

NIH Public Access

Author Manuscript

J Agric Food Chem. Author manuscript; available in PMC 2014 November 20.

Published in final edited form as:

J Agric Food Chem. 2013 November 20; 61(46): 10960-10970. doi:10.1021/jf401802n.

Profiling Polyphenols in Five *Brassica* species Microgreens by UHPLC-PDA-ESI/HRMSⁿ

Jianghao Sun^b, Zhenlei Xiao^b, Long-ze Lin^a, Gene E. Lester^c, Qin Wang^b, James M. Harnly^a, and Pei Chen^{a,*}

^a Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Beltsville, MD 20705, United States

^b Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States

^c Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Beltsville, MD 20705, United States

Abstract

Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five *Brassica* species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolution multi-stage mass spectrometry (UHPLC-PDA-ESI/HRMSⁿ). A total of 164 polyphenols including 30 anthocyanins, 105 flavonol glycosides, and 29 hydroxycinnamic acid and hydroxybenzoic acid derivatives were putatively identified. The putative identifications were based on UHPLC-HRMSⁿ analysis using retention times, elution orders, UV/Vis spectra and high resolution mass spectra, in-house polyphenol database, and as well as literature comparisons. This study showed that these five *Brassica* species microgreens could be considered as good sources of food polyphenols.

Keywords

Microgreen; *Brassicaceae*; acylated cyanidin 3-sophroside-5-mono- and diglucosides; acylated flavonol glycosides; hydroxycinnamic acid derivatives; UHPLC-PDA-ESI/HRMSⁿ

INTRODUCTION

Microgreens are young edible greens produced from vegetables, herbs, or other plants, ranging in size from five to ten centimeters long including stem and cotyledons (seed-leaves). They are popular for their pretty colors, intense flavors, delicate textures and relatively high nutritional contents (1). The entire plant (seedling) is harvested at the ground level when cotyledon or seed-leaves have fully expanded and before true leaves have fully emerged.

The *Brassicacae* offers some of the most commonly consumed vegetables worldwide, which can be grown as microgreens. Five *Brassica* vegetables commonly found in the U.S. market place are red cabbage (*B. oleracea* var. *capitata*), purple kohlrabi (*B. oleracea* var. *gongylodes*), red and purple mustards (*B. juncea*), and mizuna (*B. rapa* var. *nipposinica* or

^{*}Corresponding author: Telephone: (301)-504-8144; Fax: (301)-504-8314; Pei.Chen@ars.usda.gov.

B. juncea var. *japonica*). *Brassica* vegetables are known to be rich sources of ascorbic acid, carotenoids, glucosinolates, polyphenols, and tocopherols (2-4) which have human-health beneficial attributes reportedly involved in preventing cardiovascular diseases and some types of cancers (5-8).

Previous studies have tentatively identified phenolic compounds from 22 mature-leaf Brassica vegetables (9-12) and phenolic compounds have been found in tronchuda cabbage (Brassica oleracia var. costata) seeds (13) mature leaves (14) inter-nodal shoots and roots (15, 16). Twelve specific phenolic compounds have been profiled in two- to twelve-day old seedlings possessing both seed-leaves and true-leaves. The aim of the present study was to characterize and quantify the naturally occurring polyphenols in five commonly consumed Brassicas (mizuna, red cabbage, purple kohlrabi, red mustard and purple mustard) at their microgreen growth stage. The analyses of their native polyphenols and flavonol aglycones were performed using state-of art analytical tools: ultra high-performance liquid chromatography photo diode array high-resolution multistage mass spectrometry (UHPLC-PDA-ESI/HRMS/MSⁿ). Results showed that Brassica microgreens contained notable levels of hydroxyl cinamic acids and may contain different compounds from their true-leaves. A total of 30 anthocyanins, 105 flavonol glycosides, and 29 hydroxycinnamic acid and hydroxylbenzoic acid derivatives were tentatively identified. This is the first known reported study of polyphenol compounds in vegetables at the cotlyledonary-leaf (microgreen) stage of growth of an array of Brassica microgreens.

MATERIALS AND METHODS

Chemicals

Formic acid, HPLC grade Methanol and acetonitrile, were purchased from VWR International, Inc. (Clarksburg, MD). HPLC grade water was prepared from distilled water using a Milli-Q system (Millipore Lab., Bedford, MA).

Plant Materials and Sample Preparation

Five *Brassica* species, at the microgreen growth stage, were obtained from Sun Growers Organic Distributors, Inc. (San Diego, CA). All the fresh samples were lyophilized and then powdered. Powdered samples (100 mg) were extracted with 5.00 mL of methanol-water (60:40, v/v) using sonication for 60 min at room temperature, and then centrifuged at 1,000 g for 15 minutes (IEC Clinical Centrifuge, Damon/IEC Division, Needham, MA, USA). The supernatant was filtered through a 17 mm (0.45 μ m) PVDF syringe filter (VWR Scientific, Seattle, WA, USA), and 10 μ L of the extract was used for each HPLC injection.

UHPLC-PDA-ESI/HRMS/MSⁿ Conditions

The UHPLC-HRMS system used consisted of a LTQ Orbitrap XL mass spectrometer with an Accela 1250 binary Pump, a PAL HTC Accela TMO autosampler, a PDA detector (ThermoFisher Scientific, San Jose, CA), and a G1316A column compartment (Agilent, Palo Alto, CA). Separation was carried out on a Hypersil Gold AQ RP- C18 UHPLC column (200 mm \times 2.1 mm i.d., 1.9 μ m, ThermoFisher Scientific) with an UltraShield precolumn filter (Analytical Scientific Instruments, Richmond, CA) at a flow rate of 0.3 mL/min. The mobile phase consisted of a combination of A (0.1% formic acid in water, v/v) and B (0.1% formic acid in acetonitrile, v/v). The linear gradient was from 4% to 20% B (v/v) at 40 min, to 35% B at 60 min and to 100% B at 61 min, and held at 100% B to 65 min. The PDA was set at 520, 330 and 280 nm to record the peaks, and UV/Vis spectra were recorded from 200-700 nm.

The mass range was from 100 to 2000 amu with a resolution of 15,000, FTMS AGC target at 2e5, FT- MS/MS AGC target at 1e5, isolation width of 1.5 *amu*, and max ion injection time of 500 ms. The most intense ion was selected for the data-dependent scan to offer their MS^2 to MS^5 product ions, respectively, with the a normalization collision energy at 35%.

RESULTS AND DISCUSSION

Strategies for Systematic Identification of Polyphenols from Microgreen Brassica

Brassicaceae polyphenol composition has been extensively investigated. The main flavonols in *Brassica* vegetables are the *O*-glycosides of quercetin, kaempferol, and isorhamnetin, (2, 17-22). The sugar moiety found in *Brassica* vegetables is glucose, occurring as mono-, di-, tri-, tetra-, and pentaglucosides (17-23). They are also commonly found acylated by different hydroxycinnamic acids. Anthocyanins are another main class of flavonoid found in *Brassica* vegetables and cyanidin is the most common anthocyanidin in colored-leaf *Brassica* vegetables (2, 24). Hydroxycinnamic acids (C6-C3) are phenolic acids characterized in *Brassica* vegetables with the most common ones being *p*-coumaric, caffeic, sinapic and ferulic acids; often found in conjugation with sugars or other hydroxycinnamic acids (2, 17-19, 21, 22).

The five *Brassica* species microgreen phenolic compounds exhibit absorbance maxima at three wavelengths (280 nm for flavonols and flavonol glycosides, 320 nm for hydroxycinnamic acid derivatives, and 520 nm for anthocyanins(2, 17-19, 21, 22).

