Mini Kit (Qiagen, Valencia, CA,
USA) according to the manufacturer's instructions for paraffin-embedded tissues. Exons 1,
4, 5, 6, 7, 9, 12, 18, and 20 of PIK3CA, exon 1 of KRAS, and exons 5, 11, and 15 of BRAF
were analyzed by PCR amplification of genomic DNA and direct sequencing. Genomic
DNA (40ng per sample) was amplified with primers that had been designed to amplify each
exon and its exon/intron boundaries of PIK3CA [25, 30] the codons 12 and 13 of KRAS or
each of the three exons and its exon/intron boundaries in the BRAF locus [39, 40, 55]. All
PCR products were purified (QIAquick PCR Purification Kit; Qiagen, Valencia, CA, USA)
prior to sequencing. The PCR primers also served as the sequencing primers. Sequencing
was performed with Applied Biosystems' 3100 capillary automated sequencer at the DNA
Core Facility of Columbia University Medical Center. Each sample found to have a genetic
alteration in the target gene was subsequently sequenced in the reverse direction to confirm
the mutation and further verified by sequencing of a second PCR product derived
independently from the original template.

Results
In our study, four of the 36 specimens (11%) contained a somatic mutation of the PIK3CA
gene (Fig. 1 and Table 1) —one in exon 4 (T324I in an IPMC with invasion), one in exon 9
(W551G in an IPMB), and two in exon 20 (S1015F in an IPMC and H1047R in an IPMC
with invasion)— whereas the samples showing the W551G and S1015F mutations were also
harboring KRAS mutations. One of the missense mutations in exon 20 of PIK3CA, H1047R,
is a previously described hot-spot mutation [25]. The other mutations in exons 4 and 9 are
novel. We furthermore identified 17 (47%) mutations within the KRAS gene at codon 12 and
one mutation (2.7%) in the exon 15 of BRAF (S616F in an IPMC with invasion) in the 36
IPMN/IPMC specimens. All mutations were sporadic, since none of the mutations was
observed in the matching normal tissues (Fig. 1). Of the 17 samples that harbored KRAS
mutations, five were IPMN cases without associated invasive carcinoma (5/12 samples,
41.7%) and 12 were IPMC with associated invasive carcinoma (12/24 samples, 50%). The
KRAS codon 12 mutation was detected in IPMA (1/3), IPMB (2/4), IPMC without invasion
(2/5), and IPMC with invasion (12/24) (Table 1). The spectrum of KRAS codon 12
mutations was G12D (7/17), G12V (6/17), and G12R (4/17). The exon 15 BRAF mutation
was found in an IPMC sample with associated invasive carcinoma, which also harbored a
KRAS (G12R) mutation (Table 1).

Discussion
Recently, much attention has been given to the significance of the PIK3CA gene mutations
identified in several human tumors. Mutational analysis of the PIK3CA gene has revealed
that genetic alterations at its locus occur in a wide spectrum of human neoplasms [25–30].
PIK3CA mutations preferentially occur in exons 9 and 20 (>75%), affecting the functionally
important helical and kinase domains of the protein [25–27, 29, 31]. Functional studies have
shown that PI3Ks carrying anyone of the three hot-spot mutations are able to induce
transformation in cultures of chicken embryo fibroblasts and that the transforming activity
of the mutant is correlated with increased lipid kinase activity and activation of the Akt
signaling pathway [25, 56]. Although two of our mutations in exons 9 and 20 are not hot-
spot mutations, the mutations are likely to have affected the kinase activity of the PIK3CA
protein. The mutation within exon 4, nucleotide 971 C→T, which leads to an alteration of
codon 324 ACA (T) → ATA (I), has not been described before. Although the significance of
the novel mutation T324I, which belongs to the C2 domain, is unclear, a recent study found
that the C2 domain of protein kinase C δ could be a phosphotyrosine-binding domain [57].
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Since 7% of PIK3CA mutations have been detected within the C2 domain [25], it might be
of value to study whether the C2 domain also plays a critical role in PIK3CA activity in the
future. The frequency of PIK3CA mutations has been reported to be 32% in colon cancer, 4–
25% in gastric cancer, 8–40% in breast cancer, 5–27% in brain tumors, 4% in lung cancer,
and 4–7% in ovarian cancer [25, 28, 31, 58]. Samuels et al. screened 11 pancreatic ductal
adenocarcinoma cell lines and found no mutation in the entire coding region of the PIK3CA
gene [25]. A negative finding was also reported by Gallmeier et al. who examined the exons
9 and 20 of PIK3CA for mutation using direct genomic sequencing on the genomic DNA
from 91 pancreatic cancer xenografts [59]. In the present study, we report 11% (4/36) of
IPMN/IPMC to contain PIK3CA mutations. Two of these mutations (W551G and S1015F)
were found in IPMN with nuclear grade 3 (IPMC) and nuclear grade 2 (IPMB), respectively,
without associated invasive carcinoma. The other two (T324I and H1047R) were observed
in IPMC with associated invasive carcinoma. The findings in colorectal cancers indicate that
PIK3CA mutations generally arise just before or coincident with invasion [25]. Our data
show that, in IPMN, mutations of the PIK3CA gene seem to be a rather late event on the
transition of these lesions to malignancy.