HRMS was used for the determination of chemical formulas. Neutral loss information from MS was used for identification of sugar moiety and acyl groups. In MS analysis, cleavage of the first glycosidic linkage is expected to take place at the *O*-glycosidic bond at the 7-position of the flavonols and the 5-position of the anthocyanins, leading to the fragmentations [(M-H)-162]⁻ for monohexosides and [(M-H)-324]⁻ for dihexosides (23, 25, 26). The remaining glucose moieties of the flavonoid molecule are expected to be linked to the hydroxyl group at the 3-position of the aglycone. The disaccharide moieties of the flavonoids in *Brassica* species are mainly sophorosides (2). The MS fragmentation behavior can be used for the determination of interglucoside linkage and neutral losses of 180, 162, and 120 amu indicate a sophoroside with a 1→2 inter glucoside linkage, while loss of 324 amu, and in some cases low abundance of 162 amu, corresponds to a diglucoside with a 1→6 linkage like gentiobioside (27). The saccharides (mono-, di-, tri-saccharides) and acyl groups of flavonol glycoside and their possible neutral losses in CID MS/MS analysis are listed in **Table 1**, and the basic structures of the phenolic compounds found in these five *Brassica* species microgreens are shown in **Figure 1**.

Anthocyanins

Among the five *Brassica* species microgreen red cabbage, red mustard, purple mustard, and purple kohlrabi have red to purple colored seed-leaves. UHPLC chromatograms at 520 nm revealed 30 different anthocyanins are likely responsible for this coloration (**Figure 2**). The retention times (t_R), HRMS masses [M]⁺ molecular formulas, errors (ppm) between theoretical and measured values, and major MS² and MS³ product ions are summarized in Table 2.

In these five *Brassica* species microgreens, only cyanidin (cy) derivatives were found, which is in accordance with the other studies on *Brassicas* (24, 28-30). The anthocyanins found in red cabbage microgreens were cy-3-diglucoside-5-glucoside derivatives acylated

with different hydroxycinnamic acids at the diglucosyl moiety in the 3-position. High resolution mass spectroscopic analysis with multi stage mass fragmentation was used as an important tool for anthocyanin characterization. Among the 30 cy glycosides found in red cabbage, red mustard, purple mustard and purple kohlarabi microgreens, peak 1 at m/z773.2106 ($C_{33}H_{41}O_{21}$, -1.36 mmu) was the lowest molecular weight anthocyanin and the losses of three hexosyl units were observed in MS² spectra, suggesting cy-3-diglucoside-5glucoside, a typical compound reported in red cabbage. The major acylated anthocyanins were cy-3-diglucoside-5-glucoside derivatives with various acylated groups e.g. coumaroyl, feruloyl and sinapoyl connected to the diglucoside. The MS/MS of most of the molecular ions of acylated anthocyanins gave the major product ions at m/z 449, a cy 5-glucoside residue, and at m/z 611, a cy-3-diglucoside residue. The MS/MS fragments of the acylated anthocyanins allow for a rough determination of the location of the acylating groups. Peaks 12, 13 and 14 are the major anthocyanins in microgreen red cabbage, and they were identified as cyanidin 3-di-feruloyl-sophoroside-5-glucoside, cy 3-(sinapoyl) (sinapoyl)sophoroside-5-glucoside and cy 3-(sinapoyl)(feruloyl)sophoroside-5-glucoside, respectivelyUsing peak 12 as an example, HRMS gave the [M]⁺ ion at 1125.3070, corresponding to the formula of $C_{53}H_{57}O_{27}$. Fragmentation of ion at m/z 1125 in positive mode produced ions at m/z 963 by loss of a glucosyl residue (162 amu) from the 5-position. The ion at m/z 449 was produced by a total loss of 676 amu, corresponding to a di-ferulovldiglucosyl residue (176 + 176 + 324 amu), from the terminal 3-position

In previous study of purple kohlrabi, 12 anthocyanins have been identified. The major ones are cy 3-(feruloyl)(sinapoyl) diglucoside-5-glucoside, cy 3-(feruloyl) diglucoside-5glucoside and cy 3-(sinapoyl)(sinapoyl) diglucoside-5-glucoside (31). In our study, the acylated anthocyanins with one malonyl group attached to the hexose of C-5 and other aromatic groups (caffeic, p-coumaric, sinapic or ferulic acid) attached to the C-3 glycosidic substituent were found. In the MS² spectra, the fragment ions at $(m/z \ 1023, 993 \ and \ 963)$, with the two acyl groups attached to the di-hexose of C-3 are usually observed as the base peak. This fragmentation pattern was evidenced with most anthocyanins analyzed and lead to the tentative identification of cy-3-(feruloyl)(feruloyl)diglucoside-5-(malonyl)-glucoside $(m/z \ 1211, \text{ peak } 19), \text{ cy } 3-O$ -(sinapoyl)(feruloyl)diglucoside-5-O-(malonyl)glucoside (m/z1241, peak 20), and cy 3-O-(sinapoyl)(sinapoyl)diglucoside-5-O-(malonyl)glucoside (m/z1271, peak 21). Peaks 11^a-14^a were identified as cy 3-p-(coumaroyl)sophoroside-5-(malonyl)glucoside, cy 3-O-(pcoumaroyl)(sinapoyl) diglucoside-5-O-(malonyl) glucoside, cy 3-O-(feruloyl)glucoside-5-O-(malonyl)-glucoside and cy 3-O-(sinapoyl)glucoside-5-O-(malonyl)glucoside in red mustard microgreen (10). Peaks 19 and 20, were two major anthocyanins identified in red and purple mustard. Peaks 16^b, 17^b and 18^b were identified as cy 3-(sinapoyl)(coumaroyl)-triglucoside-5-(malonyl)-glucoside, and cy 3-(coumaroyl) (sinapoyl)diglucoside-5-(malonyl)glucoside, respectively.

O-Glycosylated Flavonols and Their Acylated Derivatives

Acylated flavonoid glycosides were easily identified based on the increased mass of the parent ions and the wavelength maxima (330-336 nm) of their UV spectra (Figure 3). According to the MSⁿ (n=2-5) data, the aglycones of the flavonol glycosides were quercetin (Qn), kaempferol (Km), and isorhamnetin (Is). Using the strategy described previously, 105 flavonol glycosides were characterized in five microgreen vegetables (**Figure 3**). Among them, 18 were non-acylated flavonoid glycosides, and 87 were acylated flavonoid glycosides. The compound distribution in these 5 microgreens is shown in **Table 3**. Qn 3-sophoroside-7-glucoside, Qn 3-hydroxyferuloylsophoroside-7-glucoside and Is 3-caffeoylsophoroside-7-glucoside, are common peaks in all five brassica species microgreens. Is 3-O-glucoside, Qn 3,7-di-O-glucoside, Km 3-pcoumaroyldiglucoside, Qn 3-

caffeoylsophoroside, Qn 3-feruloylsophoroside, Qn 3-feruloylsophoroside-7-glucoside, and Km 3-sinapoylsophoroside were found only in mizuna microgreen, while Km 3sinapoylsophoroside-7-glucoside and Qn 3-sinapoylsophorotrioside were found only in purple kohlrabi. Red cabbage microgreens had, Km 3-pcoumaroylsophorotrioside, Km 3-pcoumaroylsophoroside-7-diglucoside, km 3-hydroxyferuloylsophorotrioside-7-glucoside, Km 3-disinapoyldiglucoside-7-glucoside, Km 3-sinapoylferuloylsophoroside-7-glucoside and Qn 3-disinapoylsophorotrioside which were also found in mature red cabbage. Km 3sophorotrioside-7-glucoside, Qn 3-caffeoylsophorotrioside-7-glucoside and Qn 3hydroxyferuloylsophorotioside-7-glucoside only existed in microgreen of red mustard and purple mustard.

Using MS analysis of peak a19, as an example, the deprotonated molecular ion at m/z 933 $(C_{42}H_{45}O_{24})$ lost a hexosyl group from position 7, giving the product ion at m/z 771. The MS³ product ion revealed a loss of 162 amu, corresponding to a caffeoyl group, and a loss of dihexoxyl group at the 3-position (324 amu), leading to the Km aglycone (m/z 285). Thus, peak a19 was tentatively identified as Km 3-caffeoyldiglucoside-7-glucoside. Peak b13 also exhibited the deprotonated ion at m/z 933 but showed different fragmentation pathways. During the MS fragmentation of peak 18a, loss of 162 amu, corresponding to a hexosyl moiety at the terminal 7-position was observed. Further fragmentation of the acylated ion, m/z 625, gave the loss of pcoumaroyl group and the loss of a dihexosyl group, producing the Qn aglycone ion (m/z 301). Thus, peak b13 was assigned as Qn 3-p-coumaroyldiglucoside-7-glucoside. Using this strategy, the remaining flavonols were identified on the basis of HRMS, MS fragmentation pattern, UV maxima, and retention times as flavonols, previously characterized in the five *Brassica* species microgreens.

Derivatives of Hydroxycinnamic Acids and Hydroxybenzoic acids

Hydroxycinnamic acids and hydroxybenzoic acids are considered non-flavonoid phenolics and are characterized by their C6-C3 and C6-C structures, respectively. Most of the hydroxycinnamic acids and hydroxybenzoic acid derivatives detected in mature vegetables (17-19, 21) were also detected in our five *Brassica* species microgreens. However, our five Brassica species microgreens contained a greater variety and higher concentrations of cinamic acids than their mature leaf counterpart. The retention times, HRMS molecular ions $[M-H]^-$, diagnostic MS² and MS³ product ions, UV λ_{max} and identification of the hydroxycinnamates, arranged by molecular weight, are listed in Table 3. Their peaks are eluted with the flavanol glycoside peaks, as shown in Figure 3. The hydroxycinnamic acids, hydoxycinnamoylquinic acids, hydroxycinnamoylmalic acids, and hydroxycinnamoyl saccharides with one to three glucosides were identified using reference compounds (designated by **) or from the literature (designated by *) Table 3. Sixteen of the hydroxycinnamoylsaccharides were formed from di- or triglucoses, mainly gentiobiose, with one to three hydroxycinnamoyl units. By direct comparison with reference compounds in mustard greens, peaks a36, a41, b28 and d26 (Figure 3) were identified as disinapoylgentiobioses. Peaks a4, b11, and c12 were identified as feruloyl-glucosides. Peaks a42, d27, and a43 were identified as sinapoyl-feuloylgentiobioses. Peak a47 and b30, identified as trisinapoylgentionbiose and feruloyl-disinapoyl-gentionbiose, are peaks common to microgreens of mizuna, purple kohlrabi, red mustard, and purple mustard. Peak d11 is only found in mizuna and was tentatively identified as sinapic acid-glucose.

Other organic acids, such as caffeoylquinic acid, ferulic acid, sinapic acid, citric acid, malic acid, and caffeoylquinic acid are organic acids common in these five microgreens. There were a number of organic acid isomers found in the five *Brassisa* microgreens and identification was based on their similar MS² and MS³ spectra. However, they exhibited different retention times based on species. For example, the peaks a42, a43and d27 all had

the same $[M-H]^-$ at m/z 723. HRMS measurements suggested the formula of $C_{33}H_{39}O_{18}$, with the main MS² product ion at m/z 529 (M - 194, neutral loss of ferulic acid) and the main MS³ product ions at m/z 223 sinapic acid). These compounds were identified as sinapoyl-ferulic acid and its isomers. Similarly, peaks a36, b28, and a41 ($[M - H]^-$ at m/z 753, with a main MS² product ion at 529 and main MS³ product ions at 205) was identified as disinapoylgentiobiose and its isomers.

In summary, this is the first study characterizing phenolic profiles specifically in *Brassisca* species microgreens. A total of 165 phenolic compounds were tentatively identified using complementary information from UHPLC-PDA-HRMSⁿ in negative and positive modes, revealing a large number of highly glycosylated and acylated quercetin, kaempferol, cyanidin aglycones and complex hydroxycinnamic and benzoic acids. The results showed that the *Brassica* species microgreens tended to have more complex polyphenols profiles and to contain more varieties of polyphenols compared to their mature plant counterpart. Thus, *Brassica* species microgreens could be considered a good source for polyphenols. This compositional study should serve as reference base for these five *Brassica* species microgreens and enhance their value to health agencies and consumers

Acknowledgments

This research is supported by the Agricultural Research Service of the U.S. Department of Agriculture and an Interagency Agreement with the Office of Dietary Supplements of the National Institutes of Health.

REFERENCES

- Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J Agric Food Chem. 2012; 60:7644–51. [PubMed: 22812633]
- Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2011; 16:251–80. [PubMed: 21193847]
- Guzman I, Yousef GG, Brown AF. Simultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in brassica vegetables. J Agric Food Chem. 2012; 60:7238–44. [PubMed: 22734504]
- Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res. 2009; 53(Suppl 2):S219. [PubMed: 19035553]
- Terry P, Wolk A, Persson I, Magnusson C. Brassica vegetables and breast cancer risk. JAMA. 2001; 285:2975–7. [PubMed: 11410091]
- Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev. 1996; 5:733–48. [PubMed: 8877066]
- Lampe JW, Peterson S. Brassica, biotransformation and cancer risk: genetic polymorphisms alter the preventive effects of cruciferous vegetables. J Nutr. 2002; 132:2991–4. [PubMed: 12368383]
- Cox DN, Melo L, Zabaras D, Delahunty CM. Acceptance of health-promoting Brassica vegetables: the influence of taste perception, information and attitudes. Public Health Nutr. 2012; 15:1474–82. [PubMed: 22230576]
- 9. Lin LZ, Harnly JM. Phenolic component profiles of mustard greens, yu choy, and 15 other brassica vegetables. J Agric Food Chem. 2010; 58:6850–7. [PubMed: 20465307]
- Lin L, Sun J, Chen P, Harnly J. UHPLC-PDA-ESI/HRMS/MSn Analysis of Anthocyanins, Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Red Mustard Green (Brassica juncea Coss variety). J Agric Food Chem. 2011
- 11. Lin L, Sun J, Chen P, Harnly JM. LC-PDA-ESI/MSn Identification of New Anthocyanins in Purple Bordeaux Radish (Raphanus sativus L. variety). J Agric Food Chem. 2011

- Lin LZ, Harnly JM. Identification of the Phenolic Components of Collard Greens, Kale, and Chinese Broccoli. J Agr Food Chem. 2009; 57:7401–7408. [PubMed: 19627150]
- Ferreres F, Fernandes F, Sousa C, Valentao P, Pereira JA, Andrade PB. Metabolic and bioactivity insights into Brassica oleracea var. acephala. J Agric Food Chem. 2009; 57:8884–92. [PubMed: 19722523]
- Ferreres F, Valentao P, Llorach R, Pinheiro C, Cardoso L, Pereira JA, Sousa C, Seabra RM, Andrade PB. Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC). J Agric Food Chem. 2005; 53:2901–7. [PubMed: 15826037]
- Sousa C, Lopes G, Pereira DM, Taveira M, Valentao P, Seabra RM, Pereira JA, Baptista P, Ferreres F, Andrade PB. Screening of antioxidant compounds during sprouting of Brassica oleracea L. var. costata DC. Combinatorial chemistry & high throughput screening. 2007; 10:377– 86. [PubMed: 17896933]
- Taveira M, Pereira DM, Sousa C, Ferreres F, Andrade PB, Martins A, Pereira JA, Valentao P. In vitro cultures of Brassica oleracea L. var. costata DC: potential plant bioreactor for antioxidant phenolic compounds. J Agric Food Chem. 2009; 57:1247–52. [PubMed: 19192972]
- Olsen H, Aaby K, Borge GI. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. J Agric Food Chem. 2009; 57:2816–25. [PubMed: 19253943]
- Ferreres F, Valentao P, Pereira JA, Bento A, Noites A, Seabra RM, Andrade PB. HPLC-DAD-MS/ MS-ESI screening of phenolic compounds in Pieris brassicae L. Reared on Brassica rapa var. rapa L. J Agric Food Chem. 2008; 56:844–53. [PubMed: 18173245]
- Harbaum B, Hubbermann EM, Wolff C, Herges R, Zhu Z, Schwarz K. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. J Agric Food Chem. 2007; 55:8251–60. [PubMed: 17848079]
- Rochfort SJ, Imsic M, Jones R, Trenerry VC, Tomkins B. Characterization of flavonol conjugates in immature leaves of pak choi [Brassica rapa L. Ssp. chinensis L. (Hanelt.)] by HPLC-DAD and LC-MS/MS. J Agric Food Chem. 2006; 54:4855–60. [PubMed: 16787039]
- Romani A, Vignolini P, Isolani L, Ieri F, Heimler D. HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. Subsp. sylvestris L.). J Agric Food Chem. 2006; 54:1342–6. [PubMed: 16478258]
- 22. Llorach R, Gil-Izquierdo A, Ferreres F, Tomas-Barberan FA. HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. J Agric Food Chem. 2003; 51:3895–9. [PubMed: 12797762]
- Vallejo F, Tomas-Barberan FA, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-uV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A. 2004; 1054:181–93. [PubMed: 15553143]
- Lin LZ, Sun J, Chen P, Harnly J. UHPLC-PDA-ESI/HRMS/MS(n) analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J Agric Food Chem. 2011; 59:12059–72. [PubMed: 21970730]
- 25. Wu X, Prior RL. Identification and characterization of anthocyanins by high- performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem. 2005; 53:3101–13. [PubMed: 15826066]
- Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/ MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005; 53:2589– 99. [PubMed: 15796599]
- Ferreres F, Llorach R, Gil-Izquierdo A. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2004; 39:312–21. [PubMed: 15039939]