Frequent KRAS gene mutations at codon 12 have been reported in several cancers, including
those from colonic and pancreatic tissues [60–63]. Previous studies have found KRAS
mutations, mainly at codon 12 in exon 1, in 31% to 86% of IPMN (47% in our study) [44–
49]. The wide variety of the reported frequencies most likely is due to the ongoing better
definition of these lesions [1, 64, 65] and might also be dependent on the sensitivity of a
chosen screening methodology. In the present study, the distribution of KRAS mutation
showed a single mutation in all observed cases. KRAS mutation is an early event in the
tumorigenesis of IPMN—KRAS mutation was observed in IPMN; adenoma (1/3) and its
mutation frequency remain consistent as IPMN progresses (2/4 in IPMN, borderline; 2/5 in
IPMC; and 12/24 in IPMC with invasion). There was no tumor size, gender, or age bias
observed associated with KRAS mutation. Unlike pancreatic ductal adenocarcinoma where
KRAS is mutated at a frequency close to 100% [62, 63], 14–69% (53% in our study) of
IPMN do not harbor an active KRAS mutation. This suggests that a relatively large
percentage of IPMN/IPMC might use alternative ways other than KRAS mutation to
stimulate this Ras-Raf-MEK-ERK-MAP kinase pathway. BRAF, a serine/threonin kinase
located immediately downstream in Ras signalling, has been examined in a variety of human
malignant neoplasms and found to be mutated frequently in malignant melanomas, thyroid
cancer, and low-grade ovarian cancer and at lower frequencies in other cancer types [38–40,
42, 55, 66, 67]. Here we report a somatic BRAF mutation out of the 36 cases of IPMN/IPMC
examined (2.7%). While BRAF contributes to the tumorigenesis of IPMN, it is not a frequent
event and certainly does not entirely explain the lower mutation rate of KRAS in IPMN/
IPMC than in pancreatic ductal adenocarcinoma. The BRAF mutation occurred at nucleotide
1850, a C to T change at codon 616 of the BRAF gene, leading to an amino acid change
from serine to phenylalanine (S616F). Although located at exon 15, the S616F mutation is
not the previously described hot-spot mutation at exon 15 (V600E) of the BRAF gene [38,
39, 55]. This mutation was also found to coexist with a G12R mutation of KRAS in the same
sample. It has been observed previously in colon and lung cancers that BRAF mutations,
other than BRAF V600E, coexisted with RAS mutations [39]. The BRAF V600E mutation
seems to uncouple cells from their proliferation requirement of RAS, and therefore mutation
of RAS was not detected in any of the tumors carrying BRAF V600E mutation [39]. In vitro
data indicated that BRAF V600E mutants can be further activated by mutant RAS, whereas
other BRAF mutants remain dependent on RAS function [39]. A previous study on
pancreatic ductal adenocarcinoma revealed that the BRAF hot-spot mutation was observed in
two of nine tumors retaining wild-type copies of the KRAS, NRAS, and HRAS genes, but
none in 72 adenocarcinomas with KRAS mutations within exons 11 and 15 [68]. In contrast,
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another study found both KRAS and BRAF V600E mutations coexisting in two cases of
pancreatic ductal adenocarcinoma [69]. These two cases did not exhibit different
clinicopathological characteristics from pancreatic cancers with KRAS mutation alone [69].
The novel S616F mutation observed here is also in the B-Raf activation segment [70], but its
functional effect is unknown. Cells with activating mutations in both KRAS and BRAF had a
substantially higher B-Raf kinase activity and ERK 1/2 phosphorylation activities than those
with BRAF mutation alone [39]. It is possible that tumors with both BRAF and KRAS
mutations have an accelerated course in the development or progression. Together, these
observations suggest that different BRAF mutations can have distinct transforming potential
in tumorigenesis, which would be worthy of further investigations in future studies.

So far, genetic analyses of IPMN have disclosed abnormalities in many of the same genes
altered in conventional ductal adenocarcinoma, including mutations of KRAS [44], TP53/
p53 [71], and CDKN2A/p16 genes [72]. In addition, as is true for pancreatic ductal
carcinomas, a number of genes, including CDKN2A/p16, may be epigenetically inactivated
in IPMN through aberrant DNA methylation [53, 54, 73, 74]. The Peutz-Jeghers gene
STK11/LKB1 is inactivated more frequently in IPMN (up to one third) than in ductal
adenocarcinoma (4%) [51, 75], and some patients with the Peutz-Jeghers Syndrome develop
IPMN [50]. In contrast to ductal adenocarcinomas and pancreatic intraepithelial neoplasia-3
lesions, abnormalities in the MADH4/SMAD4/DPC4 gene seem to be rare in IPMN [76].
PIK3CA is the first gene to be found mutated in IPMN that had not been reported in ductal
adenocarcinoma. Although the BRAF mutation frequency in IPMN/IPMC is low compared
with those observed in malignant melanoma and colon cancers, our data suggest that
alteration of the Ras-Raf-MEK-ERK-MAP kinase pathway by BRAF mutation together with
RAS mutation may play an important role in the tumorigenesis of IPMN/IPMC.

Conclusion
In summary, this is the first report of PIK3CA mutation in pancreatic cancer and it appears
to be the first oncogene to be mutated in IPMN/IPMC and not in conventional ductal
adenocarcinoma of the pancreas. Our data provide evidence that oncogenic properties of
PIK3CA and BRAF contribute to the tumorigenesis of IPMN/IPMC, but at a lower
frequency than KRAS.
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Fig. 1.
PIK3CA and BRAF mutations found in IPMN/IPMC. One of the four PIK3CA mutations
(H1047R) was a hot-spot mutation. The other mutations were novel. All mutations were
confirmed to be somatic
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