- Arapitsas P, Sjoberg PJR, Turner C. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry. Food Chem. 2008; 109:219–226.
- 29. Arapitsas P, Turner C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta. 2008; 74:1218–23. [PubMed: 18371772]
- McDougall GJ, Fyffe S, Dobson P, Stewart D. Anthocyanins from red cabbage--stability to simulated gastrointestinal digestion. Phytochemistry. 2007; 68:1285–94. [PubMed: 17382979]
- Park WT, Kim JK, Park S, Lee SW, Li X, Kim YB, Uddin MR, Park NI, Kim SJ, Park SU. Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (Brassica oleracea var. gongylodes). J Agric Food Chem. 2012; 60:8111– 6. [PubMed: 22742768]

Anthocyanins

 R_1 = sophorosyl, diglucosyl or triglucosyl with acyls R_2 = glucosyl, glucosyl with malonyl

Flavonols and Flavonol glycosides

Kaempferol $R_1=R_2=R_3=H$ (MW, 286 Da) Quercetin $R_1=R_2=H$, $R_3=OH$ (MW, 302 Da) Isorhamnetin $R_1=R_2=H$, $R_3=OCH_3$ (MW, 316 Da) Flavonol glycosides R_1 and/or R_2 = glycosyls

Figure 1.

Basic chemical structures identified from five Brassica species microgreens.

Hydroxycinnamoyls

 $\begin{array}{l} p\text{-}\text{Coumaroyl } R_1 = R_2 = H\\ \text{Caffeoyl } R_1 = \text{OH}, R_2 = H\\ \text{Feruloyl } R_1 = \text{OCH}_3, R_2 = H\\ \text{Hydroxyferuloyl } R_1 = \text{OCH}_3, R_2 = \text{OH}\\ \text{Sinapoyl } R_1 = R_2 = \text{OCH}_3\\ \text{Flavonol glycosides } \text{R1} \text{ and/or } \text{R2} = \text{glycosyls} \end{array}$

Malonyl

Sun et al.

Figure 2.

The UHPLC chromatogram from five *Brassica* species microgreens: red cabbage (A), purple kohlrabi (B), red mustard (C) and purple mustard (D) under 520 nm.

The UHPLC chromatogram of five *Brassica* species microgreens: red cabbage (A), purple kohlrabi (B), red mustard (C), purple mustard (D) and mizuna (E) under 330 nm.

Table 1

Typical substitutional groups and common neutral losses of polyphenols in five Brassica species microgreens.

Substitutional groups	Name	Neutral Loss in HRMS
mono-saccharides	pentose (xylose, arabinose)	132.0422 (C ₅ H ₈ O ₄)
	methyl-pentose (rhamnose) hexose (glucose, galactose)	146.0579 (C ₆ H ₁₀ O ₄) 162.0528 (C ₆ H ₁₀ O ₅)
di-saccharides	sophorose=2-β-D-glucopyranosyl-D-glucose gentiobiose=6-β-D-glucopyranosyl-D-glucose	324.1056 (C ₁₂ H ₂₀ O ₁₀)
tri-saccharides	sophorotriose (2 ^{///} - β-D-glucopyranosyl-2 ^{//} -β-D-glucopyranosyl-D-glucose) gentiotriose (6 ^{///} - β-D-glucopyranosyl-6 ^{//} -β-D-glucopyranosyl-D-glucose)	486.1584 (C ₁₈ H ₃₀ O ₁₅)
hydroxycinnamoyls	p-coumaroyl R ₁ =H R ₂ =H caffeoyl R ₁ =OH R ₂ =H	146.0347 (C ₉ H ₆ O ₂) 162.0317 (C ₉ H ₆ O ₃)
	feruloyl R ₁ =OCH ₃ R ₂ =H sinapoyl R ₁ =OCH ₃ R ₂ =OCH ₃	176.0473 ($C_{10}H_8O_3$) 206.0579 ($C_{11}H_{10}O_4$)
J ^J		
hydroxybenzoyls	p-hydroxybenzoyl R ₁ =H R ₂ =H	120.0211 (C ₇ H ₄ O ₂)
R ₁	galloyl R ₁ = OH R ₂ =OH	152.0109 (C ₇ H ₄ O ₄)
di-carboxylic acid acyls	malonyl	86.0004 (C ₃ H ₂ O ₃)
22 он		

UHPLC kohlrabi	c-HRMS- i	-Data of a	athocyanin	s from combii	nes four Brassica species Microgre	eens: red cabbage	, red mustard, purple mustard, mizuna and purple
Peak #	$t_{R}\left(min\right)$	[M] ⁺	Formula	Error (mmu)	major and important MS ² ions	major MS ³ ion	Tentative Identification
_	5.97	773.2106	$C_{33}H_{41}O_{21}$	-1.36	611(29), 449(40), 287(100)	287(100)	cy 3-diglucoside-5-glucoside
5	12.34	965.2528	$C_{43}H_{49}O_{25}$	-2.12	803(100), 641(20), 287(60)	287(100)	cy 3-hydroxyferuloy1-5-glucoside
З	14.98	979.2699	$C_{44}H_{51}O_{25}$	-1.53	817(71), 449(46), 287(100)	287(100)	cy 3-(sinapoyl)-diglucoside-5-glucosides
4	15.29	979.2708	$C_{44}H_{51}O_{25}$	-0.61	817(82), 449(52), 287(100)	287(100)	cy 3-(sinapoyl)-diglucoside-5-glucoside
Ś	17.21	1141.3246	$C_{50}H_{61}O_{30}$	0.34	979(100), 449(54)	287(100)	cy 3-(glucopyranosyl-sinapoyl)diglucoside-5-glucoside
9	24.63	919.249	$C_{42}H_{47}O_{23}$	-1.38	757(100), 449(19), 287(50)	287(100)	cy 3-(coumaroyl)sophoroside-5-glucoside
7	25.23	1287.3597	$C_{59}H_{67}O_{32}$	-1.01	1125(100), 449(6)	963(100),	cy-3(glucosyl)(sinapoyl)(p-coumaroyl)sophorside-5-glucoside
8	26.31	1317.369	C ₆₀ H ₆₉ O ₃₃	-1.94	1185(100), 1155(35), 449(2)	1023(100), 449(3)	cy-3(glucosyl)(sinapoyl)(feruloyl)sophorside-5-glucoside *
6	26.97	919.249	$C_{42}H_{47}O_{23}$	-1.38	757(100), 449(19), 287(50)	287(100)	cy 3-(coumaroyl)sophoroside-5-glucoside
10	27.71	949.2602	$C_{43}H_{49}O_{24}$	-0.66	787(100), 449(18), 287(49)	287(100)	cy 3-(feruloy/)sophoroside-5-glucoside
11	28.31	1141.3016	$C_{53}H_{57}O_{28}$	-1.30	979(100), 449(11)	287(100)	cy 3-(caffeoyl)(sinapoyl)diglucoside-5-glucoside
11a	29.14	1005.2492	$C_{45}H_{49}O_{26}$	-1.46	757(22), 535(100), 491(10), 287(73)	287(100)	cy 3-(coumaroyl)sophoroside-5-(malonyl)glucoside
12	33.37	1125.307	$C_{53}H_{57}O_{27}$	-1.04	963(100), 449(13)	287(100)	cy 3-diferuloylsophoroside-5-glucoside
12a	31.07	1211.3088	$C_{56}H_{59}O_{30}$	0.23	963(100), 535(81), 521(9)	287(100)	cy 3-(coumaroyl)(sinapoyl)diglucoside-5-(malonyl)glucoside
13	34.50	1125.307	$C_{53}H_{57}O_{27}$	-1.04	963(100), 449(13)	287(100)	cy 3-diferuloylsophoroside-5-glucoside
13a	32.56	1035.2599	$C_{46}H_{51}O_{27}$	-1.32	992(7), 787(40), 780(5), 535(100), 492(12), 449(6), 287(5)	287(100)	ey 3-(feruloyl)glucoside-5-(malonyl)-glucoside
14	35.07	1155.3192	$C_{54}H_{59}O_{28}$	0.40	993(100), 449(9)	287(100)	cy 3-sinapoylferuloylsophoroside-5-glucoside
14a	33.21	1065.2702	$C_{47}H_{53}O_{28}$	-1.59	817(73), 535(100), 492(2), 449(3)	287(100)	cy 3-(sinapoyl)glucoside-5-(malonyl)-glucoside
15	35.91	1155.3192	$C_{54}H_{59}O_{28}$	0.40	993(100), 449(9)	287(100)	cy 3-(sinapoyl)(feruloyl)sophoroside-5-glucoside
16	37.14	1185.3298	$C_{55}H_{61}O_{29}$	0.50	1023(100), 449(10)	287(100)	cy 3-(sinapoyl)(sinapoyl)sophoroside-5-glucoside
16b	36.34	1373.3585	C ₆₂ H ₆₉ O ₃₅	-2.89	963(100), 697(66), 653(28)	287(100)	cy 3-(sinapoyl)(coumaroyl)-triglucoside-5-(malonyl)-glucoside

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Table 2

_
_
_
· · ·
~
_
<u> </u>
_
_
_
^
0
_
_
_
~
~
0
2
-
_
-
_
10
0)
-
0
~
_
_
÷.

Peak #	t _R (min)	[M]+	Formula	Error (mmu)	major and important MS ² ions	major MS ³ ion	Tentative Identification
17	37.55	1155.3192	$C_{54}H_{59}O_{28}$	0.40	993(100), 449(9)	287(100)	cy 3-(sinapoyl)(feruloy1)sophoroside-5-glucoside
17b	37.08	1197.2902	$C_{55}H_{57}O_{30}$	-2.72	949(18), 860(3), 535(100), 517(3), 491(9)	287(100)	cy 3-(caffeoyl) (sinapoyl)-xylglu-5-(malonyl) glucoside
18	37.99	1185.3298	$C_{55}H_{61}O_{29}$	0.49	1023(100), 449(10)	287(100)	cy 3-(smapoyl)(sinapoyl)sophoroside-5-glucoside
18b	37.37	1227.3008	$C_{56}H_{59}O_{31}$	-2.68	979(82), 535(100), 491(10)	287(100)	cy 3-(p-coumaroy1)(sinapoy1)diglucoside-5-O-(malony1)glucoside
19	38.00	1211.3082	$C_{56}H_{59}O_{30}$	-1.46	963(91), 535(100), 491(3)	287(100)	cy-3-(feruloy1)(feruloy1)diglucoside-5-(malony1)glucoside
20	38.56	1241.3192	$C_{57}H_{61}O_{31}$	-1.03	1206(15), 1198(30), 993(100), 535(88), 449(8)	287(100)	cy 3-(sinapoyl)(feruloyl)diglucoside-5-(malonyl)glucoside
21	38.85	1271.3296	C ₅₈ H ₆₃ O ₃₂	-0.10	1023(100), 535(51), 491(7)	287(100)	cy 3-(sinapoyl)(sinapoyl)diglucoside-5-(malonyl)glucoside
22	39.35	1241.3190	$C_{57}H_{61}O_{31}$	-0.13	993(100), 535(70), 492(13)	287(100)	cy3-(sinapoyl)(feruloyl)diglucoside-5-(malonyl)glucoside
23	39.81	1211.3078	$C_{56}H_{59}O_{30}$	-0.77	963(86), 535(100)	287(100)	cy 3-(p-coumaroyl)(sinapoyl)diglucoside-5-(malonyl)glucoside
* compared	I with literat	ure data, cy-cy	yanidin				

ICU COUC	igu, iuu i	nuoranu, pu	n pro musta	ות, וווובטוום מו	in purpre volution.		
Peak.No.	t _R (min)	[H-H]-	Formula	Error (mmu)	major and important MS^2 ions	MS ³ ion	Tentative Identification
al	1.66	133.0143	C4H5O5	0.40	241(83), 153(100)	115(100)	malic acid*
a2	1.98	191.0192	$C_6H_7O_7$	-0.53	173(22), 111(100)	67(100)	citric acid
a3	3.37	205.0349	$C_7 H_9 O_7$	-0.48	173(61), 159(6), 143(11), 111(100)		methyl citric acid
b1	5.56	503.1398	$C_{21}H_{27}O_{14}$	-0.83	341(100), 179(9)	179(100)	courmaroyl-di-glucoside
a4	5.71	355.1029	$C_{16}H_{19}O_9$	-1.56	217(59), 193(100), 175(40)	134(100)	feruloyl-glucose
b2	5.93	353.0870	$C_{16}H_{17}O_9$	-0.80	191(100), 179(43), 135(8)	173(100)	caffeoyl-quinic acid
5a	6.12	299.0768	$C_{13}H_{15}O_{8}$	-0.44	239(90), 179(71), 137(100)		salicyloyl-glucose
a6	6.21	547.1671	$C_{23}H_{31}O_{15}$	0.47	223(100)	208(100)	* sinapoyl-gentiobiose
a7	7.18	447.0557	$C_{20}H_{15}O_{12}$	-1.12	357(38), 275(55), 259(100)	139(100)	rhamnosyl-ellagic acid
a8	8.32	787.1942	$C_{33}H_{39}O_{22}$	1.45	625(100)	300(100)	4n 3-diglucoside-7-glucoside
a9	9.20	787.1920	$C_{33}H_{39}O_{22}$	-1.85	625(100)	300(100)	qn 3-diglucoside-7-glucoside
c1	9.68	933.2486	$C_{39}H_{49}O_{26}$	-0.79	771(100)	591(100)	km 3-sophorotrioside-7-glucoside
b3	10.06	787.1916	$C_{33}H_{39}O_{22}$	-2.25	625(100)	300(100)	* qn 3-sophoroside-7-glucoside
dl	10.09	845.2113	$C_{39}H_{41}O_{21}$	-3.28	683(100), 477(15), 315(6)	353(100)	is 3-sinapoylglucoside-7-glucoside
a10	10.11	771.1978	$C_{33}H_{39}O_{21}$	-1.13	609 (100)	285(100)	km 3-sophoroside-7-glucoside
d2	10.43	817.2015	$C_{34}H_{41}O_{23}$	-2.91	609(100), 447(34)	447(100)	km 3-diglucoside-7-glucoside with HCOOH
c2	10.45	1141.2889	$\mathrm{C}_{49}\mathrm{H}_{57}\mathrm{O}_{31}$	1.07	979 (100), 949(93), 787(72)	787(100)	4 an 3-hydroxyferuloylsophorotioside-7-glucoside
all	10.59	979.2349	$C_{43}H_{47}O_{26}$	-1.23	817(98), 787(100), 625(59)	625(100)	an 3 hydroxyferuloylsophoroside-7-glucoside
c3	10.80	1111.2760	$C_{48}H_{55}O_{30}$	-2.13	949(100), 787(30)	787(100)	4n 3-caffeoylsophorotrioside-7-glucoside
a12	10.82	979.2333	$\mathrm{C}_{43}\mathrm{H}_{47}\mathrm{O}_{26}$	-2.80	817(98), 787(100), 625(59)	625(100)	qn 3 hydroxyferuloylsophoroside-7-glucoside
b4	10.92	787.1906	$C_{33}H_{39}O_{22}$	-3.25	625(100)	300(100)	qn 3-sophoroside-7-glucoside

UHPLC-HRMS-Data of flavonol glycosides and derivatives of hydroxycinnamic acids and hydroxybenzoic acids from five Brassica speies microgreens: red cabbage, red mustard, purple mustard, mizuna and murple kohlrahi

J Agric Food Chem. Author manuscript; available in PMC 2014 November 20.

qn 3 hydroxyferuloylsophoroside-7-glucoside

625(100)

817(92), 787(100), 625(51)

 $C_{43}H_{47}O_{26} \quad -0.20$

979.2359

10.97

d3

π.
~
~
H
5
0
<u> </u>
2
2
Ň
Ma
Man
r Manu
r Manus
r Manusc
r Manuscr
r Manuscrij
r Manuscrip

Ľ

NIH-PA Author Manuscript

Tentative Identification	* qn 3-caffeoylsophoroside-7-glucoside	qn 3-caffeoylsophorotrioside-7-glucoside	qn 3-caffeoylsophoroside-7-glucoside	qn 3-caffeoylsophorotrioside-7-glucoside	qn 3-caffeoylsophorotrioside-7-glucoside	qn 3-caffeoylsophoroside-7-glucoside	km 3-diglucoside	qn 3-caffeoylsophorotrioside-7-glucoside	km 3-sophoroside-7-glucoside	qn 3-sophoroside-7-glucoside	km 3-hydroxyferuloylsophoroside-7-glucoside	qn 3-caffeoylsophorotrioside-7-glucoside	qn 3 hydroxyferuloylsophoroside-7-glucoside $$	qn 3 hydroxyferuloylsophoroside-7-glucoside *	km 3-hydroxyferuloylsophorotrioside-7-glucoside st	qn 3-caffeoylsophoroside-7-glucoside	qn 3 sophoroside-7-sinapoylrhamoside	km 3-caffeoylsophorotrioside-7-glucoside	qn 3-caffeoylsophoroside-7-glucoside	km 3-caffeoyldiglucoside-7-glucoside
MS ³ ion	625(100)	787(100)	625(100)	787(100)	787(100)	625(100)	285(100)	625(100)	285(100)	300(100)	609(100)		625(100)	625(100)	771(100)	625(100)	301(100)	771(100)	625(100)	609(100)
major and important MS ² ions	787(100), 625(22)	949(100), 787(29)	787(100), 625(20)	949(100), 787(29)	949(100), 787(30)	787(100), 625(20)	489(7), 447(100), 285(10)	949(100), 788(34), 625(36)	609(100)	625(100)	801(100), 609(2)	949(100), 787(38)	817(98), 787(100), 625(59)	817(95), 787(100), 625(55)	963(100)	787(100), 625(20)	831(43), 771(100), 625(21)	975(2), 933(100), 809(7)	787(100), 625(20)	771(100)
Error (mmu)	0.06	-3.46	-2.44	-2.16	-0.36	-2.14	-1.41	-2.26	-1.33	1.45	-2.69	-1.76	-1.23	-3.21	-0.28	-2.14	-2.80	-0.28	-1.94	-1.73
Formula	$C_{42}H_{45}O_{25}$	$C_{48}H_{55}O_{30}$	$C_{42}H_{45}O_{25}$	$C_{48}H_{55}O_{30}$	$C_{48}H_{55}O_{30}$	$C_{42}H_{45}O_{25}$	$C_{27}H_{29}O_{16}$	$C_{48}H_{55}O_{30}$	$C_{33}H_{39}O_{21}$	$C_{33}H_{39}O_{22}$	$C_{43}H_{47}O_{25}$	$C_{48}H_{55}O_{30}$	$C_{43}H_{47}O_{26}$	$C_{43}H_{47}O_{26}$	$C_{49}H_{57}O_{30}$	$C_{42}H_{45}O_{25}$	$C_{44}H_{49}O_{25}$	$C_{48}H_{55}O_{29}$	$C_{42}H_{45}O_{25}$	$C_{42}H_{45}O_{24}$
[H-H]-	949.2256	1111.2749	949.2231	1111.2762	1111.2780	949.2234	609.1447	1111.2761	771.1976	787.1942	963.2385	1111.2766	979.2349	979.2329	1125.2937	949.2234	977.2541	1095.2826	949.2236	933.2289
t _R (min)	10.99	11.11	11.12	11.31	11.36	11.47	11.53	11.65	11.81	11.92	12.05	12.07	12.08	12.25	12.28	12.37	12.53	12.63	12.69	12.72
Peak.No.	a13	c4	al4	c5	al5	d4	b5	a16	b6	c6	a17	d5	с7	b7	c8	d6	a18	c9	b8	a19

J Agric Food Chem. Author manuscript; available in PMC 2014 November 20.

. .

km 3-hydroxyferuloyl
sophoroside-7-glucoside $\,$

* sinapoylgentiobiose

208(100) 609(100) 787(100) 787(100)

qn 3-caffeoylsophorotrioside-7-glucoside qn 3-p-coumaroyltriglucoside-7-glucoside

949(84), 933(100), 787(45)

949(100), 787(30)

1111.2760 1095.2797

b8

a20

801(100) 223(100)

> -3.09-2.13-3.42

963.2381 547.1671

> 12.94 13.15 13.18

7D

0.47

 $C_{23}H_{31}O_{15}$ $C_{43}H_{47}O_{25}$ $C_{48}H_{55}O_{30}$ $C_{48}H_{55}O_{29}$

12.91

c10 a19

Peak.No.	t _R (min)	-[H-H]-	Formula	Error (mmu)	major and important MS^2 ions	MS ³ ion	Tentative Identification
a21	13.32	1095.2826	$C_{48}H_{55}O_{29}$	-0.28	975(2), 933(100), 809(7)	771(100)	km 3-caffeoylsophorotrioside-7-glucoside
c11	13.44	625.1410	$C_{27}H_{29}O_{17}$	-0.04	463(8), 343(16), 301(100)	179(100)	an diglucoside
a22	13.52	1155.3022	$C_{50}H_{59}O_{31}$	-2.38	993(100), 950(41), 787(39)		qn 3-sinapoyltriglucoside-7-glucoside
d8	13.58	961.2592	$C_{44}H_{49}O_{24}$	-2.84	623(72), 609(100), 592(27)	257(100)	km 3-sophoroside-7-sinapoylrhamnoside
a23	13.69	993.2493	$C_{44}H_{49}O_{26}$	-2.45	801(13), 787(100)	607(100)	4 an 3-sinapoylsophoroside-7-glucoside
6р	13.77	933.2275	$C_{42}H_{45}O_{24}$	-3.13	771(100)	609(100)	km 3-caffeoyldiglucoside-7-glucoside
b10	13.78	963.2391	$C_{43}H_{47}O_{25}$	-2.09	801(100)	609(100)	km 3-hydroxyferuloylsophoroside-7-glucoside
c12	13.92	355.1029	$C_{16}H_{19}O_9$	-1.56	217(59), 193(100), 175(40)	134(100)	* feruloy1glucose
a24	14.12	1125.2937	$C_{49}H_{57}O_{30}$	-0.28	963(100)	771(100)	km 3-hydroxyferuloylsophorotrioside-7-glucoside
b11	14.21	355.1029	$\mathrm{C}_{16}\mathrm{H}_{19}\mathrm{O}_9$	-1.56	217(59), 193(100), 175(40)	134(100)	feruloy1glucose *
d10	14.21	933.2283	$C_{42}H_{45}O_{24}$	-2.24	787(10), 771(100), 625(11)	625(100)	km 3-caffeoyldiglucoside-7-glucoside
c13	14.21	1155.3028	$C_{50}H_{59}O_{31}$	-1.78	993(100), 950(29), 788(30)		qn 3-sinapoyltriglucoside-7-glucoside
c14	14.33	1155.3023	$C_{50}H_{59}O_{31}$	-2.28	993(100), 950(29), 788(30)		qn 3-sinapoyltriglucoside-7-glucoside
b12	14.39	933.2306	$C_{42}H_{45}O_{24}$	-0.03	787(14), 771(100), 625(11)	625(100), 607(8)	qn 3-p-coumaroyldiglucoside-7-glucoside
a25	14.52	1095.2810	$C_{48}H_{55}O_{29}$	-2.45	949(100), 933(38), 771(62), 625(40)		km 3-caffeoyl-triglucoside-7-glucoside
b13	14.61	933.2280	$C_{42}H_{45}O_{24}$	-2.63	771(100)	609(100)	km 3-caffeoyl-diglucoside-7-glucoside
a26	14.67	1095.2811	$C_{48}H_{55}O_{29}$	-2.35	949(100), 933(38), 932(6), 787(6), 771(62)		km 3-caffeoyl-triglucoside-7-glucoside
d11	14.89	385.1137	$C_{17}H_{21}\mathbf{O}_{10}$	-0.32	247(52), 223(100), 205(55)	164(100)	sinapic acid-glucose
c15	14.91	993.2486	$C_{44}H_{49}O_{26}$	-3.15	831(99), 787(100), 769(6), 625(44)	625(100)	qn 3-sinapoylsophorotrioside
a27	15.01	1139.3093	$C_{50}H_{59}O_{30}$	-0.32	977(100)	771(100)	km 3-sinapoylsophorotrioside-7-glucoside
d12	15.04	993.2481	$C_{44}H_{49}O_{26}$	-3.65	831(100), 787(94), 769(6), 625(45)		qn 3-sinapoyldiglucoside-7-glucoside
a28	15.21	977.2535	$C_{44}H_{49}O_{25}$	-2.24	815(100), 609(3)	609(100)	km 3-sinapoylsophoroside-7-glucoside
b14	15.22	993.2496	$C_{44}H_{49}O_{26}$	-2.15	831(99), 787(100), 769(6), 625(44)	625(100)	qn 3-sinapoyltriglucoside
c16	15.27	963.2387	$C_{43}H_{47}O_{25}$	-2.49	801(100), 609(2)	609(100)	km 3-hydroxyferuloylsophoroside-7-glucoside
b15	15.55	963.2381	$C_{43}H_{47}O_{25}$	-3.09	801(100), 787(45), 625(26)	625(100)	km 3-hydroxyferuloylsophoroside-7-glucoside
d13	15.55	963.2374	$C_{43}H_{47}O_{25}$	-3.79	801(100), 787(47), 625(25)		km 3-hydroxyferuloylsophoroside-7-glucoside

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

~
~
_
—
-
<u> </u>
T
~
$\mathbf{\Sigma}$
~
<u> </u>
±.
5
0
•
~
\leq
0
<u> </u>
5
<u> </u>
1
0
0
<u> </u>
<u> </u>
0
+

NIH-PA	
Author	
Manuscript	

Peak.No.	t _R (min)	-[H-H]-	Formula	Error (mmu)	major and important MS ² ions	MS^3 ion	Tentative Identification
c17	15.63	1139.3103	$C_{50}H_{59}O_{30}$	0.56	977(100), 771(3)	771(100)	km 3-sinapoylsophorotrioside-7-glucoside
b16	15.72	963.2391	$C_{43}H_{47}O_{25}$	-2.09	801(100), 787(45), 625(26)	625(100)	km 3-hydroxyferuloylsophoroside-7-glucoside
d14	15.82	933.2283	$C_{42}H_{45}O_{24}$	-2.33	787(10), 771(100), 625(11)	625(100)	km 3-caffeoyldiglucoside-7-glucoside
a29	15.87	947.2429	$C_{43}H_{47}O_{24}$	-2.28	827(2), 785(100), 609(2)	609(100)	km 3-feruloylsophoroside-7-glucoside
b17	15.93	933.2280	$C_{42}H_{45}O_{24}$	-2.63	788(10), 771(100), 625(11)	625(100)	km 3-caffeoyldiglucoside-7-glucoside
c18	15.93	1109.2946	$C_{49}H_{57}O_{29}$	-4.06	947(100)	771(100)	km 3-feruloylsophorotrioside-7-glucoside
a30	16.28	917.2318	$C_{42}H_{45}O_{23}$	-4.26	755(100)	609(100)	km 3-p-coumaroylsophoroside-7-glucoside
d15	16.36	1095.2805	$C_{48}H_{55}O_{29}$	-2.95	933(100), 787(28)		km 3-caffeoyltriglucoside-7-glucoside
c19	16.39	977.2535	$C_{44}H_{49}O_{25}$	-2.24	815(100), 609(3)	609(100)	* km 3-sinapoylsophoroside-7-glucoside
a31	16.47	1079.2852	$C_{48}H_{55}O_{28}$	-3.33	755(100), 609(12)	609(100)	km 3-p-coumaroylsophoroside-7-diglucoside
b18	16.48	1139.3065	$C_{50}H_{59}O_{30}$	-3.16	977(100)	771(100)	km 3-sinapoylsophorotrioside-7-glucoside
b19	16.63	977.2542	$C_{44}H_{49}O_{25}$	-2.64	815(100)	609(100)	km 3-sinapoylsophoroside-7-glucoside
d16	16.76	609.1441	$C_{27}H_{29}O_{16}$	-2.01	489(13), 447(100), 285(19)	284(100)	km 3-glucoside-7-glucoside
c20	16.93	947.2429	$C_{43}H_{47}O_{24}$	-2.28	827(2), 785(100), 609(2)	609(100)	km 3-feruloylsophoroside-7-glucoside
c21	17.17	639.1566	$C_{28}H_{31}O_{17}$	2.08	519(10), 477(100), 315(12)	314(100)	is 3-glucoside-7-glucoside
b20	17.20	947.2439	$C_{43}H_{47}O_{24}$	-2.38	785(100)	609(100)	km 3-feruloylsophoroside-7-glucoside
d17	17.25	977.2535	$C_{44}H_{49}O_{25}$	-3.34	815(100), 771(10)	609(100)	km 3-sinapoylsophoroside-7-glucoside
b21	17.55	917.2328	$C_{42}H_{45}O_{23}$	-2.91	755(100)	609(100)	km 3-p-coumaroylsophoroside-7-glucoside
d18	17.97	947.2429	$C_{43}H_{47}O_{24}$	-3.38	785(100)	609(100)	km 3-feruloylsophoroside-7-glucoside
c22	18.03	551.1753	$C_{26}H_{31}O_{13}$	-1.71	389(100), 341(6)	341 (100)	ferulic acid-rhamnosylglucose with a 48 amu group
d19	18.12	947.2449	$C_{43}H_{47}O_{24}$	-1.38	785(100)	609(100)	km 3-feruloylsophoroside-7-glucoside
c23	18.28	993.2473	$C_{44}H_{49}O_{26}$	-4.49	801(13), 787(100)	607(100)	qn 3-sinapoylsophoroside-7-glucoside
d20	18.36	639.1548	$C_{28}H_{31}O_{17}$	-1.87	519(11), 477(100), 315(12)	314(100)	is 3-glucoside-7-glucoside
d21	18.63	917.2330	$C_{42}H_{45}O_{23}$	-2.71	755(100)	609(100)	km 3-p-coumaroyldiglucoside-7-glucoside
b22	19.13	625.1382	$\mathrm{C}_{27}\mathrm{H}_{29}\mathrm{O}_{17}$	-2.82	505(21), 463(37), 445(55), 301(60), 300(100)		qn 3-diglucoside
a32	19.40	935.2444	$C_{42}H_{47}O_{24}$	-1.88	773(100), 755(29), 663(52), 285(30)	285(100)	km aglycone with 7 glucoside and 3 acyl glucosyls

T	
T	
1	
~	
5	
÷÷-	
5	
_	
<u> </u>	
R	
r Ma	
r Mar	
r Manu	
r Manu:	
r Manus	
r Manusci	
r Manuscrij	
r Manuscrip	

	Iscript	NIH-PA Author Manu	cript	NIH-PA Author Manus
Formula	Error (mmu)	major and important MS ² ions	${ m MS^3}$ ion	Tentative Identification
$C_{27}H_{29}O_{17}$	0.60	505(18), 463(17), 445(54), 300(100)	271(100)	qn 7-sophoroside
$C_{28}H_{31}O_{17}$	-2.9	315(100), 300(16)		is 3-diglucoside
$\rm C_{49}H_{41}O_{21}$	1.02	803(100), 785(24), 693(48), 667(9), 285(21)	285(100)	km 3-caffeoyldiglucoside-7-glucoside
$C_{42}H_{45}O_{24}$	-3.53	787(10), 771(100), 625(11)	625(100)	km 3-caffeoyldiglucoside-7-glucoside
$C_{42}H_{47}O_{24}$	-2.68	773(100), 756(31), 663(55), 637(10), 285(24)	285(100)	km aglycone with 7 glucoside and 3 acyl glucosyls
C ₃₈ H ₃₉ O ₂₁	0.93	625(100)	300(100)	* qn 3-sinapoylsophoroside
$C_{10}H_9O_4$	-0.03	178(19), 149(50), 134(100)	106(100)	ferulic acid
$C_{11}H_{11}O_5$	-2.23	208(8), 179(11), 164(100)	149(100)	sinapic acid
$C_{10}H_9O_4$	-0.43	178(25), 149(55), 134(100)	106(100)	ferulic acid

Tentative Identification	* qn 7-sophoroside	is 3-diglucoside	km 3-caffeoyldiglucoside-7-glucoside	km 3-caffeoyldiglucoside-7-glucoside	km aglycone with 7 glucoside and 3 acyl glucosyls	qn 3-sinapoylsophoroside	** ferulic acid	sinapic acid	** ferulic acid	km 3-glucoside-7-rhanmoside	sinapic acid isomer	km 3-sinapoylsophoroside-7-glucoside	sinapic acid isomer	* disinapoylgentiobiose	km 3-hydroxyferuloylsophorotrioside-7-glucoside	km 3-sinapoylferuloylsophoroside-7-glucoside	km 3-disinapoyldiglucoside-7-glucoside	km 3-sinapoyldiglucoside-7-sinapoylglucoside	* disinapoylgentiobiose	* disinapoylgentiobiose	* disinapoylgentiobiose	sinapoyl-feruloylgentiobiose	* sinapoyl-feruloylgentiobiose	qn 3-disinapoylsophorotrioside	sinapoyl-feruloylgentiobiose	* trisinapoylgentionbiose
MS ³ ion	271(100)		285(100)	625(100)	285(100)	300(100)	106(100)	149(100)	106(100)	284(100)	149(100)	653(100)	149(100)	205(100)	755(100)	785(100)	815(100)	609(100)	205(100)	205(100)	223(100)	223(100)	223(100)	787(100)	223(100)	529(100)
major and important MS ² ions	505(18), 463(17), 445(54), 300(100)	315(100), 300(16)	803(100), 785(24), 693(48), 667(9), 285(21)	787(10), 771(100), 625(11)	773(100), 756(31), 663(55), 637(10), 285(24)	625(100)	178(19), 149(50), 134(100)	208(8), 179(11), 164(100)	178(25), 149(55), 134(100)	447(100)	208(8), 179(11), 164(100)	815(100), 653(14)	208(8), 179(11), 164(100)	529(100)	961(100), 755(20)	991(100), 785(20)	1021(100), 816(19)	977(22), 959(7), 815(100), 609(14), 591(7)	529(100)	529(100)	529(100)	529(100), 499(21)	529(100), 499(21)	993(100, -206), 787(12)	529(100), 499(21)	735(100), 529(7), 511(11)
Error (mmu)	0.60	-2.9	1.02	-3.53	-2.68	0.93	-0.03	-2.23	-0.43	-1.51	-0.50	-3.24	-2.23	0.73	-4.47	1.32	-5.62	-5.20	0.73	0.73	1.39	0.29	-1.69	-3.96	-2.19	0.35
Formula	$C_{27}H_{29}O_{17}$	$C_{28}H_{31}O_{17}$	$C_{49}H_{41}O_{21}$	$C_{42}H_{45}O_{24}$	$C_{42}H_{47}O_{24}$	$C_{38}H_{39}O_{21}$	$\mathrm{C}_{10}\mathrm{H}_{9}\mathrm{O}_{4}$	$C_{11}H_{11}O_5$	$\mathrm{C}_{10}\mathrm{H}_{9}\mathrm{O}_{4}$	$C_{27}H_{29}O_{15}$	$C_{11}H_{11}O_5$	$C_{44}H_{49}O_{25}$	$C_{11}H_{11}O_5$	$C_{34}H_{41}O_{19}$	$C_{53}H_{55}O_{27}$	$C_{54}H_{57}O_{28}$	$C_{55}H_{59}O_{29}$	$C_{55}H_{59}O_{29}$	$C_{34}H_{41}O_{19}$	$C_{34}H_{41}O_{19}$	$C_{34}H_{41}O_{19}$	$C_{33}H_{39}O_{18}$	$C_{33}H_{39}O_{18}$	$C_{55}H_{59}O_{30}$	$C_{33}H_{39}O_{18}$	$C_{45}H_{51}O_{23}$
-[H-H]-	625.1414	639.1548	965.2516	933.2271	935.2436	831.1997	193.0506	223.0607	193.0502	593.1503	223.0607	977.2536	223.0607	753.2253	1123.2886	1153.2981	1183.3081	1183.3086	753.2253	753.2253	753.2258	723.2144	723.2125	1199.3057	723.2120	959.2830
t _R (min)	20.43	21.28	21.40	21.48	21.90	22.16	23.13	24.01	24.79	24.92	25.86	26.17	26.69	32.77	33.68	34.63	35.20	35.52	37.34	37.86	38.81	39.11	39.35	39.99	40.41	43.75
Peak.No.	a33	b23	a34	d22	a35	c24	b24	b25	d23	b26	d24	b27	d25	a36	a37	a38	a39	a40	b28	a41	d26	a42	a43	a44	d27	a45

~
_
U
~
-
_
_
_
_
\sim
0
_
_
-
-
<u></u>
<u> </u>
_
_
10
0)
-
0
~
_
_
7
0
-

Tentative Identification	* trisinapoylgentionbiose	feruloyl-disinapoyl-gentionbiose
MS ³ ion	223(100)	499(100)
major and important MS^2 ions	735(100), 529(10), 511(13)	705(100), 511(6)
Error (mmu)	-2.87	-2.63
Formula	$C_{45}H_{51}O_{23}$	$C_{44}H_{49}O_{22}$
-[H-H]-	959.2798	929.2695
t _R (min)	44.67	45.98
Peak.No.	a47	b30

km- kaempferol, qn-quercetin, is-isorhamnetin

* identified with literature data

** with reference standards